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Multi-temporal SAR image decomposition into
strong scatterers, background, and speckle

Sylvain Lobry, Loı̈c Denis, Florence Tupin

Abstract—Speckle phenomenon in synthetic aperture radar
(SAR) images makes their visual and automatic interpretation
a difficult task. To reduce strong fluctuations due to speckle,
total variation (TV) regularization has been proposed by sev-
eral authors to smooth out noise without blurring edges. A
specificity of SAR images is the presence of strong scatterers
having a radiometry several orders of magnitude larger than
their surrounding region. These scatterers, especially present in
urban areas, limit the effectiveness of TV regularization as they
break the assumption of an image made of regions of constant
radiometry. To overcome this limitation, we propose in this paper
an image decomposition approach.

There exists numerous methods to decompose an image into
several components, notably to separate textural and geometrical
information. These decomposition models are generally recast
as energy minimization problems involving a different penalty
term for each of the components. In this framework, we propose
an energy suitable for the decomposition of SAR images into
speckle, a smooth background and strong scatterers, and discuss
its minimization using max-flow/min-cut algorithms. We make
the connection between the minimization problem considered,
involving the L0 pseudo-norm, and the generalized likelihood
ratio test used in detection theory. The proposed decomposition
jointly performs the detection of strong scatterers and the
estimation of the background radiometry.

Given the increasing availability of time series of SAR images,
we consider the decomposition of a whole time series. New change
detection methods can be based on the temporal analysis of the
components obtained from our decomposition.

Index Terms—SAR, Image decomposition, TV, L0, Change
detection.

I. INTRODUCTION

Due to the coherent nature of SAR imaging technique, SAR
images suffer from strong fluctuations related to the speckle
phenomenon. While containing information about the sub-
resolution texture of the scene, speckle is often regarded as
undesirable noise for image interpretation tasks. Speckle is
then typically modeled as a multiplicative noise.

While image denoising and restoration are among the oldest
challenges addressed in image processing, most algorithms
developed in the field of image processing are designed to
deal with an additive Gaussian noise and are thus not directly
applicable to SAR images.
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Université de Saint-Etienne and Télécom Saint-Etienne, Saint-Etienne, France,
e-mail: loic.denis@univ-st-etienne.fr.
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The simplest way to reduce speckle fluctuations is spatial
multi-looking which amounts to averaging pixel values within
a sliding window. This speckle variance reduction is obtained
at the cost of a resolution loss proportional to the size of the
averaging window. While it may produce satisfying results
in homogeneous areas, it strongly blurs textured areas, edges
between regions and bright scatterers.

Numerous approaches have been proposed to prevent the
introduction of blur by mixing values from distinct regions.
Lee et al. [1] locally select the best window among a few
oriented windows. The IDAN algorithm [2] builds an adaptive
window by region growing. Several methods have been derived
from the non-local means (NL-means) approach by Buades et
al. [3]. These methods select similar pixels in an extended
window based on patch-similarity [4]–[10]. Another family
of methods reduce speckle by regularization, i.e., by comput-
ing the maximum a posteriori estimate under a given prior.
Wavelet-based approaches model the distribution of wavelet
coefficients [11]–[13]. Total variation (TV) regularization pe-
nalizes variations between neighboring pixels while preserving
sharp edges [14]. Total variation has been applied to the
regularization of SAR amplitudes [15]–[17], SAR intensities
[18], [19] and log-transformed intensities [20] using different
optimization strategies (discrete optimization by graph-cuts,
gradient descent, Douglas-Rachford splitting or the alternating
directions method of multipliers). We refer the reader to the
two recent review papers [21] and [22] for an in-depth analysis
of speckle reduction methods.

Man-made structures such as buildings, fences or transmis-
sion towers produce very strong back-scattering, with intensi-
ties much larger than the surrounding area. Such scatterers are
especially numerous in urban areas. Isolated strong scatterers
are challenging for speckle reduction methods because they
generally break the statistical assumptions made about the
radar scene: repetition of similar patches within the search
window (patch-based methods), sparse representation in the
wavelets domain (wavelets-based methods), or piece-wise
constant regions (TV minimization). It is then necessary to
identify and process these points separately to prevent from
spreading these large values. Strong scatterers can be detected
using likelihood ratio tests [23], [24]. These detectors compare
the values in the center of a window with the rest of the
window, considered as purely background. In dense urban
areas, the presence of other point-like scatterers in the vicinity
strongly deteriorates the performance. It is thus necessary to
perform jointly the detection of strong scatterers with the
estimation of the background radiometry. The decomposition
method that we propose in the present paper achieves such a
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joint detection of point-like scatterers and estimation of the
background. It applies to multi-temporal stacks of images by
detecting scatterers at each date, even if they are not present
at other dates due to some change occurring.

This paper extends the decomposition models presented in
[25], [26] in the following ways: We derive the decompo-
sition model from a connection between scatterers detection
and maximum a posteriori estimation with a regularization
term based on L0 pseudo-norm (section II). The proposed
decomposition model can provide a multi-temporal image of
detected scatterers and a smoothly varying multi-temporal
background image, or a simpler decomposition into multi-
temporal scatterers image and a time-invariant background.
Computing the decomposition requires solving a challenging
large-scale combinatorial problem. We describe two algorith-
mic approaches (section III): an exact discrete optimization
based on finding the minimum cut in a large 4-D graph, and a
faster but approximate method based on block processing with
overlaps. We show on numerical experiments that the choice of
the L0 non-convex penalty significantly improves the detection
of scatterers compared to the usual L1 norm surrogate (section
IV). We illustrate how the detected scatterers can be used in
a subsequent processing step for change detection purposes
(section V).

II. SPARSE + SMOOTH DECOMPOSITION MODEL
FOR MULTI-TEMPORAL DATA

A. From detection to estimation under L0 prior

Let us consider first the problem of detecting strong scat-
terers in a speckled region of given radiometry uB . At each
pixel i, the detection problem amounts to deciding between
two hypotheses: the absence (H0) or presence (H1) of a
strong scatterer in addition to the other scatterers that form
the background: {

H0 : uSi = 0

H1 : uSi > 0 ,
(1)

where uSi is the radiometry of the additional scatterer.
Under the assumption of uncorrelated speckle and point-like

scatterers, this hypothesis test can be performed independently
at each pixel by studying the likelihood radio:

log
p(vi|uBi + uSi)

p(vi|uBi)
H1

≷
H0

λ , (2)

with vi the observed amplitude at pixel i (i.e., speckle-
corrupted) and λ a threshold. This likelihood ratio test can
not be readily applied since the radiometry uSi is unknown.
Replacing uSi by the maximum likelihood estimate leads to
the generalized likelihood ratio test (GLRT) [27]:

arg max
uS≥0

log p(vi|uBi + uSi)
H1

≷
H0

λ+ log(p(vi|uBi)) . (3)

In words, the presence of an additional scatterer is detected
at pixel i if the log-likelihood of the observed amplitude vi is
improved at least by λ when hypothesizing that a scatterer is
present in addition to the background scatterers. The threshold
λ sets the false alarm rate: increasing λ reduces the probability

of wrongly selecting hypothesis H1 under H0, at the cost of
reducing the detection probability.

This detection problem can be stated as an estimation
problem, i.e., as the estimation of the radiometry of the
additional scatterer uSi, where a zero estimated radiometry
corresponds to the absence of the additional scatterer at pixel
i:

uSi
∧

= arg min
uSi≥0

[
− log p(vi|uBi + uSi) + λ · (uSi 6= 0)

]
,

(4)

where the notation λ · (uS 6= 0) refers to value λ whenever
uS 6= 0, and 0 when uS = 0. Equation (4) is completely
equivalent to equation (3), and can be extended to a whole
image. The estimation of the vector of all radiometries uS,
for a given vector of corresponding background radiometries
uB and under our pixel-independence assumption, is given by:

ûS = arg min
uS≥0

[
−
∑
i

log p(vi|uBi + uSi) + λ‖uS‖0
]
, (5)

where the positivity constraint uS ≥ 0 applies component-
wise and the L0 pseudo-norm corresponds to the number of
non-zero components of vector uS.

B. Joint estimation of the background and of strong scatterers

Direct applicability of the estimation formulation given in
equation (5) is limited because it requires the knowledge of
the background radiometry uB. Estimation of this background
radiometry requires to exclude strong scatterers, i.e., the de-
tection of all scatterers in uS. The two components uB and
uS must thus be jointly estimated:

(ûS, ûB) = arg min
uS≥0,uB≥0

[
−
∑
i

log p(vi|uBi + uSi)

+ λ‖uS‖0 + ψ(uB)
]
, (6)

where ψ is a smoothness term necessary to enforce the regular-
ity of the background and thus prevent problem degeneracy1.
Regularization term ψ introduces a coupling between all un-
knowns, i.e., the minimization problem in (6) is not separable.
With the L0 term, the optimization problem is combinatorial
(non-convex and discontinuous). Given the large scale of
the problem (typically millions to billions of unknown pixel
radiometries to estimate), two approaches can be considered:
• convex relaxation: the L0 term is generally replaced

by the L1 norm to turn the combinatorial minimization
problem into a convex minimization problem;

• combinatorial optimization: direct minimization of (6)
is possible for some specific choices of the regularization
term ψ.

The first approach suffers from two drawbacks: (i) under
speckle noise, the neg-log-likelihood is non-convex, which
prevents direct application of standard convex optimization
methods; (ii) with the L1 norm, the estimation problem is
no longer equivalent to the detection problem. We show in

1in the absence of the smoothness term ψ, the decomposition is trivial:
ûS = 0 and ûB = ûB

(ML) ≡ arg minuB≥0 −
∑

i log p(vi|uBi) is the
maximum likelihood estimate of the background.
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section IV that this leads to a non-constant false alarm rate:
scatterers are mainly detected in darker areas.

The second approach consists of applying a combinatorial
optimization method to the problem, for a given discretization
of the radiometries. It restates the original optimization prob-
lem as a minimum cut / maximum flow search on a graph [28].
It applies to discrete optimization problems involving (possibly
non-convex) separable terms and convex pairwise terms, and
is well suited (i.e., the graph is sparsest) for anisotropic total
variation:

TV (u) =
∑
i∼j

wi,j |ui − uj | , (7)

where i ∼ j indicates that i and j are indices of two
neighboring pixels, and wi,j are weights. In the simplest form,
only the 4 nearest neighbors are considered and all weights
wi,j are equal to 1. To reduce the metrication effects, farther
neighbors can also be considered, with smaller weights, see for
example [29]. In the following, we will consider a smoothness
term ψ based on total variation (7) so that a graph-cut method
can be applied to solve the non-convex minimization problem.

C. Multi-temporal decomposition model

We consider the decomposition of a time series of SAR
images into 3 components: a spatio-temporal background,
additional point-like scatterers, and speckle noise. A multi-
temporal stack, represented by a vector v, is decomposed
by jointly estimating the background uB and the additional
scatterers uS. The speckle component n then corresponds
to the ratio between observed amplitudes and the estimated
radiometries, according to the multiplicative speckle model:

v = (uB + uS)× n , (8)

where the multiplication is applied component-wise.
Under Goodman’s fully developed speckle model [30], the

observed amplitude vt,i at pixel i and time t follows a Rayleigh
distribution:

p(vt,i|ut,i) =
2 vt,i
u2t,i

exp

(−v2t,i
u2t,i

)
, (9)

where ut,i = uBt,i + uSt,i is the radiometry at pixel i and
time t. Other statistical distributions may be considered, for
example Rice distribution which is more accurate when one
strong scatterer is dominant in the resolution cell (uSt,i �
uBt,i). Note that with the choice of Rayleigh distribution, the
generalized likelihood ratio test (3) takes the form:

v2i
uB2

i

− log
v2i
uB2

i

H1

≷
H0

λ+ 1 . (10)

Since the test depends only on the ratio vi/uB which is
Rayleigh distributed with parameter 1 under H0, the threshold
λ sets a constant false alarm rate (i.e., λ need not be tuned
with the level uB).

To apply the joint estimation of the background and detec-
tion of scatterers described in the preceding sections, the regu-
larization term ψ(uB) needs to be set. Apart from the presence
of many strong-scatterers, SAR images can reasonably well

be described by smooth regions (with few variations of the
radiometry) separated by sharp edges. In a time series, changes
with time are rather smooth (e.g., vegetation changes) and
pixels within a region of homogeneous radiometry generally
keep comparable radiometries. When an abrupt change occurs,
it is important to prevent from smoothing in time its apparition.
We consider using a spatio-temporal total variation to impose
some spatial and temporal smoothing while preserving sharp
edges / changes. The proposed spatio-temporal regularization
is:

TVα3D(uB) =
∑
t

∑
i∼j

wi,j |uBt,i − uBt,j |

+ α
∑
i

∑
t

|uBt+1,i − uBt,i| , (11)

where α is the weight along the temporal direction.
If α is set to a very large value, no temporal change is

possible and a constant (in time) background component is
estimated. We denote TV∞3D the regularization in this simplified
case of a time-invariant background.

With Rayleigh likelihood and the TV3D regularization, the
joint decomposition amounts to solving the following mini-
mization problem:

arg min
uS≥0,uB≥0

∑
i,t

[
2 log(uBt,i + uSt,i) +

v2t,i
(uBt,i + uSt,i)2

]
+ λ ‖uS‖0 + β TVα3D(uB) . (12)

III. OPTIMIZATION USING GRAPH-CUTS

A. Exact discrete optimization

To apply the graph-cuts combinatorial optimization method
to the minimization problem defined in equation (12), we need
that it be formulated as:

arg min
x

∑
t,i

f0(xi,t) +
∑

(i,t)∼(i′,t′)

f1(xi,t, xi′,t′) , (13)

i.e., as the sum of separable terms f0 and pairwise terms f1
involving (spatio-temporal) neighbors (i, t) and (i′, t′).

For any fixed background uB, the equivalence between the
estimation formulation (4) and the detection formulation (3)
shows that the computation of the optimal vector of scatterers
uS

? is readily obtained by simple testing against a threshold,
for each pixel. It follows from (10) that the optimal uS is
given by:

uS
?
t,i(uBt,i) =


vt,i − uBt,i if vt,i > uBt,i

and v2i
u2
B
− log

v2i
u2
B
≥ λ+ 1 ,

0 otherwise .
(14)
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Fig. 1. Graph construction used to solve the image decomposition minimization problem. (a) A set of qmax nodes (one for each quantization level) is created
for each pixel of the multi-temporal image uB. Edges directed downstream are created, from the source S to the sink P . The edge in the minimum cut,
shown with a thick line, indicates that the quantization level right below (colored in black) is the optimal value. (b) Bi-directional edges are added between
corresponding quantization levels for all pairs of spatially adjacent pixels (edges from the source and to the sink that are not in the minimum cut are omitted
in the drawing). (c) Bi-directional edges are also added between temporal neighbors. Only edges in the minimum cut are shown here, with the corresponding
optimal level at each pixel denoted by a black disk.

By substituting uS with its optimal value uS
?(uB) in the

minimization problem (12), we get the sought formulation of
equation (13), with

x = uB (15)
f0(xi,t) = 2 log(uBt,i + uS

?
t,i(uBt,i))

+
v2t,i

(uBt,i + uS?t,i(uBt,i))
2

+ λ · (uS?t,i(uBt,i) 6= 0) (16)

f1(xi,t, xj,t) = β · wi,j · |uBt,i − uBt,j | (17)
f1(xi,t, xi,t+1) = β · α · |uBt+1,i − uBt,i| . (18)

We apply the graph construction method of Ishikawa [28]
to restate the minimization problem as the search of a mini-
mum cut in a graph. We choose a (not necessarily uniform)
quantization of values of the background: {q1, q2, . . . , qmax}.
We then create a set of nodes representing all quantization
levels for each (spatio-temporal) pixel, see Fig. 1(a). Oriented
edges are created from the source to the nodes associated with
level qmax, then within a set of nodes associated to a given
pixel, each node is connected to its preceding quantization
level. Finally, the nodes representing level q1 are connected
to the sink. The capacity of the edge pointing to the node
associated with pixel (i, t) and quantization level qc is set to
f0(qc). Upstream edges with infinite capacity are also created
to enforce that a minimum cut separates the source and the
sink at a unique level for each pixel.

Spatial neighbors are then connected with bi-directional
edges: two nodes representing the same quantization level
qc are connected and the capacity of the edge is set to
β ·wi,j ·(qc+1−qc). Finally, temporal neighbors are connected
by creating bi-directional edges between nodes representing
the same quantization level qc, with a capacity set to α · β.

In figure 2, we show the first and the last images obtained
by applying the proposed decomposition on a SAR time series

from Saint-Gervais (France) acquired by TerraSAR-X satellite.

Computational and memory complexity: The graph con-
struction requires a large amount of memory that limits its
application to small regions of interest and/or short time series.
The number of vertices is proportional to the number of images
in the time series, the number of pixels of each image, and
the number of quantization levels. The number of edges is
proportional to the number of nodes (about 8 times the number
of nodes). We used the graph-cuts implementation described
in [31]. In this graph implementation, each vertex requires 48
bytes of storage, and each edge requires 32 bytes. Hence, the
memory footprint of the graph representation limits the size
of the series of images that can be processed. For example, a
series of 20 images of size 300×400 with a quantification into
50 levels requires 33.7GiB of RAM for the graph construction.
However, when ψ = TV∞3D, the problem only involves one
background. Solving the same problem with this regularization
only requires 1.35GiB, simplifying the exact optimization of
the proposed model.

Regarding the computational cost, the worst-case complex-
ity of the minimum cut is O(EV 2|C|) where C is the value of
the minimum cut, E is the number of edges and V the number
of vertices. In practice, the experimental complexity scales
almost linearly with the number of nodes [31]. On a computer
with an Intel R© Xeon(R) CPU E5-1620 with 16Gb of RAM,
the algorithm takes 52,04s to compute a decomposition on 2
images of 300 × 400 pixels with 50 levels of quantification.
Note that we do not fully benefit from the power of the
processor as the implementation of the algorithm used is
single-core. Algorithms computing the grid-cut in parallel have
also been proposed (see [32]) and more compact memory
representations that exploit the regularity of the graph have
been introduced in [33].

To reduce the computational and memory complexity, a
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Multi-temporal SAR image (v) Speckle (n)

×

×

Scatterers (uS) Total radiometry (u)Background (uB)

+

+

Fig. 2. Decomposition of a time series of TerraSAR-X images of Saint-Gervais, France. Only the first and the last image of the decomposition are shown.

subset of all quantization levels can be considered at a time
to get an approximate solution, see [34], [35]. We describe in
section III-B another approach based on block processing to
further reduce memory requirements.

Quantization of the radiometry: The selection of the
quantization levels used to represent the background radiome-
tries uB requires to find a trade-off between accuracy (the
more quantization levels the better) and the memory com-
plexity (the graph footprint is proportional to the number of
quantization levels). We used an adaptive method to set the
quantization levels. We manually select the proportion p of
the image considered to be in the background (a typical value
is around 95%, but may be adapted according to the density
of scatterers). The quantization levels are then computed from
the quantiles of the p lowest observed values of the first image.
Note that only the background values uB need to be quantified,
the bright scatterers component uS with the highest dynamic
range is not quantified (see equation 14).

B. Memory efficient optimization

To apply the method to large images and/or long time series,
it is necessary to develop a method for limited-memory graph-
cuts optimization.

a) Method: Memory usage of the graph-cut method is
proportional to the number of pixels in the series. The required
memory can thus be reduced by computing the optimization
locally, on spatio-temporal blocks extracted from the time
series. Even though our model involves only second order
cliques, limiting the direct interactions to the immediate neigh-
borhood, the maximum a posteriori estimate involves long-
range correlations, i.e., during the optimization, regularization
effects are propagated over long distances. Simple division of
the image into smaller blocks thus results into visible block
artifacts, as can be observed in figure 3a. These block artifacts
are due to the lack of context: a constant area in the global
optimum that gets divided into two regions during the block-
processing is represented by two different (constant) values
with an artificial discontinuity between the blocks.

To introduce context in the window F of interest, it is
necessary to perform the optimization on a bigger window C

(a) Solution obtained by local op-
timization (computation window of
size 502 leading to a block effect)

(b) Exact solution obtained using the
presented algorithm for a computa-
tion window of size 1502

Fig. 3. Crops of the background component of the first image of the Saint-
Gervais set obtained with the presented method (filling window of size 502).

containing all the objects partially presents in F . The proposed
method works as follows:

1) To process a given window F (named filling window in
the following), extract a larger computation window C
such that F ⊂ C.

2) Perform the optimization using the graph-cuts method
described in section III-A on the spatio-temporal win-
dow C.

3) Keep the results of the decomposition only in the
(smaller) filling window F .

4) Slide the filling window F and repeat from step 1 until
all the image has been covered by the filling window.

b) Results: We show in figure 4 the root mean squared
error obtained by the block-processing approach for different
sizes of the computation window (the size of the block F is
kept constant and equal to 50× 50 pixels for this single-date
image). The required memory grows quadratically with the
spatial window size. It can be observed that on this image, the
exact solution is obtained for computation windows C larger
or equal to 150 × 150 pixels (which requires only 8.6% of
the amount of memory needed to process the whole image
at once). When the computation window F is strictly smaller
than the image size, the solution computed on the block F is
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Fig. 4. Root mean squared error (RMSE) and memory used as a function
of the size of the spatial computation window C, for the first image of the
Saint-Gervais dataset.

not guaranteed to match the solution obtained from the whole
image, i.e., it is only approximate.

IV. ADVANTAGE OF THE L0 PSEUDO-NORM
OVER THE L1 RELAXATION

The combinatorial optimization method described in section
III is applicable to the L0 pseudo-norm and to the L1 norm,
and provides in both cases the global optimum. It is thus
possible to compare the performance of the two formulations:
the L0 penalty derived from the GLRT and the L1 norm
widely used to obtain a convex relaxation of the minimization
problem, see for example [36].

We either consider the original minimization problem as
stated in equation (12), or a modified minimization problem
where the L0 pseudo-norm is replaced by the L1 norm. When
considering the modified minimization problem involving the
L1 norm, the optimal uS is no longer given by a simple
expression as in equation (14). Optimal values uS?t,i are either
zero, or if strictly positive, they must cancel the first partial
derivative of the sum of the log-likelihood and the L1 norm,
given below:

∂

∂uS

[
2 log(uS + uB) +

v2

(uS + uB)2
+ λuS

]
=

− 2 v2

(uS + uB)3
+

2

uS + uB
+ λ . (19)

The only positive and real-valued root, as obtained by finding
the roots of a third degree polynomial using a computer
algebra system, is:

u?S(uB) = t1/3 +
4

9λ2 t1/3
− 3λuB + 2

3λ
, (20)

(a) Input noise-free image (b) Contrast (values up to 6.55)

Fig. 5. Input image used to compare L0 and L1 models.

with

t =
v
√
27λ2v2 − 16

33/2λ2
+

27λ2v2 − 8

27λ3
. (21)

We consider a numerical experiment to compare the detec-
tion performance of L0 and L1 formulations, for various con-
trasts between point-like scatterers and a piece-wise constant
background, see figure 5a. The contrast between each scatterer
and the background is given in figure 5b. 100 noisy versions
are then generated using a Rayleigh multiplicative model. The
L0 and L1 models are applied to each of these images with a
fixed value of β (set to 0.05) and various λ values.

The receiver operating characteristic (ROC) curves are
drawn on figure 6 and compared with the ROC curve ob-
tained using the method based on a local estimation of the
background proposed in [24]. The L0 model outperforms both
the L1 model and the detection based on local background
estimation. We show in figure 7 the scatterers detected by
each model, for an identical proportion of correct detections.
The L0 model gives a uniform performance (correct detections
and false detections are well distributed in the image), while
the L1 model fails to detect scatterers in the regions with
higher background radiometry and gives more false detections
in low-radiometry areas. This phenomenon is confirmed by
representing the evolution of the probability of false alarm
(Pfa) and the probability of detection (Pd) as a function of the
background radiometry, figure 8. The L0 term produces con-
stant Pfa and Pd (note that, in the numerical simulation, when
the background radiometry changes, the scatterer radiometry
is adapted so as to keep a constant contrast: uS = 40%uB).
In contrast, the Pfa and Pd of the L1 model decrease when the
background radiometry increases, which is consistent with the
non-uniformity of detected scatterers observed in image 7b.

V. AN APPLICATION TO CHANGE DETECTION

A. Method

In this section, we propose a direct application of our de-
composition model for change detection, under the hypothesis
that changes mostly affect the scatterers. This assumption is
likely to be fulfilled in urban or industrial areas.

Given a time-series v, the model described in section
II-C provides multi-temporal decomposition {(uB1,uS1, . . . ,
uBn,uSn)}, or in the case of a time-invariant background
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Fig. 6. Receiver operating curve (ROC) between L0 and L1 version of our
model and a method based on local window analysis [24].

(a) Scatterers image obtained using
the proposed decomposition (with L0
term) , λ = 2.5

(b) Scatterers image obtained using
L1 version, λ = 0.012

Fig. 7. 2 images of scatterers achieving the same probability of detection:
left with an L0 penalty, right with an L1 penalty.

Fig. 8. With an L1 penalty, the probability of false alarm Pfa and the
probability of detection Pd vary with the background radiometry.
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3D)

The proposed TV+L0 change detection (ψ = TV∞

3D)

Fig. 9. ROC curve of various change detection algorithms

(ψ = TV∞3D in equation 6): {(uB,uS1), . . . , (uB,uSn)}.
Change detection cannot be performed directly by pixel dif-
ferences on the images of scatterers because the location and
radiometry of scatterers fluctuate from one image to another
even when insignificant changes happen in the scene. We
therefore first threshold the scatterers images {uSt} (noted
in the following {uS

bin
t }) to make the method insensitive to

radiometric fluctuations. Robustness to small changes in the
detected location of a scatterer is obtained by considering
spatial neighborhoods:

Ct,t′(i) =

∣∣∣∣∣∑
δ

uS
bin
t (i+ δ)−

∑
δ

uS
bin
t′ (i+ δ)

∣∣∣∣∣ (22)

where uSt and uSt′ are the two images extracted from the
decomposition of the time series, δ is a shift to iterate over
the neighborhood of the pixel i so Ct,t′(i) is the difference
between the number of scatterers present in the window
centered in i in one image and the number of scatterers in the
other one. This map is then thresholded to locate the changes
between the two images.

B. Results

To illustrate the results of our method, we ran this algorithm
on a SAR time series from Saint-Gervais (France) acquired
by TerraSAR-X satellite. This time series is composed of 26
single-look images. 13 of these images have been sensed in
2009, 13 in 2011. The ground-truth used for the quantitative
results have been labeled manually by [37]. We compare
the results of this algorithm with other change detection
methods in figure 9 and show an example of detected changes
in figure 10. The ROC curve is obtained by varying the
threshold applied on Ct,t′ . Since all changes do not occur as
scatterers changes, the ROC curves with our method do not
reach high levels of probability of detection Pd. This simple
thresholding approach achieves a performance comparable or
superior to the methods described in [38] and [39]. Change
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(a) Input image 1. (b) Input image 26.

(c) Changes on image 1. (d) Changes on image 26.

Fig. 10. Change detection results using the proposed method on images of
Saint-Gervais series. Regions with changes that have been detected are circled
in white.

detection based solely on the detected scatterers however is
less accurate than the recent work by Su et al. [37]. Note that
the simpler decomposition with a time-invariant background
(ψ = TV∞3D) gives worse detection results. A reason for this
worse performance may come from the degradation of the
detection of scatterers when the background is not correctly
estimated, as is the case of regions where the background
undergoes some changes.

VI. CONCLUSION

This paper establishes the connection between a formu-
lation of scatterers detection based on detection theory and
the maximum a posteriori estimation with L0 pseudo-norm
regularization. The problem of jointly detecting scatterers and
estimating the background radiometry is then expressed as an
image decomposition, stated as a combinatorial minimization
problem. To solve this challenging large-scale combinatorial
minimization problem, we propose to compute the minimum-
cut of a 4-D graph. Application to large areas and time series
with numerous dates requires a limited memory algorithm
based on block-processing with overlap. The comparison
of the proposed L0-based decomposition with an L1-based
decomposition shows a clear advantage for our formulation,
which justifies tackling the combinatorial optimization prob-
lem. Our formulation gives constant false alarm rate and con-
stant correct detection rate when the background level varies,
in contrast to the L1 model. Finally, a simple application of
the spatio-temporal decomposition is shown in the context of
change detection.

Other decomposition models may be considered in the
future, provided that they fulfill the constraints required to

apply the graph-cut optimization method. Future work includes
considering models designed for change detection rather than
resorting to a post-processing step. The optimization step could
be modified to use recent algorithms for min-cut computation
(see [32], [33]). The fusion approach proposed in [40] could
also be adapted to include information from an optical image
in the computation of the multi-temporal background compo-
nent.
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