
HAL Id: hal-01403136
https://imt.hal.science/hal-01403136v1

Submitted on 25 Nov 2016 (v1), last revised 16 Mar 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward a Methodology for Unified Verification of
Hardware/Software Co-designs

Florian Lugou, Ludovic Apvrille, Aurélien Francillon

To cite this version:
Florian Lugou, Ludovic Apvrille, Aurélien Francillon. Toward a Methodology for Unified Veri-
fication of Hardware/Software Co-designs. Journal of Cryptographic Engineering, 2016, pp.1-12.
�10.1007/s13389-016-0145-2�. �hal-01403136v1�

https://imt.hal.science/hal-01403136v1
https://hal.archives-ouvertes.fr


Journal of Cryptographic Engineering manuscript No.
(will be inserted by the editor)

SMASHUP: a toolchain for unified verification of
hardware/software co-designs

Florian Lugou · Ludovic Apvrille · Aurélien Francillon

Received: date / Accepted: date

Abstract Critical and privacy-sensitive applications of

smart and connected objects such as health-related ob-

jects are now common, thus raising the need to design

these objects with strong security guarantees. Many re-

cent works offer practical hardware-assisted security so-

lutions that take advantage of a tight cooperation be-

tween hardware and software to provide system-level

security guarantees. Formally and consistently proving

the efficiency of these solutions raises challenges since

software and hardware verifications approaches gener-

ally rely on different representations. The paper first

sketches an ideal security verification solution natu-

rally handling both hardware and software components.

Next, it proposes an evaluation of formal verification

methods that have already been proposed for mixed

hardware/software systems, with regards to the ideal
method. At last, the paper presents a conceptual ap-

proach to this ideal method relying on ProVerif, and

applies this approach to a remote attestation system

(SMART).

Keywords hardware/software co-design, embedded

system verification, security, ProVerif, tools

Florian Lugou
Télécom ParisTech, Université Paris-Saclay, 06410, Sophia
Antipolis, France
Tel.: +334-93-008407
E-mail: florian.lugou@telecom-paristech.fr

Ludovic Apvrille
Télécom ParisTech, Université Paris-Saclay, 06410, Sophia
Antipolis, France
Tel.: +334-93-008406
E-mail: ludovic.apvrille@telecom-paristech.fr

Aurélien Francillon
EURECOM, Campus SophiaTech, 06410, Sophia Antipolis,
France
Tel.: +334-93-008119
E-mail: aurelien.francillon@eurecom.fr

1 Acknowledgements

This work was partly funded by the French Government

(National Research Agency, ANR) through the “Invest-

ments for the Future” Program reference #ANR-11-

LABX-0031-01. Finally, we would like to express our

gratitude to Bruno Blanchet for his precious help and

patient contribution to our understanding of ProVerif,

and to our anonymous reviewers for their insightful

comments.

2 Introduction

Embedded systems are becoming more and more present

in our daily lives. Many are now connected to the inter-

net, even when used for vital functions. What used to

be a concern for privacy has now turned into a require-

ment of strong security guarantees in critical systems.

Only formal verification of these designs gives a guar-

antee of security.

It is not as unusual, now, to see medium-sized projects

use custom hardware modification as it used to be.

For instance some new projects—e.g.: the ESP8266 Wi-

Fi chipset—do not use general-purpose CPU but pre-

fer ASIPs created with tools like Processor Designer

from Synopsys or Xtensa from Cadence. In particular,

research topics have recently shown great interest in

hardware-assisted security solutions [3, 13, 22, 24]. In

such designs, the overall security of the whole design

relies on a tight cooperation between the customized

hardware and the software running on it.

To illustrate the problem and guide our reflexion,

we chose a hardware/software co-design that we con-

sidered representative of many other hardware-assisted

security solutions which would greatly benefit from for-



2 Florian Lugou et al.

��������
��������
��������
��������

Access Refused

attests uses key

Bus

Memory

Data

a

b

RC K

Program

Fig. 1 SMART overview.

mal verification. This design is SMART, which stands

for Secure and Minimal Architecture for (Establishing a

Dynamic) Root of Trust and has been presented in [18].

This primitive tackles the problem of remote attestation

by relying on a slightly customized microcontroller unit

and a critical routine stored in ROM.

The process of remote attestation aims to detect

devices that have been compromised, usually by com-

puting a hash of the part of the memory to assess and

send the result back to a remote verifier. SMART guar-

antees that this hash could not be calculated by the

compromised device in any other way than correctly

computing it.

In SMART, the memory layout is augmented by

adding two read-only sections, as presented in Fig. 1.

The first one contains a procedure referred to asRC and

the second one contains a key K. RC can be called in

order to compute a keyed-hash message authentication

code (HMAC) on a memory range [a, b] passed as an

argument. This HMAC relies on a key K to prevent a

compromised software from computing the hash itself.

To be secure, the key K should be kept secret from

the remaining—potentially compromised—software. This

is guaranteed by adding a hardware protection, which

only allows access to K from RC. Other hardware pro-

tection mechanisms were added, but we will not con-

sider them in this paper.

Here, the security of the system relies on the in-

capacity of a compromised device to forge a correct

HMAC, which itself relies on the secrecy of the key.

It is interesting to note that the secrecy of K is a sim-

ple property, but a naive modeling of the design would

miss many possible attacks: what would happen if RC
does not disable interrupts before loading the key in

non-protected memory? What if control jumps into the

middle of the routine? And what if the device is re-

booted during the execution of RC?
Applying formal verification to such designs thus

requires us to take the non-standard hardware into ac-

count when analyzing software to prove system-level

properties. To the best of our knowledge, no general

methodology for unified verification has been proposed

so far. Therefore we propose, as a first step, to sur-

vey the different methods that have been applied up to

now and also provide insights regarding potential new

methods. This survey emphasizes the conceptual differ-

ences between two classes of verification methods: (1)

methods that rely on the abstract concept of software

to split the verification between the hardware part and

the software part, and (2) methods that try to handle

both at the same time by unifying the two concepts.

Our contributions are threefold: a theoretical study

of the problem of formal verification applied to the spe-

cific case of hardware/software co-designs, a survey of

different methodologies that have been used up to now

to verify such designs, and a tool that translates a sub-

set of MSP430 assembly language into a ProVerif spec-

ification that ProVerif is able to handle.

We first discuss related work in Sect. 3. In Sect. 4

we present the properties that an ideal methodology for

the verification of hardware/software co-designs should

have. Then, in Sect. 5 and 6, we survey existing tech-
niques. In Sect. 7, we present our conceptual approach

to the problem based on ProVerif, and finally, we dis-

cuss future work before concluding.

3 Related work

While both hardware verification and software verifica-

tion have been actively researched since the first digital

systems were born [4, 9, 16, 21], combinatorial explo-

sion still poses challenges when it comes to integrating

both in a single verification flow.

In the embedded systems industry, where designs

mixing hardware and software are commonplace, de-

velopment environments such as ZeBu,1 Seamless,2 or

1 http://www.synopsys.com/Tools/Verification/

hardware-verification/emulation/Pages/

zebu-server-asic-emulator.aspx
2 http://www.mentor.com/products/fv/seamless/

http://www.synopsys.com/Tools/Verification/hardware-verification/emulation/Pages/zebu-server-asic-emulator.aspx
http://www.synopsys.com/Tools/Verification/hardware-verification/emulation/Pages/zebu-server-asic-emulator.aspx
http://www.synopsys.com/Tools/Verification/hardware-verification/emulation/Pages/zebu-server-asic-emulator.aspx
http://www.mentor.com/products/fv/seamless/


SMASHUP: a toolchain for unified verification of hardware/software co-designs 3

SoC Designer Plus3 enable to perform co-simulation

of hardware and software. Simulation is fundamentally

different from verification since it is driven by concrete

test cases and thus avoids most abstractions needed to

formally verify a system. However, simulation can only

provide the same level of trust as verification does when

the entire input space is covered by test cases (which is

unlikely to happen, even in relatively small systems).

Some academic works [20, 23, 26, 27, 28, 30, 31]

have tried to achieve unified verification of hardware

and software for specific designs. For instance, in [23],

Kroening et al. propose a methodology for formally ver-

ifying a mixed hardware/software design implemented

in SystemC. SystemC is a system-level language of which

a subset may be synthetized. Thanks to their work,

the SystemC specification can also be compiled to pro-

duce a formal model of the design (in the form of La-

beled Kripke Structures). Parts of the design are rec-

ognized as hardware and the other parts are assumed

to be software code. As it will be discussed in Sect. 6,

this methodology can only be applied when hardware

and software are loosely coupled. Globally, this method

could be applied for every language that can describe

both software and hardware. For instance, we could

leverage HDL-to-C compilers such as Verilator4 to link

hardware and software functions together. In this case,

both software and hardware would be described in C,

which would allow to perform the verification of the

joint system using software verification techniques. On

the other side, the work presented in Sect. 7 would en-

able a designer to prove properties on a system even if

hardware affects how software is executed.

4 Expected properties

In order to guide our reflexion and evaluate methods

and tools, we list here the properties that one would

expect from a formal environment when assessing the

security of a hardware/software co-design.

4.1 Security-aware expressivity

Software has been steadily increasing in term of quan-

tity and complexity in complete systems and is still

undergoing considerable growth. Implementing critical

functions in software may induce bugs or security flaws

by increasing the attack surface and thus motivates the

need to find solutions that guarantee properties, such as

control-flow integrity or code integrity, on any software.

3 http://www.carbondesignsystems.com/

soc-designer-plus
4 http://www.veripool.org/wiki/verilator

To target such global security properties new solutions

often rely on specific hardware. The global security of

the system thus depends on the security of the solution

implemented as a tight mix of hardware and software.

An efficient methodology dealing with this kind of de-

signs should enable to express properties and give back

results in a security-oriented meaningful way.

4.1.1 Natural expression of security properties

First, designers would like to express the property they

want to prove on their design as directly as possible.

Translating the expected property into a combination of

properties manageable by the solution but whose mean-

ings are hard to grasp—typically formulae in conjonc-

tive normal form—is a source of errors. The verifier

would thus be more interested by solutions that can

naturally handle properties such as secrecy properties

or taint propagation properties.

4.1.2 Attacker model

On the other side, expressing the capabilities of an at-

tacker should be equally straight forward. It may be by

using the ”Dolev-Yao” model ([15]), or by tainting in-

puts that the attacker is able to control, for instance.

The attacker model is normally coherent with proper-

ties the method is able to handle since the latter should

be checked against the former, but a tool could also

provide an automatic translation of abstract attacker

models into low-level logic that the verification engine

can handle.

4.1.3 Reconstruction of Traces

When the analysis tool determines that the required

property may be violated, the designer must correct

the erroneous part. The verifier should thus be able to

rely on the feedback of the analysis framework to target

the part of the design that would need to be redesigned.

Since precisely and automatically determining the erro-

neous part of the design is currently impossible, a com-

promise often found is to provide the user with a trace

summarizing the steps that lead to a state in which the

property is violated. On the other side, returning the

unsatisfiable core of a CNF formula would be of little

interest for the designer.

4.2 Soundness of the verification algorithm

Many hardware/software co-designs provide core fea-

tures that are critical either for the proper functioning

of the system (such as peripheral management), or for

http://www.carbondesignsystems.com/soc-designer-plus
http://www.carbondesignsystems.com/soc-designer-plus
http://www.veripool.org/wiki/verilator


4 Florian Lugou et al.

its security (e.g., access control, cryptographic primi-

tives). These modules require strong safety and security

guarantees that only formal verification is able to pro-

vide. Software analysis often has to deal with very large

programs, which rules complete verification out. Here,

we are concerned with smaller programs that hopefully

enable us to mathematically prove that they are correct

with respect to the features they were supposed to pro-

vide. Approximations are thus considered only as far as

they do not affect the soundness of the verification.

4.3 Easy adaptation to hardware modifications

When designing systems mixing hardware and software,

one would need to see the effect of hardware modifica-

tions. Most verifications of software targeting embedded

systems rely on a manual expression of the hardware

model [14, 29]. While finding a generic method that

would deal with any hardware description may seem

too optimistic, we believe that analysis of systems on

chip would benefit from some modularity in terms of

hardware models. We are thus interested to which ex-

tent each method can cope with hardware modification.

5 Successive verification of hardware and

software

The traditional approach to hardware/software valida-

tion is to express a formal model of the hardware and

use it during the verification of the software. The hard-

ware may also be proved equivalent to the model, thus

ensuring the overall security of the system. We will call

these methods successive verification since the verifica-

tion takes place in two steps. The two steps are explic-

itly or implicitly linked by the designer that provides a

formal semantic at the junction of hardware and soft-

ware.

For designs where hardware and software are tightly

coupled, it may however be difficult to find an abstrac-

tion that would both enable the hardware to be verified,

and require a manageable modification of a generic soft-

ware analysis framework to integrate the specificities of

the hardware. We discuss here how these two worlds

could interface.

5.1 Expression of the hardware model

We target here designs where hardware and software

must be checked together to ensure system-level proper-

ties. There are mainly two classes of such designs: either

the hardware was customized in order to change the

way the software was executed, or the hardware to ver-

ify does not affect the core processor but is a peripheral

(such as an MMU or a sensor), and the software part

is handling the communication with this peripheral. In

the first case, the software analysis tool—which assumes

a particular semantic of the instruction set and the ex-

ecution engine—would need to be modified to take into

account the specificities of the hardware. In the second

case, a common formal model could be found, and the

hardware and the software could be checked separately

against this model. In this case, the hardware specifici-

ties do not question the software abstraction made by

traditional verification tools.

To prove that the hardware model—either when it

is integrated into the software analysis framework, or

when it is common to the software model—is a correct

abstraction of the hardware, traditional verification of

hardware designs could be applied. This verification is

mostly done either by equivalence checking or by model

checking. Many industrial and academic tools exist for

this purpose such as Vis,5 NuSMV,6 Incisive7 or For-

mality.8

5.2 Verification of low-level software

Since we are here interested in both software and archi-

tectural vulnerabilities, we would like to take the com-

piler out of the trusted computing base. This is partic-

ularly true for security-critical features—such as MMU

management or cryptographic primitives—that are typ-

ically directly implemented as machine code. Therefore,

we are mainly interested in software verification tools

that can take machine code as input.

Higher-level concepts such as arrays, objects, func-

tions, or types are not available when using assembly

code. Losing such concepts means that we can’t benefit

from the semantic of coherent objects that the designer

manually provided. For instance, it is simpler for the

analysis to replace calls to a function by the formal ex-

pression that links the output of the function to its in-

puts and to prove that the function is indeed equivalent

to this formal expression, than to analyze the function

each time it is called in each context. However, we be-

lieve working with assembly code is more representative

of the attack scenarios we want to prevent (shellcodes,

ROP) and of the software we want to verify.

5 http://vlsi.colorado.edu/~vis/
6 http://nusmv.fbk.eu/
7 http://www.cadence.com/products/fv/enterprise_

simulator/pages/default.aspx
8 http://www.synopsys.com/Tools/Verification/

FormalEquivalence/Pages/Formality.aspx

http://vlsi.colorado.edu/~vis/
http://nusmv.fbk.eu/
http://www.cadence.com/products/fv/enterprise_simulator/pages/default.aspx
http://www.cadence.com/products/fv/enterprise_simulator/pages/default.aspx
http://www.synopsys.com/Tools/Verification/FormalEquivalence/Pages/Formality.aspx
http://www.synopsys.com/Tools/Verification/FormalEquivalence/Pages/Formality.aspx


SMASHUP: a toolchain for unified verification of hardware/software co-designs 5

In order to verify software at the assembly level,

we ideally need a formal semantic of the instruction

set. Such semantics are rare in practice, but progress

has been made lately in this direction [19, 14]. Once

this formal model has been found, traditional software

analysis methods like model checking [25] and bounded

model checking [5] or symbolic execution [11] may be

applied.

5.3 Dealing with hardware customization

Since a designer may want to see the impact of a hard-

ware modification as part of the design process, the

amount of work needed to include this modification in

the software verification framework and to prove the

model to be a refinement of the modified hardware

should not be prohibitive.

One possibility would be to apply the CounterEx-

ample Guided Abstraction Refinement methodology (de-

scribed in [10]). Here, a tool would automatically com-

pute a complex formal model of the hardware and use

an abstraction of this model to analyze the software. If

the targeted property were violated, a counterexample

would be created and checked against the original hard-

ware model. If it were spurious, the abstraction would

be refined and the analysis would resume.

6 Unified verification of the whole design

As disjoint verification of hardware and software natu-

rally suffers from the considerable manual effort needed

for finding a good abstraction that could both be proved

to be a refinement of the hardware and be used as a base

for verifying the software, some research work has been

done to verify hardware/software co-designs as a whole

[23, 20].

Similarly to successive verification of hardware and

software, the methodology here also differs depending

on how tightly the two are coupled.

6.1 Loosely coupled hardware and software

For hardware/software co-designs where the processor

is not modified and the verification effort should fo-

cus on some parts of the design that communicate with

software through the use of a simple interface (such

as memory mapped port or signals), the duality hard-

ware/software is not relevant anymore. Conceptually,

both hardware and software parts provide abstract func-

tionalities that are described in two unrelated languages.

It becomes thus possible to verify both at the same

time, but still keep them distinct. As presented in Sect. 3,

a good example of such verification on loosely coupled

hardware and software can be found in [23].

6.2 Tightly coupled hardware and software

Hardware-based protection against software vulnerabil-

ities often affects how the processor interprets machine

code, by detecting policy violation as in [18], or by

adding new instructions as in [3] for instance. In such

designs, the processor itself is part of the verification

target, and thus, simultaneous verification of disjoint

hardware and software cannot be done as in the previ-

ous section.

6.2.1 Including software as part of the hardware

representation

In such cases, we are trying to verify a customized pro-

cessor implemented in hardware for a particular piece

of software. However, we want to verify both as a whole,

that is to say we do not want to create a formal model

of the processor—which usually is an intricate manual

process. We cannot prove the software with respect to

a generic processor model since our processor is cus-

tomized and we have no abstract model for our spe-

cific hardware. The abstract concept of software is thus

unusable and program instructions must be considered

for analysis in their true, concrete format: binary data.

Concretely, this means filling the memory in the hard-

ware representation with the program in binary format

and verifying the combined system as a whole.

6.2.2 Proving properties on the whole design

Once software has been integrated into the hardware

representation of the design, traditional hardware veri-

fication tools could be used to prove the required prop-

erty. However, some parts of the design are controlled

by the attacker, typically some part of the memory cor-

responding to the procedure arguments could take any

value. The value of these bits will affect how the pro-

gram executes. For the analysis, this means that a huge

number of states will have to be explored. For instance,

symbolic model checking attempts to reduce the state

space by finding good abstractions that would lead to a

reasonably small model. In our case, such abstractions

would most likely relate software-level objects together,

which would have disappeared in the combined system.

For instance, let us say we are trying to verify a piece

of software where a good abstraction—one that would

make the property provable on the abstract model—

would be “the length of string s is smaller than the



6 Florian Lugou et al.

Table 1 Comparison of verification tools.

Tool Security-oriented Type of prop. Soundness HW/SW modelling

NuSMV no CTL,LTL sound abstract model
UPPAAL no TCTL sound abstract model
BLAST yes safety sound software

Vis no CTL sound hardware
KLEE, FIE yes safety sound software

S2E yes safety sound software
ZeBu, Seamless, no — unsound HW/SW

SoC Designer Plus

value of variable v”. The meaning of s and v, however, is

no longer present at the hardware level, and automati-

cally reconstructing these objects, by predicate abstrac-

tion for instance, would be difficult. Indeed, there is no

hardware concept of what a string is, nor what smaller

means. For this reason such a verification scheme would

probably be limited to very small programs.

6.3 Adequacy of existing tools

We summarize in Table 1 the adequacy of academic

and industrial tools to the requirements described in

Sect. 4. It is interesting to note that some tools can

take abstract models as input and thus can analyze

both hardware and software. However, using these tools

requires the designer to first manually provide an ab-

stract model corresponding to the system to verify. Also

note that ZeBu, Seamless, and SoC Designer Plus were

included even if they are emulators and not formal ver-

ification tools.

7 Using ProVerif for simple symbolic execution

For our case study, SMART, as we wanted to study the

problem of formal verification of hardware/software co-

designs from a generic point of view, we looked for a

method which had some properties of the ideal method

we described earlier and which could be adapted easily

to other designs. That is to say we were searching a

method that could:

– Model a generic processor and instruction set.

– Allow simple modeling of hardware customization.

– Model an attacker and prove security-oriented prop-

erties.

– Automatically produce a meaningful result, be it a

clear answer if the property is proved to be true, or

a trace if the property can be violated.

In the context of SMART, we could either model

the whole device and the whole attestation protocol

and try to prove that a compromised device can’t forge

a correct HMAC, or we could only model the routine

RC and verify that K is not leaked. We will focus here

on the secrecy of K, but modeling the whole protocol

should not add too much work.

7.1 Motivations for using ProVerif

ProVerif [7] is a tool for analyzing protocols. It focuses

on security protocols but the generic language (pi cal-

culus) used for ProVerif specifications and the simple

reasoning of the tool, based on Horn clauses make it a

good candidate for a wide variety of applications [2].

Our requirements led us to search for a tool that

would work with basic and generic logic and would

target security properties. As ProVerif answered these

needs, we chose it despite the fact that it was originally

designed for a different field of applications.

7.1.1 An interesting attacker model

The security of the SMART primitive relies on the se-

crecy of a key, and such a property can be natively

represented in ProVerif. The tool also enables to query

more complex properties such as authentication or ob-

servational equivalence.

These properties are checked against an attacker

whose capabilities follow the “Dolev-Yao” model [15].

These kind of capabilities are also interesting in our par-

ticular design, where the remote verifier and the routine

RC can be seen as participating in a protocol and the

user controlled software on the device has full access to

the abstract channel they are using.

7.1.2 A simple reasoning

ProVerif takes as input a description of a protocol in

a pi calculus language. This description is internally

translated into Horn clauses that ProVerif uses for rea-

soning. Horn clauses are logical formulae of the form:



SMASHUP: a toolchain for unified verification of hardware/software co-designs 7

Table 2 A ProVerif process and the corresponding Horn clauses.

ProVerif Process Set of Horn Clauses

process

in (ch, a: bitstring);

out (ch, f(a))

mess(ch, a) → mess(ch, f(a))
and attacker(a) → attacker(f(a))

if ch is public.

∧
i

pi or
∧
i

pi → q (1)

where pi, q are positive literals. The first formula cor-

responds to the case where there is no premise. This

simple formulation makes it possible to model how each

assembly instruction impacts the state of the system de-

pending on the environment, and thus, allows for easy

modeling of the effect of hardware modification on soft-

ware execution.

7.1.3 Trace reconstruction

Another feature of interest in ProVerif is its ability to

reconstruct a trace when the queried property is vio-

lated. This trace is given as a succession of actions per-

formed by the attacker that eventually lead to a viola-

tion of the property. The process of reconstructing this

trace may fail (as explained in [1]) due to the approxi-

mations done when translating processes in pi calculus

into Horn clauses. However, up to now, we managed to

model our design to avoid this case.

7.2 ProVerif solving algorithm

Our ambition was to prove properties on a relatively

small piece of software running on a custom hardware.

Since formally proving the property on a model of the

software would mean exploring the entire state space,

and sticking to a realistic model would limit the pos-

sibilities for abstraction, we assumed that our method-

ology would not scale well. Even though, we believe

it may prove useful for small, central, security-critical

software, as it is the case for SMART.

We briefly present here how ProVerif is able to rea-

son about the specified protocols. This will help us ex-

plain how this is done for our model and compare the

performance with more traditional techniques.

7.2.1 Horn clauses and predicates

Protocols that need to be verified by ProVerif are de-

scribed as multiple processes that communicate between

each other through private or public channels. The at-

tacker can see anything that goes through public chan-

nels, intercept messages, create new ones, and send them

on public channels.

The fact that the attacker knows about the mes-

sage m is modeled as the predicate attacker(m). The

fact that a message m can be sent on channel ch is

modeled as the predicate mess(ch,m). As stated ear-

lier, ProVerif works with Horn clauses so, for instance,

the abilities of the attacker regarding channels are:

mess(ch,m) ∧ attacker(ch) → attacker(m)

and attacker(ch) ∧ attacker(m) → mess(ch,m).

(2)

Processes are also translated into Horn clauses. For in-

stance a basic process and its translation are presented

in Table 2. Note that both express the fact that if the

attacker has knowledge of a he can acquire knowledge

of f(a). As it will be explained in the next section, this

simple mechanism enables us to model an instruction-

accurate version of a processor.

7.2.2 Clauses unification

Once the protocol has been translated into Horn clauses,

these clauses are combined to derive the total knowl-

edge of the attacker. If the required property is violated

during the process, a trace is computed based on the

clauses that have been unified to lead to the violation.

For our modeling, the way the clauses are unified

will determine how the state space of the program is

explored. Thus more information about the resolution

process of ProVerif—as explained in [6]—is going to be

exposed.

The idea behind clause unification is to progres-

sively expand the knowledge of the attacker. Let us say

we have two clauses:

attacker(m)→ attacker(f(m))

and attacker(f(m)) → attacker(g(m)).
(3)

Unifying these two clauses is interesting since it will re-

sult in: attacker(m) → attacker(g(m)), which means

that if the attacker has knowledge of any message m,

then g(m) can also be known. By default, ProVerif con-

siders that unifying two clauses is interesting when all



8 Florian Lugou et al.

the premises of the first clause are of the form attacker(x)

where x is a variable and when the premise of the sec-

ond clause that can be unified with the conclusion of

the first (attacker(f(m)) in our previous example) is

not of the form attacker(x). It means that it favors

unifications that reduce the number of premises that

are not of the form attacker(x).

By unifying clauses like that, ProVerif eventually

reaches a fixed point where no new clause can be gen-

erated. If the required property is the secrecy of a vari-

able x, and eventually no clause of the form attacker(x)

has been derived, this is a proof that the attacker can’t

learn the value of x.

7.3 SMART model

In the SMART design, the critical software part that

we want to analyze is the routine RC that computes a

HMAC with the key K, and the attacker is a malicious

software running on a corrupted device. It can access

the whole memory and all the registers and may call

RC as it likes. As the design relies on the secrecy of

K, we will only model the routine RC, let the attacker

define the state of the device before calling RC, and

check that K cannot be leaked.

We show first how we automated the translation

of MSP430 assembly code into a ProVerif model, and

then, how hardware customization was integrated into

the model. Finally, we demonstrate the solving process

performed by ProVerif and relate it to a more classical

software analysis method.

7.3.1 The software part

We model our software in an instruction-accurate way:

We express the impact of each instruction on the state

of the system. This semantic enables us to consider at-

tack scenarios and software designs that are realistic,

especially on low-level code: jumping into the middle of

the routine or dynamic control-flow graph with indirect

jumps for instance. Also note that since SMART was

implemented for the MSP430 architecture, we modeled

a subset of the MSP430 assembly language, composed

only of basic instructions. For a more general approach,

it would be better to use an intermediate representation

such as REIL [17] or the BAP intermediate language [8]

and use the already existing front ends to compile ei-

ther assembly code or binary code to this intermediate

representation.

An instruction at virtual address i is modeled as

a process, which is translated by ProVerif into a Horn

clause: state(i, R,MEM)→ state(PC ′, R′,MEM ′), in

which PC ′ is a program counter, R and R′ are states of

the registers, and MEM and MEM ′ states of the mem-

ory. PC ′, R′, and MEM ′ are expressed as functions of

R and MEM and model the effect of the instruction at

address i on the state of the memory and registers—for

instance PC ′ = MEM [R[3]].

The state(PC,R,MEM) predicate here would mean

that a state of the system where the program counter

is PC, the registers’ values are R, and the memory

is in state MEM is accessible. This predicate is ob-

viously not defined in ProVerif and we must model it.

We could do this by using a private channel: each mes-

sage (PC,R,MEM) sent on the private channel privch

would mean that the state (PC,R,MEM) is accessible.

The effect of an instruction at address i would thus be:

mess(privch, (i, R,MEM)) → mess(privch, (PC ′, R′,

MEM ′)). However, private channels behave differently

with respect to trace reconstruction. For instance, when

trying to reconstruct a trace, ProVerif will only allow

sending messages on a private channel if a process is

ready to read the message on this channel. Therefore,

we chose to use an equivalent approach with public

channels: mess(ch, f(i, R,MEM))→ mess(ch, f(PC ′, R′,

MEM ′)). Where f and its inverse un f are private

functions (with no explicit definitions) that guarantee

that the fact attacker(f(PC,R,MEM))—which means

that the state (PC,R,MEM) is reachable—does not

lead to attacker(R) or attacker(MEM), and recipro-

cally that the attacker cannot create f(PC,R,MEM)

with any PC, R and MEM . Eventually the correspond-

ing process in pi calculus is:

process

in (ch, state: bitstring);

let (PC: int, R: registers, MEM: memory)

= un_f(state) in

if PC=i then

out (ch, f(PC’, R’, MEM’))

This process only models one instruction. To model the

entire program, we created one process per instruction

and replicated it—using the ProVerif operator !—so

that the instruction could be invoked many times (in

case of loops for instance). We wrote an open-source

Python program named SMASHUP9 (Simple Model-

ing and Attestation of Software and Hardware Using

ProVerif ) that automates the process of translating

MSP430 assembly code into a set of such processes.

9 Available at https://gitlab.eurecom.fr/Aishuu/

smashup

https://gitlab.eurecom.fr/Aishuu/smashup
https://gitlab.eurecom.fr/Aishuu/smashup


SMASHUP: a toolchain for unified verification of hardware/software co-designs 9

7.3.2 Parallel with symbolic execution

The algorithmic efficiency of ProVerif resides in its abil-

ity to derive the complete knowledge of the attacker

with as few clause unifications as possible. The policy

used to choose which clauses to unify will guide the

exploration of the program in our context. We’ll show

how this works on a basic example:

0 mov.w #0x0000, r4

l0:

1 add r3, r4

2 sub #1, r3

3 jnz l0

4 ...

As will be explained later, ProVerif has originally no

representation for numbers. We will here ignore this

fact and use them as intuition dictates. We will also

only consider the first five registers and no memory to

shorten the clauses, use R2 as the zero flag (instead

of just one bit), and ignore overflows. For the sake of

simplicity we will use state(PC,R) as a shortcut for

mess(ch, f(PC,R)) as was done before. Under these as-

sumptions, the Horn clauses generated for the instruc-

tions would be:

state(0, (R1, R2, R3, R4))

→ state(1, (R1, R2, R3, 0))

state(1, (R1, R2, R3, R4))

→ state(2, (R1, R2, R3, R3 + R4))

state(2, (R1, R2, 1, R4))

→ state(3, (R1, 1, 0, R4))

R3 6= 1∧ state(2, (R1, R2, R3, R4))

→ state(3, (R1, 0, R3− 1, R4))

state(3, (R1, 0, R3, R4))

→ state(1, (R1, 0, R3, R4))

R2 6= 0∧ state(3, (R1, R2, R3, R4))

→ state(4, (R1, R2, R3, R4)).

(4)

If we allow execution of the routine only from the be-

ginning this would add a clause:

attacker(R1) ∧ attacker(R2) ∧ attacker(R3)

∧attacker(R4)→ state(0, (R1, R2, R3, R4)).
(5)

As mentioned earlier, the solving algorithm of ProVerif

will only unify two clauses if the premises of the first

one are all of the form attacker(x). In our context, this

means it will start the unification with the clause de-

scribing how the attacker could call the routine (the

last clause given above). Its conclusion is of the form

state(0, ...) so it could only be unified with a clause with

a state(0, ...) premise (the first one). Unifying these two

clauses will result in:

attacker(R1) ∧attacker(R2) ∧ attacker(R3)

→ state(1, (R1, R2, R3, 0)).
(6)

Once again, this clause is the only one that could be

used for unification so it will be unified with the clause

corresponding to instruction 1:

attacker(R1) ∧attacker(R2) ∧ attacker(R3)

→ state(2, (R1, R2, R3, R3)).
(7)

Here, this clause could be unified with either of the two

clauses corresponding to instruction 2 so exploration

will fork and follow each of the two branches depending

on the value of R3:

attacker(R1)→ state(3, (R1, 1, 0, 1)).

attacker(R1) ∧attacker(R3) ∧R3 6= 0

→ state(3, (R1, 0, R3− 1, R3)).

(8)

We could make a parallel between this behavior

and symbolic execution: In symbolic execution, input

variables that the attacker can control are marked as

symbolic and a symbolic execution engine executes the

program, forwarding and constraining symbolic values

along the different possible paths. When the execution

must split according to the value of a symbolic variable,

the constraints on the symbolic value for each path are

remembered and two separate instances of the execu-

tion engine continue the analysis.

Our method shares some similarities: Variables con-

trolled by the attacker are used without giving them

concrete values until a conditional instruction—that

has been translated into two clauses—is met. The uni-

fication process then follows two different paths where

premises have been added that constrain the value of

the variable.

7.3.3 The hardware part

The instruction-accurate description of software pre-

sented above enables us—to some extent—to bring hard-

ware customization into the verification process. To do

that, we designed SMASHUP in a modular way. Each

module would represent a hardware specificity, such as

an interrupt controller or a MMU. SMASHUP’s users

can select standard modules that we provide with the

tool, or create their own.

Concretely, each module is described as a Python

class that extends a common class. Modules can add

predicates to the state of the system (like PC, R or

MEM described above) that can be used and updated

by instructions. For instance, an interrupt controller

could add a register to remember whether interrupts

are enabled or disabled. Also, a module can add new

instructions and provide a corresponding implementa-

tion for each of them. This implementation describes

how the instruction impacts the state of the system

and the knowledge of the attacker.



10 Florian Lugou et al.

The designer can then provide a high-level descrip-

tion of its architecture by instantiating different mod-

ules. Since the tool has not yet fully matured, this de-

scription is kept simple. Improving it could add a lot of

value to SMASHUP and is left as future work.

7.3.4 Example and performance evaluation

We illustrate the capability of SMASHUP to find vul-

nerabilities coming from both software and hardware

specificities through an example of a simple system com-

posed of a hardware part and a software part. This ex-

ample consists of a hardware and a software model that

can be downloaded together with the SMASHUP tool.

The former one is described in Listing 1. It only features

an execution core and a standard memory.

Listing 1 Hardware Description of the System

1 CPU (
2 width: 4,
3 rcount: 5
4 )
5
6 MEMORY (
7 width: 4,
8 )
9

10 # uncomment the following module to test
11 # interrupts
12 # INT_UNIT ()

The software part described in Listing 2 shows that

a secret (initially stored in register r1) is written in

memory a certain amount of time (controlled by r3).

Then the secret is cleared from all the addresses where

it was stored.

Listing 2 Software Description of the System

1 .section .do_mac.call ,"ax"
2 mov.w #0x0000 , r4
3 l0:
4 cmp r3, r4
5 jeq l1
6 mov.w r1 , @r4
7 add.w #1, r4
8 jmp l0
9 l1:

10 mov.w #0x0000 , r4
11 mov.w #0x0000 , r1
12 ; uncomment the following instruction to test
13 ; integer overflow
14 ; add.w #1, r3
15 l2:
16 cmp r3, r4
17 jeq l3
18 mov.w #0x0000 , @r4
19 add.w #1, r4
20 jmp l2
21 l3:
22 nop

With this description, we can use SMASHUP and

ProVerif to assert that the secret is not leaked:

$ ./ smashup.py -o test.pv -s .do_mac.call \
$ --clauses examples/test.s43
$ time proverif test.pv
[...]

Starting query not attacker(secret [])
RESULT not attacker(secret []) is true.
proverif test.pv 0,22s user 0,00s system

The output of ProVerif match the expected answer:

The secret is not leaked. We can then modify the sys-

tem to model the presence of interruptions. In such case,

the secret is leaked when an attacker interrupts the rou-

tine just after the secret was written to memory. The

memory range that is cleared after the secret has been

written to memory can also be extended by adding a

software instruction (line 14) to increase the size of the

memory range to be cleared by one unit. In this case, an

integer overflow could happen if r3 contains the maxi-

mum integer value and the secret would not be cleared

from memory at all. This is confirmed by SMASHUP

and ProVerif:

$ ./ smashup.py -o test.pv -s .do_mac.call \
$ --clauses examples/test.s43
$ time proverif test.pv
[...]
Starting query not attacker(secret [])
[...]
The attacker has the message secret.
A trace has been found.
RESULT not attacker(secret []) is false.
proverif test.pv 0,27s user 0,00s system

7.3.5 Discussion about the soundness and

completeness of the approach

As mentioned in Sect. 7.1.3, ProVerif can output three

results for each queried property: Either the property

is proved true or false, or ProVerif is not able to prove

or disprove the property. With respect to the different

kinds of queries that ProVerif accepts as input, ProVerif

has been proved (in [6]) to be sound but not complete.
This means that, although ProVerif may fail to output

either a true or false result, when it does so, then the

result is valid on the input model.

We strive to keep this correctness property in our

approach. However, since the hardware description of

the system impacts how software is translated to Horn

clauses, proving correctness on SMASHUP would re-

quire to formally define how these hardware modifica-

tions impact the translation process, which is left for

future work.

However, when no hardware unit is added to the

hardware model, software is translated in a straightfor-

ward way (as described in Sect. 7.3.1): Each instruction

results in one or two Horn clauses. Each Horn clause

describes the effect of an instruction in a particular en-

vironment. Since no side effect happens (the environ-

ment is entirely described in the state predicate), the

correctness of the proof performed by SMASHUP and

ProVerif for default hardware is easily inferred from the

correctness of ProVerif.



SMASHUP: a toolchain for unified verification of hardware/software co-designs 11

7.4 Limitations and future work

We present here a few limitations of this method. Some

are inherent to the method, some could be improved in

future works.

7.4.1 Working with concrete types

For the method to be efficient, the number of instruc-

tions generating multiple Horn clauses, and the number

of clauses generated for each of such instruction should

remain small. However, ProVerif has no semantic for

concrete types (such as bit vectors or even numbers),

and it is up to the user to model them. But this mod-

eling is not obvious in ProVerif. Indeed, the definition

of functions such as the addition of two bit vectors can

be done in two ways.

– Either by constructors that construct new values so

it would not be possible to express for instance that

1 + 0 = 1.

– Or by destructors, which do not allow recursive defi-

nition, so we would need to explicitly give the result

for each possible addition. In this case, if we have

an instruction add r2, r3 where r2 and r3 are con-

trolled by the attacker and can take either of n and

m values respectively, this instruction will be trans-

lated into n.m Horn clauses which will considerably

increase the complexity of the analysis.

An efficient representation of numbers should enable

a translation of one instruction into only one clause

(except for conditional instructions). We could imagine

modifying ProVerif to add a new type of function which

would have no semantic for ProVerif. When trying to

unify clauses, instead of simply looking for clauses with

a conclusion and a premise that a substitution could

make equal, ProVerif would call an SMT solver (as it

is done by symbolic execution engines). If the solver

could find an assignment of the symbolic variables that

enables unification, it would add the constraint to the

premises of the newly generated clause.

Implementing this modification could be part of fu-

ture work. We believe it would benefit other applica-

tions, for instance, protocols that compute arithmetic

expressions.

Another solution would be to find a language that

shares some of the expected features presented in Sect. 7.1:

an interesting attacker model, a simple reasoning and

trace reconstruction. The closest language that comes

to our mind is Prolog [12]. Like ProVerif, Prolog enables

users to provide clauses to relate predicates. Unlike

ProVerif, it is able to work with numbers and to deal

with recursive definition of compound terms. Both of

these would be interesting for our setup. However, Pro-

log does not target specifically security properties. As

such, trace reconstruction and security properties—not

only confidentiality, but also authenticity—may need to

be pre-processed to fit our purpose. Another important

difference between ProVerif and Prolog is that the for-

mer tries to unify clauses to expand the knowledge of

the attacker, whereas the latter unifies clauses that can

result in the required property. This means that in a

simple setup, Prolog would start unifying clauses from

the end of the software. If the program contains an indi-

rect jump which can only point to two locations, a back-

ward analysis of the program would need to consider at

each step that the indirect jump could potentially tar-

get the current instruction. Evaluating the consequence

of this process on performance is left for future work.

7.4.2 Working with machine code

Our goal was to be able to model complex attack sce-

narios that would take advantage of the concrete repre-

sentation of data and code. While having an instruction-

accurate model is a first step, we are still not working on

a sufficiently low level to model attacks such as return-

oriented programming, which would require a represen-

tation that preserves the dual semantic of bit vectors

and instructions.

7.4.3 Reconstructing attack traces

As ProVerif is able to output a trace leading to a vi-

olation of a required property, we could automate the

process of translating such a trace into a succession of

software-related events that would make more sense in

our context. This could be valuable for the designer to

distinguish between valid attacks and spurious traces.

8 Conclusion

In this paper we presented our vision of the required

properties of a formal verification method targeting hard-

ware/software co-designs. The field of our analysis clearly

differs from traditional software analysis. On the one

hand, constraints about the scaling of the analysis are

relaxed since we focus on a small, critical part of the

software. On the other hand, low-level security con-

cerns and hardware customizations require an accurate

formal representation and limit the possibilities for ab-

stractions. After surveying different methods applied to

hardware/software co-designs, we presented a different

approach based on ProVerif that addresses part of the

challenges presented in the first sections.



12 Florian Lugou et al.

As perspectives for future work, we wish to explore

other solutions such as integrating software as part of

the hardware representation and maybe adding to ProVerif

the ability to work with concrete types by creating

an interface that one could use to integrate a SMT

solver such as Z3. We will also consider automating the

process of integrating hardware customization into the

ProVerif model.

References

1. Allamigeon X, Blanchet B (2005) Reconstruction of

Attacks against Cryptographic Protocols. In: Com-

puter Security Foundations, 2005. CSFW-18 2005.

18th IEEE Workshop

2. Apvrille L, Roudier Y (2013) SysML-Sec: A SysML

Environment for the Design and Development of

Secure Embedded Systems. In: APCOSEC 2013

3. Arias O, Davi L, Hanreich M, Jin Y, Koeberl P,

Paul D, Sadeghi AR, Sullivan D (2015) HAFIX:

Hardware-Assisted Flow Integrity Extension. In:

52nd Design Automation Conference (DAC)

4. Armstrong RC, Punnoose RJ, Wong MH, Mayo JR

(2014) Survey of existing tools for formal verifica-

tion. Tech. rep., Sandia National Laboratories

5. Biere A, Cimatti A, Clarke E, Zhu Y (1999) Sym-

bolic Model Checking without BDDs. In: Tools and

Algorithms for the Construction and Analysis of

Systems

6. Blanchet B (2001) An Efficient Cryptographic Pro-

tocol Verifier Based on Prolog Rules. In: Com-

puter Security Foundations Workshop, 2001. Pro-

ceedings. 14th IEEE

7. Blanchet B, Smyth B, Cheval V (2015) Automatic

Cryptographic Protocol Verifier, User Manual and

Tutorial

8. Brumley D, Jager I, Avgerinos T, Schwartz E

(2011) BAP: A Binary Analysis Platform. In: Pro-

ceedings of the 23rd International Conference on

Computer Aided Verification

9. Camurati P, Prinetto P (1988) Formal verification

of hardware correctness: introduction and survey of

current research. Computer

10. Clarke E, Grumberg O, Jha S, Lu Y, Veith H (2000)

Counterexample-Guided Abstraction Refinement.

In: Computer Aided Verification

11. Clarke L (1976) A System to Generate Test Data

and Symbolically Execute Programs. Software En-

gineering, IEEE Transactions on

12. Clocksin W, Mellish CS (2003) Programming in

PROLOG. Springer Science & Business Media

13. Danger JL, Guilley S, Porteboeuf T, Praden F,

Timbert M (2014) HCODE: Hardware-Enhanced

Real-Time CFI. In: Proceedings of the 4th Program

Protection and Reverse Engineering Workshop

14. Davidson D, Moench B, Ristenpart T, Jha S (2013)

FIE on Firmware: Finding Vulnerabilities in Em-

bedded Systems Using Symbolic Execution. In:

Proceedings of the 22nd USENIX Security Sym-

posium (USENIX Security 13)

15. Dolev D, Yao AC (1983) On the Security of Public

Key Protocols. IEEE Transactions on Information

Theory

16. D’Silva V, Kroening D, Weissenbacher G (2008)

A survey of automated techniques for formal soft-

ware verification. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems

17. Dullien T, Porst S (2009) REIL : A Platform-

Independent Intermediate Representation of Disas-

sembled Code for Static Code Analysis

18. El Defrawy K, Francillon A, Perito D, Tsudik G

(2012) SMART: Secure and Minimal Architecture

for (Establishing a Dynamic) Root of Trust. In:

Proceedings of the Network and Distributed Sys-

tem Security Symposium (NDSS), San Diego

19. Fox A, Myreen M (2010) A Trustworthy Monadic

Formalization of the ARMv7 Instruction Set Archi-

tecture. In: Interactive Theorem Proving

20. Hong S, Oguntebi T, Casper J, Bronson N,

Kozyrakis C, Olukotun K (2012) A Case of

System-level Hardware/Software Co-design and

Co-verification of a Commodity Multi-processor

System with Custom Hardware. In: Proceedings of

the Eighth IEEE/ACM/IFIP International Confer-

ence on Hardware/Software Codesign and System

Synthesis

21. Kern C, Greenstreet MR (1999) Formal verification

in hardware design: A survey. ACM Trans Des Au-

tom Electron Syst

22. Koeberl P, Schulz S, Sadeghi AR, Varadharajan V

(2014) TrustLite: A Security Architecture for Tiny

Embedded Devices. In: Proceedings of the Ninth

European Conference on Computer Systems

23. Kroening D, Sharygina N (2005) Formal Verifi-

cation of SystemC by Automatic Hardware/Soft-

ware Partitioning. In: Proceedings of the 2Nd

ACM/IEEE International Conference on Formal

Methods and Models for Co-Design

24. Noorman J, Agten P, Daniels W, Strackx R,

Van Herrewege A, Huygens C, Preneel B, Ver-

bauwhede I, Piessens F (2013) Sancus: Low-cost

Trustworthy Extensible Networked Devices with a

Zero-software Trusted Computing Base. In: Pre-

sented as part of the 22nd USENIX Security Sym-

posium (USENIX Security 13)



SMASHUP: a toolchain for unified verification of hardware/software co-designs 13

25. Queille JP, Sifakis J (1982) Specification and Veri-

fication of Concurrent Systems in CESAR. In: Pro-

ceedings of the 5th Colloquium on International

Symposium on Programming

26. Schlich B (2010) Model checking of software for mi-

crocontrollers. ACM Trans Embed Comput Syst

27. Schmidt B, Villarraga C, Fehmel T, Bormann J,

Wedler M, Nguyen M, Stoffel D, Kunz W (2013)

A new formal verification approach for hardware-

dependent embedded system software. IPSJ Trans-

actions on System LSI Design Methodology

28. Semeria L, Ghosh A (2000) Methodology for hard-

ware/software co-verification in c/c++. In: Design

Automation Conference, 2000. Proceedings of the

ASP-DAC 2000. Asia and South Pacific

29. Subramanyan P, Arora D (2014) Formal Verifica-

tion of Taint-Propagation Security Properties in

a Commercial SoC Design. In: Design, Automa-

tion and Test in Europe Conference and Exhibition

(DATE)

30. Villarraga C, Schmidt B, Bormann J, Bartsch C,

Stoffel D, Kunz W (2013) An equivalence checker

for hardware-dependent embedded system soft-

ware. In: Formal Methods and Models for Codesign

(MEMOCODE), 2013 Eleventh IEEE/ACM Inter-

national Conference on

31. Villarraga C, Schmidt B, Bao B, Raman R, Bartsch

C, Fehmel T, Stoffel D, Kunz W (2014) Software

in a hardware view: New models for hw-dependent

software in soc verification and test. In: 2014 Inter-

national Test Conference


	1 Acknowledgements
	2 Introduction
	3 Related work
	4 Expected properties
	5 Successive verification of hardware and software
	6 Unified verification of the whole design
	7 Using ProVerif for simple symbolic execution
	8 Conclusion

