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Abstract—High dynamic range (HDR) imaging has potential to facili-
tate computer vision tasks such as image matching where lighting trans-
formations hinder the matching performance. However, little has been
done to quantify the gains with different possible HDR representations
for vision algorithms like feature extraction. In this paper, we evaluate the
performance of the full feature extraction pipeline, including detection
and description, on ten different image representations: low dynamic
range (LDR), seven different tone mapped (TM) HDR and two HDR
imaging (linear and log encoded) representations. We measure the impact
of using these different representations for feature matching using mean
average precision (mAP) scores on four illumination change datasets. We
perform feature extraction using four popular schemes in the literature:
SIFT, SURF, BRISK, FREAK. With respect to previous studies, our
observations confirm the advantages of HDR over conventional LDR
imagery, and the fact that HDR linear values are not appropriate for
vision tasks. However, HDR representations that work best for keypoint
detection are not necessarily optimal when the full feature extraction is
taken into account.

Index Terms—High dynamic range imaging, tone mapping, descriptors,
feature extraction, illumination change.

I. INTRODUCTION

Many high-level computer vision algorithms based on local visual
features such as object localization, tracking and classification, are
extremely sensitive to changes in appearance of a scene in drastic
illumination transformations. Even in mid-level tasks such as image
matching, adverse lighting conditions can significantly worsen the
performance of the feature descriptors [1]. High dynamic range
(HDR) imaging [2] brings potential to surpass these limitations,
thanks to its wider dynamic range which enables to capture details
in both dark and bright regions.

Essentially, a feature extraction scheme consists of 2 parts:
keypoint detection and descriptor computation. Feature extraction
algorithms look for descriptors with the ability to describe the
distinctiveness of the detected local regions in an image undergone
different transformations (including lighting changes). Traditionally,
these feature extraction algorithms [1] have been extensively ex-
plored with respect to low dynamic range (LDR) imagery, generally
represented with a display-referred 8-bit integer representation. In
contrast, HDR imagery consists of real-valued pixels proportional to
the physical luminance of the scene, expressed in cd/m2. Therefore,
understanding which are the best modalities to apply LDR-based
feature extraction techniques to HDR is an interesting and timely
research question. For instance, HDR pixel values could be used di-
rectly, or could be firstly converted into a compact, 8-bit, displayable
representation – an operation known as tone mapping (TM).

Some recent studies [3–7] have reported gains in terms of keypoint
repeatability by using HDR-based imagery for keypoint detection,
which is the primary block of feature extraction pipeline. These
studies [3–7] have pointed that keypoint detection becomes unstable
in low and high contrast areas of an LDR image. Similar advantages
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of HDR representations have also been shown for higher-level tasks
such as tracking [8].

In summary, previous work either focused on evaluating detector
performance only, with different HDR representations [3,5]; or, when
the full feature extraction pipeline was evaluated, only a single
HDR representation was considered [9]. However, a quantitative
comparison of different possible HDR representations, including
descriptors, has not been carried out so far. Therefore, it is difficult
to draw precise conclusions on which is the best HDR representation
(linear values, TMs, etc.) for an image matching pipeline, and how
much is the gain with respect to LDR.

In this paper, we address these questions by conducting a perfor-
mance evaluation of feature extraction algorithms for ten different
HDR representations, including 7 TMs and 2 native HDR repre-
sentations (linear and log-encoded) and standard LDR, using image
datasets with drastic changes in illumination. The main novelty and
contribution of this work is thus to consider the full feature extraction
pipeline and measure the impact of different HDR representations on
both detectors and descriptors. We compute the mean average preci-
sion performance for such a wide spectrum of image representations
using 4 widely used feature extraction schemes: SIFT, SURF, FREAK
and BRISK. We carry out the experimentations on publicly available
datasets [3,4] with diverse lighting variations.

The paper is organized as follows: in Section II we provide the
details of the evaluation setup. We present the experimental results
and discussion in Section III and the conclusions in Section IV.

II. EVALUATION FRAMEWORK

This section is structured as follows: in Section II-A we highlight
the HDR representations used for our evaluation; in Section II-B we
briefly discuss the considered feature extraction schemes, followed by
dataset selection in Section II-C; further, in Section II-D we detail the
feature selection and matching strategy used for descriptors matching.

A. Image Representations

In this evaluation, we consider a total of 10 different image
representations (listed in Table I) including the standard 8-bit LDR,
2 floating point HDR representations (HDRlog and HDRlin) and 7
different 8-bit tone mapping (TM) HDR representations. These TM
techniques consist of 2 global and 5 local TMs. In general, global TM
approaches are based on applying a compression function to all the
pixels of the image, while local techniques computes tone-mapped
pixels taking into account the values of neighboring pixels.

B. Feature extraction

We assess the following 4 popular feature extraction schemes
which employ both gradient-based histograms and computationally
fast binary descriptors.

• SIFT [10]. This classic scheme is constituted of a blob keypoint
detector (based on difference of Gaussians) and a gradient-based



Abbreviations Description
LDR Best exposure LDR image of the scene

RNG(G) A global scaled mapping operator [14]
DR(G) An Adaptive logarithmic mapping [15]
RN(L) A local dodging-and-burning operator [14]
MA(L) Perceptual method for contrast processing [16]
FA(L) Gradient domain HDR compression [17]
CH(L) Spatially non-uniform scaling algorithm [18]
DU(L) A fast bilateral filtering technique [19]

HDRLog Logarithmic encoding in accordance to Weber-Fechner’s law
HDRLin Linear photometric luminance values stored in the HDR file

TABLE I: Different image representations for feature extraction.

Project Room Light Room 2D Lighting 3D Lighting

Fig. 1: Example images from the datasets employed in this work.

descriptor. The SIFT descriptor is a 128-dimensional histogram
formed by concatenation of the image gradients computed on
4x4 grid spatial neighborhood around the detected keypoint.

• SURF [11]. SURF scheme is composed of a computationally
efficient blob type detector mainly based on the Hessian matrix
approximation along with a descriptor computed as the sum of
the Haar wavelet response around the point of interest.

• BRISK [12]. With major focus on computational efficiency,
the BRISK feature extraction is made up of a fast multi-scale
detector and a binary descriptor. The detection module is an
extension of corner-based detectors like AGAST and FAST. The
descriptor is a binary string computed by brightness comparisons
on circular sampling patterns around the detected regions.

• FREAK [13]. Similar to BRISK scheme, it has the same BRISK
detector along with a binary descriptor called FREAK. Similar
to BRISK descriptor, FREAK also uses a concentric rings
arrangement, but the sampling grid is non uniform as inner
circular rings have exponentially more points.

C. Datasets

We considered the following publicly available datasets:
• HDR illumination change datasets by Rana et al. [3] are com-

posed of 2 parts: Project-Room with 8 lighting conditions and
Light-Room with 7 lighting conditions as shown in Figure 1.
These images have challenging lighting transformation scenarios
with complex shaped objects, repeated patterns in texture, stark
shadows and variety of illumination sources.

• 2D and 3D Lighting Dataset by Pribyl et al. [4] shown in Figure
1. It consists of 7 controlled lighting variations in each set. The
2D dataset is composed of a light-dark sectioned poster and the
3D dataset consists of few plain objects with fine geometry.

D. Keypoint Selection and Matching Metrics

Local feature extraction rely primarily on the detected keypoints
and different detectors result in a different number of keypoints.
Therefore, following the detection protocol by Rana et al. [3,4], we
select 400 keypoints with the strongest detector response. In order to
limit the detection in pertinent areas and ensure a fair comparison

for feature extraction at later stages, we exclude keypoints from
background and regions without meaningful objects as in [3,4]. In
addition, we used the conventional detector parameters in [1,11,12]
for LDR and TM image representations.

Next, for the descriptor part we compute standard precision-
recall (PR) curves [1] for measuring the accuracy of matching.
The PR curves are based on the number of true and false matches
obtained for an image pair. A descriptor is said to have a match
if it satisfies the nearest neighbor distance ratio (NNDR) criterion.
According to NNDR, for a descriptor to find a good match, the ratio
between its distance from first best match (dBM1) and its distance
from second best match (dBM2) should be less than threshold
th, i.e., dBM1/dBM2 < th. We use Euclidean distance for
SIFT and SURF, Hamming distance for binary descriptors (FREAK
and BRISK). Two descriptors yield a true positive match if they
correspond to two keypoints which are indeed repeated 1 in the
reference and query images. Similarly, a match is labeled as a false
positive if the corresponding keypoints are not repeated. For PR curve
computation, Recall is defined as the fraction of true positives over
total correspondences, and Precision is given as the ratio of true
positives to the total number of matches. By varying the NNDR th,
we generate a PR curve and measure the area under the PR curve
(AUC), also called as average precision (AP). The mean of APs for
all image pairs is the mean average precision (mAP), which we have
used to compare different representations for each extraction scheme.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Our test setup comprises a total of 29 images (8 Project Room
+ 7 Light Room + 7 2D-Lighting + 7 3D-Lighting) for each image
representation. In the first part of experimental validation, we look
at the overall feature extraction performance, by computing the mAP
over all datasets. To this end, we evaluate matching using a test bench
of 182 image pairs (56 Project Room + 42 Light Room + 42 2D-
Lighting + 42 3D-Lighting). For each image pair, we compute the
PR curve by varying th from 0.0 to 1.0 and record the AP value.
After this, for each format and either feature extraction scheme, a
mAP score is obtained by averaging the APs calculated on such 182
image pairs (see Table II). Higher mAP scores imply better descriptor
matching.

Furthermore, to understand how detector and descriptor contribute
to the overall performance, we expand our analysis to individual
datasets and compute mAP and repeatability rate (RR) measures.
Repeatability Rate is defined as the fraction of repeated points to
the minimum number of detected points in the test or reference
image. In Figure 2, we report side-by-side the mAP and RR for
each extraction scheme for all datasets, respectively. It is evident
that in most of the cases higher RR entails higher mAP scores, i.e.,
having more stable keypoints strongly influences the overall matching
performance. Nevertheless, there are few exceptions, e.g. RN and
FA in 3D-Lighting dataset, discussed later in this Section. In the
following, we examine in detail the main conclusions obtained from
our results.

HDRLin versus all. The results in Table II show that HDRLin
representation is consistently the worst performing using all extrac-
tion schemes. This is coherent with the previous findings in [3,5],
and is mainly due to the low keypoint repeatability, which increases
the probability of false positives. This leads to the first conclusion

1A keypoint is considered to be repeated in the test image if: a) it is detected
as a keypoint in the test image, and b) it lies in a circle of radius ε centered
on the projection of the reference keypoint onto the test image. ε = 5.0 in
our case
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Fig. 2: Mean average precision (mAP) and mean repeatability rate (mRR) over the four considered datasets and feature schemes. mAP and mRR
are computed on 56 image pairs, for the Project Room dataset, and over 42 image pairs for Light Room, 2D and 3D Lighting datasets.

(a) Feature Matching - FA

(b) Feature Matching - RN

Fig. 3: An example of image matching for two TMs. The true positive and
false positive matches are shown with green and red lines respectively.
The TM in (a) achieves a higher repeatability (24 %) than that in (b);
however, most of the matches in (a) are false positives, thus the AP for
(b) is higher than in (a) (95 % vs. 87 %, respectively).

Repr. Feature Extraction Schemes Avg/Repr.SIFT SURF BRISK FREAK
LDR 55 62 60 61 59.5
RNG 69 70 71 65 67.5
DR 72 72 71 73 72

RN 72 70 73 72 72
MA 74 75 62 62 68.3
FA 68 67 62 66 65.8
CH 68 71 64 66 67.3
DU 64 72 68 71 68.8

HDRLog 75 66 67 68 69
HDRLin 44 30 50 41 41.5

Avg/Schemes 66.8 65.6 65.5 65

TABLE II: Mean Average Precision (mAP %) scores for the 10 considered
representations using 4 feature extraction schemes. Scores are averaged over
4 lighting change datasets. Highest mAP score for each scheme is shown in
bold. Best Avg/Formats and Avg/Schemes scores are double underlined.

of this work, i.e., HDRLin is not appropriate to be used for feature
extraction algorithms, for both detector and descriptor.

HDRLog/TM versus LDR. On average, all HDR formats show
significant gains of (at least) 8% mAP over single LDR exposure (see



Avg/Formats in Table II). This partially accounts to having more false
matches in LDR due to loss in local textural information in lighting
transformations. Another reason which is evident from Figure 2, is
the low repeatability rate which reduces the number of true positives.

HDRLog versus TMO’s. mAP scores obtained from HDRLog
and different TM formats are relatively comparable. This implies
that there are not significant advantages in using a floating-point
HDR representation over 8-bit TMs. Alternative HDR encodings
could improve further mAP scores, such as the PU encoding [20], as
reported for keypoint repeatability in [3]. However, those representa-
tions require photometrically calibrated HDR pictures, which might
not be available in practice.

Comparison with previous studies. Previous studies [3,5] have
reported that local TM approaches such as Fattal or Chiu consistently
provide more stable keypoints (in terms of repeatability) under illu-
mination changes, compared to TMs which are generally considered
good from a perceptual perspective, such as Reinhard. The results of
this work show that those trends are less evident when the overall
feature extraction pipeline is considered. For instance, from Figure 2
we observe that some TMs achieve better repeatability rates but lower
overall mAP scores compared to others formats, e.g., this is the case
for RN and FA tone mappings in Project Room and Light Room
dataset using BRISK and FREAK, or for RN and FA in 3D Lighting
dataset using SIFT. We deduce that in those cases, although the
fraction of repeated keypoints is lower, the corresponding descriptors
are more discriminative, i.e., they yield a lower rate of false positives,
or equivalently, a higher portion of matches are true. Figure 3 shows
an example of image matching for the Project room dataset, using RN
and FA tone mappings and BRISK features. It is clear that, although
the number of matches is lower in RN, they are “better quality”, in
the sense that most of them are true positives. Conversely, in FA,
although the basis of possible matches is larger, most matches are
indeed false, which reduces the average precision as reported by the
mAP scores in Figure 2.

Another important point to note is that these tone mappings
perform well with all feature extraction scheme for different lighting
transformations, with marginal gains for SIFT. In addition to all the
observations, it is also worth mentioning that there is no unanimous
winner amongst these tone mapping techniques for all extraction
criterion.

IV. CONCLUSION

In this paper, we have presented a comprehensive evaluation of
LDR and different HDR representations for image matching under
lighting transformations. The analysis of mean average precision
scores on different scenes confirms the potential of HDR tone map-
ping techniques over single LDR exposures. Furthermore, our study
confirms that the linear high dynamic range values are inappropriate
to be used for visual recognition tasks. More interestingly, we have
also observed that local TMs with very high repeatability rate for
feature detection are not necessarily the best option when the full
feature extraction pipeline is considered. This suggests that there
might be quite a large room for improvement in feature extraction
performance at detection and description stages by designing optimal
tone mapping schemes for HDR, which can ensure high average
precision as well as repeatability rates, and that can be easily fused
with current recognition algorithms.

REFERENCES

[1] K. Mikolajczyk and C. Schmid, “A performance evaluation of local
descriptors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 10,
pp. 1615–1630, Oct. 2005.

[2] F. Dufaux, P. Le Callet, R. Mantiuk, and M. Mrak, High Dynamic Range
Video: From Acquisition, to Display and Applications, Academic Press,
2016.

[3] A. Rana, G. Valenzise, and F. Dufaux, “Evaluation of feature detection
in HDR based imaging under changes in illumination conditions,” in
IEEE International Symposium on Multimedia, ISM 2015, Miami,USA,
December, 2015, 2015, pp. 289–294.

[4] P. Bronislav, A. Chalmers, and P. Zemčík, “Feature point detection
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