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Abstract. Analyzing and reasoning on model transformations has be-
come very relevant for various applications such as ensuring the correct-
ness of transformations. ATL is a model transformation language with
rich semantics and a focus on usability, making its analysis not straight-
forward. Conversely, Algebraic Graph Transformation (AGT) is an ap-
proach with strong theoretical foundations allowing for formal analyses
that would be valuable in the context of ATL. In this paper we propose
a translation of ATL to the AGT framework in the objective of bringing
theoretical analyses of AGT to ATL transformations. We validate our
proposal by translating a set of feature-rich ATL transformations to the
Henshin AGT framework. We execute the ATL and AGT versions on the
same set of models and verify that the result is the same.

Keywords: ATL, Henshin, algebraic graph transformation, OCL, nested
graph conditions, analysis of model transformations

1 Introduction

Model transformations play a central role in Model Driven Engineering (MDE)
processes. They formalize and automate design decisions (e.g. optimisations),
implementation strategies (e.g. code generation) or translations/synchronization
between different model representations. Analyzing model transformations and
reasoning about them has therefore become increasingly interesting for various
concerns such as demonstrating the correctness of transformations via testing
or static formal analysis. Many transformation approaches have been proposed
with varying languages and semantics targeting different concerns.

ATL [11] is a widely used model transformation language, both in academia
and in the industry. It features a hybrid rule-based language with a rich execu-
tion semantics allowing for a mostly declarative and user-friendly specification.
Algebraic Graph Transformation (AGT) [8] is a formal framework that provides
mathematical definitions to express graph manipulation. Its strong theoretical
foundations allow for powerful analyses such as state space reachability analysis



and formal proof of termination, confluence and correctness. Given the graph-
like structure of models in the sense of MDE, the theoretical results of AGT are
increasingly being used to reason on model transformations.

Various analyses have already been proposed for ATL without relying on
AGT. This includes test generation [9] and verification of correctness proper-
ties [6,16] through translations of ATL to other analyzable specifications. How-
ever we are interested in an analysis that is not possible with existing formalisa-
tions of ATL: the construction of Weakest Precondition (WP) [10]. This analysis
operates on constraints and transforms a postcondition into an equivalent pre-
condition of a transformation. It is defined in AGT and used in several scenarios
such as synthesizing transformation preconditions that ensure the preservation
of validity constraints [7], and formally proving the correctness of transforma-
tions [13]. Moreover in a previous publication [15], we have proposed a new use
of this analysis to support the testing of model transformation chains. In that
context we use WP construction as a way to propagate unit test requirements of
intermediate steps of a chain into equivalent integration test requirements over
the input of the chain which are easier to satisfy and maintain. We believe that
WP-based analyses would be valuable for ATL transformations (and chains) and
therefore propose to make them possible via a translation to AGT.

In this paper we propose a translation of ATL transformations to equivalent
AGT analysable transformations and provide an implementation in our tool
ATLAnalyser3. The first challenge in this work is handling ATL’s default and
non-default resolve mechanisms which do not have an equivalent in the AGT
semantics. The second challenge is the translation of OCL constraints and queries
of ATL rules into application conditions in the form of Nested Graph Conditions
(NGC) in AGT. While translations of OCL to NGC have been proposed in the
literature [3,4], they do not support ordered collections which we found to be an
important limitation for ATL transformations. Our work extends the existing
translations with support for ordered sets. Finally, we validate our proposal by
considering a set of representative ATL transformations taken from the ATL
Zoo [1] and other sources. We translate each transformation to the Henshin
AGT framework [2] and verify that the execution of both the ATL and AGT
versions over the same set of input models gives the same results.

The remainder of the paper is organised as follows. We start by recalling
the semantics of ATL and AGT in Sec. 2. Then we present in Sec. 3 the main
contribution of this paper: the translation of ATL to AGT. Section 4 reports on
the experimental validation and the limitations of our proposal. Related work is
discussed in Sec. 5 before concluding with future work in Sec. 6.

2 Semantics of ATL and AGT

2.1 ATL and OCL

ATL [11] is a model-to-model transformation language combining declarative and
imperative approaches in a hybrid semantics. ATL transformations are primarily
3 ATLAnalyser, https://github.com/eliericha/atlanalyser
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out-place, i.e. they produce an output model different from the input model
(though both may be in the same language), and a so-called refining mode allows
for in-place model refinement transformations. In the scope of this paper, we
focus only on the declarative features of ATL in the standard out-place mode.

A transformation consists of a set of declarative matched rules, each speci-
fying a source pattern (the from section) and a target pattern (the to section).
The source pattern is a set of objects of the input metamodel and an optional
OCL [12] constraint acting as a guard. The target pattern is a set of objects of
the output metamodel and a set of bindings that assign values to the attributes
and references of the output objects. For example in Fig. 1, R1 has one source
pattern element s and two target pattern elements: t1 with 3 bindings and t2
with 1 binding.

1 rule R1 {
2 from s : IN!A
3 (s.refB->exists(b | b.name = ’Hodor’))
4 to t1 : OUT!D
5 (name <- s.name + ’1’,
6 refD <- t2,
7 refE <- s.refB),
8 t2 : OUT!D
9 (name <- s.name + ’2’) }

10 rule R2 {
11 from s : IN!B
12 to t : OUT!E
13 (refD <- thisModule.resolveTemp(s.refA, ’t2’) ) }

Fig. 1. Example of ATL rules

An ATL transformation is executed in two phases. First, the matching phase
searches in the input model for objects matching the source patterns of rules
(i.e. satisfying their filtering guards). For each match of a rule’s source pattern,
the objects specified in the target pattern are instantiated. Second, the target
elements’ initialization phase executes the bindings for each triggered rule.

A binding defines a target property which is an attribute or a reference on
the left side of the <- symbol, and an OCL query on the right side of the
symbol. A binding maps a scalar value to a target attribute (line 5), target
objects (instantiated by the same rule) to a target reference (line 6), or source
objects to a target reference (line 7). In the latter case, a resolve operation is
automatically performed to find the rule that matched the source objects, and
the first output pattern object created by that rule is used for the assignment
to the target reference. This is referred to as the default resolve mechanism. For
example in Fig. 1, the binding at line 7 resolves the objects in s.refB into the
output objects of type E created by R2, and assigns them to t1.refE.

Another non-default resolve mechanism allows resolving a (set of) source
object(s) to an arbitrary target pattern object instead of the first one as in the



default mechanism. It is invoked via the following ATL standard operations:
thisModule.resolveTemp(obj, tgtPatternName)
thisModule.resolveTemp(Sequence{obj1, ...}, tgtPatternName)
The former is used to resolve with rules having one source pattern element while
the latter is used to resolve with rules having multiple source pattern elements.
For example, the execution of the binding on line 13 in rule R2 will retrieve the
target object t2 (instead of t1 as with the default resolve) that was created by
R1 when it matched s.refA.

2.2 AGT and Nested Graph Conditions

Algebraic Graph Transformation (AGT) [8] is a formal framework that provides
mathematical definitions to model graph transformations. We will be using the
Henshin [2] graph transformation framework which applies the theoretical se-
mantics to standard EMF models in the Eclipse platform. The details of the
formal foundations of Henshin can be found in [5] and are only briefly recalled
here. A graph transformation is composed of two main elements: a set of trans-
formation rules, and a high-level program defining the sequencing of rules.

Fig. 2. Henshin graphical representation of an AGT rule

An AGT rule consists of a Left-Hand Side (LHS) graph and a Right-Hand
Side (RHS) graph both depicted on the same diagram as in Fig. 2. LHS elements
are annotated with «preserve» or «delete» while RHS elements are annotated
with «preserve» or «create». Roughly, a rule is executed by finding a match of
LHS in the transformed graph, deleting the elements of LHS−RHS («delete»),
and creating the elements of RHS−LHS («create»). Elements of LHS ∩RHS
are preserved («preserve»). A rule transforms elements matched by the LHS
into the RHS, therefore an AGT is an in-place rewriting of the input model.
For example, rule R in Fig. 2 matches nodes x of type X and y1 of type Y and
edge refY in the transformed graph, deletes the node matched by y1 and the
edge matched by refY , and creates node z2 of type Z and the edge refZ.

Matches of a rule may be restricted with additional constraints by assigning
attribute values to nodes. For example the rule in Fig. 2 can only match an
object x when x.name = ”Jon Snow”. Moreover, attribute values may be stored
in rule parameters such as in y1.name = p1 where the name attribute of the
object matched by y1 is stored in the rule parameter p1. Finally, a rule may



assign new values to attributes such as in z2 where z2.name is initialized to p1
concatenated to the string “ Stark”.

In Henshin, edges typed by a multi-valued ordered reference (i.e. with upper
bound higher than 1) can be labeled with an index. This feature will play an
important role in the handling of the ATL resolve mechanisms and the support
of ordered sets in Sec. 3. A literal integer index such as ref [2] represents a
matching constraint: only the object at index 2 may be matched by the rule.
A rule parameter index such as ref [i] allows to read an object’s index in the
ordered reference and store it in the parameter. For example in Fig. 2, refY [i]
indicates that the index of y1 is stored in i. Edge indexes are zero-based.

An AGT rule can have an application condition (AC) which constrains its
possible matches. An AC is a Nested Graph Condition (NGC) over the LHS.
Formally, a NGC over a graph P is of the form true or ∃(a | γ, c) where a : P ↪−→
C is an injective morphism, γ is a boolean expression over rule parameters and
c is a NGC over C. A match p : P ↪−→ G of P in a graph G satisfies an AC
∃(a | γ, c) if there exists a match q : C ↪−→ G of C in G such that p = q ◦ a and γ
evaluates to true under the parameter assignment defined by p and q satisfies c.
Boolean formulas can be constructed such as the negation ¬c , the conjunction∧

i ci and the disjunction
∨

i ci of NGCs ci over P . We use short notations
∀(a, c) and c1 =⇒ c2 for ¬∃(a,¬c) and ¬c1 ∨ c2 respectively. For example the
AC in Fig. 3 defined for rule R requires the existence of a node y2 whose name
attribute is “Arya” and forbids the existence of a node z1 with the same name
as y1. The boolean expression i <= 1 constrains the rule to match only for the
first two objects in the ordered reference x.refY . Note that P is omitted from
the notation when it can be inferred from the context, and so are γ and c when
they are true. The AC is graphically represented in Fig. 2 using the annotations
«require» and «forbid», however this is only possible for one level of nesting in
the AC. For complete NGCs the full notation of Fig. 3 is necessary. In Sec. 3 we
will translate OCL guards and bindings into suitable ACs of AGT rules.

∃

(
x : X

refY−−−→ y2 : Y

name = “Arya”
|i <= 1

)
∧ ¬∃

(
x : X

refZ−−−→ z1 : Z

name = p2
|p1 = p2

)

Fig. 3. Example of a Nested Graph Condition

Finally we define a so-called high-level program which specifies in which order
AGT rules are applied. A program can be (1) elementary, consisting of a rule
r, (2) the sequencing of two programs P and Q denoted by (P ;Q), or (3) the
iteration of a program P as long as possible, denoted by P ↓, which is equivalent
to a sequencing (P ; (P ; (P · · · ) until the program P can no longer be applied.

3 Translating ATL to AGT

Having presented the semantics of ATL and AGT, we now tackle the main con-
tribution of this paper: the translation of ATL transformations to AGT trans-
formations. Section 3.1 focuses on the first challenge, the emulation of the ATL



resolve mechanisms in AGT, and Section 3.2 addresses the second challenge,
the translation of OCL constraints and queries embedded in ATL transforma-
tion with support for ordered sets. To avoid confusion between ATL and AGT
transformation rules, we will denote them respectively by ruleATL and ruleAGT.

3.1 Translating the ATL Resolve Mechanism

Given the out-place nature of the ATL transformations we consider and in-
place nature of AGT we propose to model the ATL transformation in AGT as a
refinement of the input model which only adds the elements of the output model
without modifying the input elements.

Challenges. A first challenge is dealing with the ATL resolve mechanisms.
In AGT no such mechanisms exist, and any objects that a ruleAGT needs to
use must already exist in the transformed graph and must be matched by the
ruleAGT’s LHS. If a ruleAGT R1 needs to use an object created by ruleAGT R2,
then R2 must be executed before R1. This becomes a problem if R1 and R2
mutually require objects created by each other which is a perfectly valid sce-
nario in ATL that cannot be solved with simple ruleAGT sequencing. Moreover,
the non-default resolve mechanism requires to relate output objects to output
pattern identifiers so that we can retrieve the object corresponding to a specific
output pattern identifier given as argument to the resolveTemp operation.

General Solution. We propose to construct the AGT transformation similarly
to the ATL execution semantics, as two sequential phases: an instantiation phase
followed by a resolving phase. Moreover, we introduce trace nodes that maintain
the relationship between input and output elements. The first phase applies a
sequence of instantiation rulesAGT that create output objects without initializing
their attributes and references, and relate them to input objects through trace
nodes. Each ruleATL, e.g. R1 from Fig. 1, yields one instantiation ruleAGT R1Inst
that matches the same objects as R1. R1Inst is iterated as long as possible so
that all matches in the input model are processed. The order of application of
instantiation rulesAGT is irrelevant as they do not interfere with each other since
objects are allowed to match for only one ruleATL, as per the ATL semantics.

The second phase of the transformation applies a set of resolving rulesAGT
which initialize references and attributes of output objects. Each binding in
a ruleATL is translated to one or more resolving rulesAGT as will be discussed
shortly. For example, R1 yields 4 resolving rulesAGT R1

t1 ,name
Res ,R1t1 ,refDRes ,R1t1 ,refERes

and R1t2 ,name
Res . Resolving rulesAGT navigate the input model and rely on the

trace nodes created in the instantiation phase to perform the resolving and re-
trieve the corresponding output objects if needed. Like instantiation rulesAGT,
resolving rulesAGT are also iterated as long as possible so that bindings are ap-
plied to all output objects. The resulting AGT transformation is the following:

R1Inst ↓; R2Inst ↓; R1t1 ,name
Res ↓; R1t1 ,refDRes ↓; R1t1 ,refERes ↓; R1t2 ,name

Res ↓; R2t,refDRes ↓



This scheme addresses the highlighted concerns regarding the resolve mech-
anism. Separating the creation of output objects from their use allows resolving
rulesAGT to use any output object even in the case of mutual resolve dependen-
cies. Moreover, the trace nodes maintain the information required to perform
the resolving as explained next.

Trace Nodes. The trace nodes we introduce are typed by a set of metaclasses
produced by our translation. We assume that both the input and output meta-
models define a root abstract metaclass from which all other metaclasses inherit
directly or transitively4 and refer to them respectively as RootIn and RootOut.
The trace metaclasses are produced as follows. First, an abstract metaclass
Trace is defined with a from reference to RootIn and a to reference to RootOut
(Fig. 4.a). For each ruleATL, e.g. R1, a so-called typed trace metaclass named
R1_Trace inheriting the abstract Trace metaclass is created. For each input
and output pattern element of the ruleATL, a reference with the same name is
created from the typed trace to the type of the pattern element. For R1 this
yields references s, t1 and t2 in Fig. 4.a.

Fig. 4.a. Trace metamodel Fig. 4.b. Instantiation ruleAGT R1Inst

Instantiation RulesAGT. Each ruleATL, R1 for example, yields one instanti-
ation ruleAGT, R1Inst, which matches the same objects as R1 and creates the
output objects as well as a typed trace node. As can be seen in Fig. 4.b, the
instantiation ruleAGT is constructed by creating a «preserve» node for each in-
put pattern element (node s : A). Then the OCL ruleATL guard is translated
to an AC as per Sec. 3.2. This yields the «require» navigation to node b : B
with name = p1 and p1 = ”Hodor”. Then, a «create» node is created for each
output pattern element (nodes t1 : D, t2 : D) as well as a typed trace node
(tr : R1_Trace). The trace node is connected to input nodes with generic from
references and typed references (s) and to output node with generic to refer-
ences and typed references (t1 and t2 ). The order of input and output pattern
elements is preserved in from and to references by indexing the created edges
accordingly (from[0], to[0] and to[1]). This will allow resolve rulesAGT to retrieve
the first output object (to[0]) for the default resolve mechanism or any arbitrary
output object (t1 or t2 ) for the non-default resolve mechanism. Finally, since
a ruleATL only applies once per match, we add a negative AC preventing the
application of the ruleAGT if another trace node tr2 with the exact same from
elements already exists. That AC is as follows:
4 if it is not the case, such a root abstract metaclass can be added automatically



¬∃

 s : A
from[0]←−−−− tr2 : Trace ,¬∃

(
: RootIn

from←−−− tr2 : Trace
)

︸ ︷︷ ︸
exactFrom(tr2)


The NGC exactFrom(tr2) (not visible on Fig. 4.b) is needed to express the

fact that the object s is allowed to participate in another ruleATL if there are
other objects in the source pattern (i.e. the set of from elements is not exactly
the same). exactFrom is reused for resolving rulesAGT in the following sections.

Resolving RulesAGT with Default Resolving. Each binding in a ruleATL is
translated to one resolving ruleAGT. Let us first consider the case of bindings with
default resolving or no resolving at all. Each such binding results in one ruleAGT
that matches the same elements as the OCL query in the binding, performs the
default resolving if needed, and initializes the target attribute/reference of the
binding. Let us consider a binding of the following general shape:

tgtObj : tgtType ( tgtProp <- oclQuery )

The supported subset of OCL in oclQuery will be defined in Sec. 3.2, however
the general translation remains the same. Such a binding is translated to a
resolving ruleAGT R

tgtObj ,tgtProp
Res according to the algorithm presented in Table 1.

The translation depends on the type of the target property tgtProp hence the
tabular presentation. Note that multi-valued target attributes are not supported
at the current stage.

Figure 5 shows the steps of the translation of binding t1:D(refE<-s.refB)
in R1 (Fig. 1) to ruleAGT R1t1,refERes . Note that to[0] in Step 3 allows to retrieve
the first target pattern element as per the default resolve semantics. Moreover,
for multivalued target references such as t1.refE, the translation is a sort of a
flattening whereby the result elements of the OCL query s.refB are not handled
all at once but one by one. Each application of R1t1,refERes matches one element
in s.refB and appends the corresponding output object to the target reference
t1.refE. However, since there are no guarantees in AGT on the order in which
elements are matched, R1t1,refERes as presented in Fig. 5 is only correct if refB is
a non-ordered reference. This will be detailed and addressed in Sec. 3.2.

Resolving RulesAGT with Non-Default Resolving. Let us now consider
bindings involving non-default resolving which have the following shape:
tgtObj : tgtType ( tgtRef <-

thisModule.resolveTemp(Sequence{navExp1, . . ., navExpN}, tgtPat))

The construction of the resolving ruleAGT RtgtObj ,tgtRef
Res operates in the same

steps as Table 1 except for steps 2 and 3 which are presented in Table 2. The
case where the first parameter of resolveTemp is an object is treated in the
same way as a Sequence containing only that object.

In this section we have presented the general ATL to AGT translation scheme
focusing on the emulation of the resolve mechanisms by introducing trace nodes.
The next section will focus on the translation of OCL guards and queries.



Table 1. Translation of an ATL binding with default resolving

Binding tgtObj : tgtType ( tgtProp <- oclQuery )

Single-valued
Attribute

tgtAtt ≡ tgtProp

Single-valued
Reference

tgtRef ≡ tgtProp

Multi-valued
Reference

tgtRef ≡ tgtProp

Step
1

Initialize LHS with : <ruleName>_Trace
tgtObj−−−−→ tgtObj : tgtType

Step
2

Translate oclQuery as per Sec. 3.2. This will complement the LHS with the
required navigations and ACs and return a result.

Result is an expression
expr over ruleAGT

parameters

Result is a node qNode

representing the query re-
sult

Result is a node qNode

representing one element
of the result set

Step
3

Not Applicable.
Step 3 is specific to ref-
erence target properties.

If the node is a source model element, perform a
default resolve by matching a trace node with the
exact from object using the following in the LHS:
qNode

from[0]←−−−− tr :Trace
to[0]−−−→ rNode : type(tgtRef )

and the AC exactFrom(tr)

If not, let rNode ≡ qNode

Step
4

Create the following
attribute in the RHS

tgtObj

tgtAtt = expr

Create tgtObj
tgtRef−−−−→ rNode in the RHS

Step
5

Add a negative AC to force the application of the rule once per match

¬∃


tgtObj

tgtAtt = p1
|

p1 = expr


¬∃
(
tgtObj

tgtRef−−−−→ rNode
)

3.2 Translating OCL Guards and Binding Expressions

As explained previously, ruleATL guards and binding expressions are translated
to ACs of respectively instantiation and resolving rulesAGT. Despite the consid-
erable difference between NGC and OCL, NGC has been shown to be expres-
sively equivalent to first order logic [13] which is the core of OCL. Translations
of subsets of OCL to NGC have been proposed in [3] with a highly theoretical
approach and in [4] with a wider supported OCL subset and an experimental
approach. We have taken inspiration from both works and have found that none
of them supports ordered sets, leading us to tackle this problem in particular. In



Step 1 Step 2

Step 3 Steps 4 and 5

Fig. 5. Construction of resolving ruleAGT R1t1,refERes

the following we will only recall the general principles of the existing translations
and detail the problem at hand and our proposal.

The main idea is to translate OCL object queries into graphs that match
the objects in the query’s result set, and OCL constraints into NGCs that are
satisfied under the same conditions. For example, the navigation of a reference
s.refB is translated by creating the graph s

refB−−−→ r where r represents one
object in the result set of the query and is returned as a result of the translation
(see Step 2 in Table 1). As for the navigation of an object attribute such as in
s.name + ’1’, it is translated by creating a rule parameter p and assigning the
attribute value to it “name = p” in the node s, and returning the expression
p+”1” as a result of the translation (Step 2 in Table 1). The supported subset of
OCL is similar to the one in [4] which is limited to basic navigation, first order
logic constructs and Set as the only collection type with basic set operations such
as select(), collect(), union(). We extend this support to OrderedSet with
support for indexing at(i) and the preservation of order in output collections.

Challenge 1. A first challenge is the handling of bindings that aggregate results
of several queries. This is the case of the following binding shapes where in (1)
resolved objects in tgtRef should be in the same order as the source objects in
the OrderedSet, and in (2) oclQuery1 should be resolved before oclQuery2.

tgtRef <- OrderedSet{oclQuery1, oclQuery2 . . . oclQueryN} (1)
tgtRef <- oclQuery1->union(oclQuery2) (2)

Solution 1. To preserve the ordering of elements, we propose to translate
such bindings as separate successive bindings: tgtRef <- oclQuery1, tgtRef <-
oclQuery2, . . . Each such binding results in a separate resolving ruleAGT and the
rulesAGT are sequenced in the same order as the queries in the original binding.



Table 2. Translation of an ATL binding with non-default resolving

resolveTemp(Sequence{navExp1, . . ., navExpN}, tgtPat)

Step
2

Translate each navExpi as per Sec. 3.2. This will complement the LHS with
the required navigations and ACs and return as a result a set of nodes
qNodei representing the navigated objects

Step
3.a

Perform a non-default resolve by matching a trace node with the exact from
tuple. Differently than for the default resolve, to is not indexed.

qNode1

qNode2 tr : Trace rNode : type(tgtRef )
. . .

qNodeN

from[0]

from[1]

from[N−1]

to

and add the AC exactFrom(tr)

Step
3.b

Compute CRules as the set of all candidate rulesATL that have N source
pattern elements and tgtPat as one of their target pattern elements.

Step
3.c

Add to the ruleAGT’s AC the following disjunction:∨
cRule ∈CRules

∃
(

tr : <cRule>_Trace
tgtPat−−−−→ rNode

)

Consequently objects are appended to tgtRef in the right order at run-time.
Therefore (1) is translated to N sequential resolving rulesAGT and (2) is trans-
lated to 2 sequential resolving rulesAGT.

Challenge 2. The second challenge is the navigation of ordered multi-valued
references. Let us illustrate this problem with the following binding from R1 in
Fig. 1: t1 : OUT!D ( refE <- s.refB )
refB is a multivalued reference (i.e. upper bound larger than 1). We have previ-
ously shown the translation of this binding in Fig. 5 under the assumption that
refB is a non-ordered reference. The navigation s.refB is flattened, meaning
that the elements of the collection are not handled all at once, but rather one
by one thanks to the iteration of R1t1 ,refERes . According to AGT graph matching,
objects in s.refB may be matched in any order. Therefore objects in t1.refE
may end up in a different order than their counterparts in s.refB which is a
problem if refB and refE are ordered. That constitutes a divergence from the
ATL semantics which honours the order of objects in collections. Therefore we
need a way to force the matching of objects in s.refB in an orderly fashion.

Solution 2. We propose to complement the regular translation of navigation
expressions [3,4] with an additional NGC forcing objects to be matched in the
correct order. Intuitively, this NGC should express the fact that an object in
s.refB should be matched only if all preceding objects in s.refB have already
been handled by the resolving ruleAGT. This corresponds to the following NGC:



orderingAC = ∃
(

s : A
refB[i]−−−−→ qNode :B ,

∀
(

s : A
refB[j]−−−−→ qNode1 :B | j < i, wasResolved t1 ,refE

R1 (qNode1)
))

Where:

– i : index of the object qNode currently being handled.
– j : index of the object qNode1 which iterates over objects preceding qNode.
– wasResolved t1 ,refE

R1 (n) : A NGC which evaluates to true if node n has already
been handled by the resolving ruleAGT.

Now we need to define wasResolved t1 ,refE
R1 (n). We can determine that a node

n has been already handled by checking if the node to which it resolves exists
in the target reference t1 .refE . Therefore the following definition is suitable:
wasResolved t1 ,refE

R1 (n) =

∃
(

n
from[0]←−−−− tr :Trace

to[0]−−−→ : E
refE←−− t1 : D , exactFrom(tr)

)

With the above definitions, adding orderingAC as an application condition
of R1t1 ,refERes ensures that objects in s.refB are processed in the correct order,
thus honoring the ATL semantics. Let us now generalize this reasoning to the
case where the navigation is filtered with a select operation:

t1 : OUT!D ( refE <- s.refB->select(e | body(e) )
Now an object in s.refB should be matched only if it satisfies the select

condition, and if all preceding objects in s.refB which also satisfy the select
condition have been handled by the resolving ruleAGT. Therefore the AC that
would ensure the orderly processing of objects is the following:

orderingAC = ∃
(

s : A
refB[i]−−−−→ qNode : B , trbody(qNode)

∧
∀
(

s : A
refB[j]−−−−→ qNode1 : B | j < i,

trbody(qNode1) =⇒ wasResolved t1 ,refE
R1 (qNode1)

))
Where trbody(n) is the NGC resulting from the translation of the OCL constraint
body(e), applied to a node n. The generalization can be extended to all supported
OCL expressions but will not be detailed here for lack of space.

4 Experiments and Validation

4.1 Validation Protocol

We have used the Henshin Eclipse framework as the target of the translation as
it is well integrated with EMF and allows the execution of AGT transformations
on standard EMF models. The ATL to AGT translation is implemented in our
Java-based tool ATLAnalyser and validated by considering a set of ATL trans-
formations from the ATL Zoo [1] and from other sources. Each transformation



is translated to AGT using our implementation and the resulting AGT transfor-
mation is validated manually by review. Then both the ATL and AGT versions
are executed over a set of input models and in each case the output models of
the two versions are checked to be identical using EMFCompare. Except for the
manual review, this experimental validation protocol is fully automated (using
JUnit) which allows to easily expand our test base with new transformations and
models, and monitor the non-regression of existing tests as the prototype evolves.
We have also identified the ATL features that each transformation contains to
make sure we exercise all aspects of the translation.

Our prototype was successfully validated with the transformations listed in
Table 3. Simulink CodeGen is a simplified version of an industrial Simulink to
C code generator5. Note that in Families2Persons, the high number of resolving
rules (relative to only 2 bindings) is due to the translation scheme of nested
if-then-else binding queries which has not been developed in this paper.

Table 3. List of test transformations and tested features

Families2-
Persons [1]

Class2-
Relational [1]

ER2REL [6] Simulink
CodeGen4

Metrics
ATL rules 2 6 6 6
ATL bindings 2 22 13 30
Instantiation rules 2 6 6 6
Resolving rules 8 23 15 32

ATL Features
Default Resolve X X X X
resolveTemp X
Helpers X X X
Attribute binding X X X X
Reference binding X X X
OrderedSet{} X X
union() X X X
select() X X
collect(), at() X

4.2 Limitations and Threats to Validity

A first limitation of our proposal is the lack of formal evidence of its validity.
Though part of our translation is based on the one in [3] which is formally proven
to be correct, our OCL subset is significantly wider preventing any direct claim
of correctness of the complete translation. Second, while the addressed scope was
found sufficient to translate a wide range of ATL transformations, features like
non-unique collections (Bag, Sequence), collections of collections, and special
values (null, invalid) are not supported because they cannot be represented
in the AGT framework used in this paper. Finally, with the validation scheme
5 Project P, http://www.open-do.org/projects/p

http://www.open-do.org/projects/p


presented in Sec. 4.1, we are faced with the challenge of any test-based validation
which is the coverage and relevance of the test transformations and test models.
We have tried to address this issue by identifying the ATL features used by
each transformation to make sure that all aspects of the translation are tested
(see Table 3). However we acknowledge that our tool is essentially a language
compiler, and the verification of such tools is known to be a difficult problem.

5 Related Work

Though translations of OCL to NGC have been conducted [3,4], no previous
work has proposed a translation of ATL to AGT to the best of our knowledge.
In [14] the authors propose to translate model transformations from the Epsilon
language family (arguably similar to ATL and OCL) to AGT to show through
formal proof that a given pair of unidirectional transformations forms a bidi-
rectional transformation. However this work is still at an early stage and an
automatic translation is not yet proposed.

In the broader context of the analysis of model transformations several works
have translated ATL to other formalisms. ATL transformations are translated
in [6] to a transformation model with suitable constraints expressing the ATL
semantics and in [16] to a Maude specification with a rewriting logic arguably
similar to our graph rewriting transformation. The analyses made possible by
these and other formalisations include Hoare-style correctness analyses, i.e. ver-
ifying that an ATL model transformation ensures a postcondition under the
assumption of a precondition [6], and reachability analysis [16] to find errors in
the ATL transformation. Despite these existing results, we have targeted AGT in
our work to benefit from the construction of weakest precondition (WP) in AGT
[10] which is the translation of a postcondition NGC on the output of a transfor-
mation into an equivalent precondition NGC on its input. This analysis which
is not possible in the existing formalisations of ATL is used for the synthesis of
validity-preserving preconditions [7] and for the formal proof of Hoare-style cor-
rectness [13]. Applying it to ATL using our translation is one of our main future
prospects in a novel approach for testing model transformation chains [15].

6 Conclusion

This paper has presented a translation of ATL transformations to the formal
framework of Algebraic Graph Transformation (AGT). The main challenges of
this work were the translation of the ATL resolve mechanisms which do not
have a direct equivalent in AGT, and the translation of OCL guards and queries
to suitable Nested Graph Conditions (NGC). In the latter translation, we have
complemented existing OCL to NGC translations with support for ordered sets,
allowing to faithfully translate a wider range of ATL transformations. We have
implemented our translation targeting the Henshin AGT framework and have
validated it by translating a set of representative ATL transformations from
various sources, and comparing the execution of both ATL and AGT versions.



In future work, we plan to extend the translation to support more ATL and
OCL features such as arbitrary sorting with sortedBy as well as multi-valued
attributes. A more challenging task will be to support imperative features of
ATL such as lazy rules and do blocks. As a first intuition we believe this would
require enriching trace nodes with more information and using more imperative
features of AGT. Finally, we plan to use the proposed translation to apply AGT
formal analyses to ATL transformation, starting with the construction of weakest
preconditions as a way to generate tests for ATL transformation chains [15].
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