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ABSTRACT

This paper introduces a novel technique for reconstructing
the phase of modified spectrograms of audio signals. From
the analysis of mixtures of sinusoids we obtain relation-
ships between phases of successive time frames in the Time-
Frequency (TF) domain. To obtain similar relationships over
frequencies, in particular within onset frames, we study an
impulse model. Instantaneous frequencies and attack times
are estimated locally to encompass the class of non-stationary
signals such as vibratos. These techniques ensure both the
vertical coherence of partials (over frequencies) and the hor-
izontal coherence (over time). The method is tested on a
variety of data and demonstrates better performance than tra-
ditional consistency-based approaches. We also introducean
audio restoration framework and observe that our technique
outperforms traditional methods.

Index Terms— Phase reconstruction, sinusoidal model-
ing, linear unwrapping, phase consistency, audio restoration.

1. INTRODUCTION

A variety of music signal processing techniques act in the
TF domain, exploiting the particular structure of music sig-
nals. For instance, the family of techniques based on Non-
negative Matrix Factorization (NMF) is often applied to
spectrogram-like representations, and has proved to provide
a successful and promising framework for source separa-
tion [1]. Magnitude-recovery techniques are also useful for
restoring missing data in corrupted signals [2].

However, when it comes to resynthesizing time signals,
the phase recovery of the corresponding Short-Time Fourier
Transform (STFT) is necessary. In the source separation
framework, a common practice consists in applying Wiener-
like filtering (soft masking of the complex-valued STFT of
the original mixture). When there is no prior on the phase
of a component (e.g. in the context of audio restoration),
a consistency-based approach is often used for phase re-
covery [3]. That is, a complex-valued matrix is iteratively
computed to be close to the STFT of a time signal. A re-
cent benchmark has been conducted to assess the potential of
source separation methods with phase recovery in NMF [4].

It points out that consistency-based approaches provide poor
results in terms of audio quality. Besides, Wiener filtering
fails to provide good results when sources overlap in the
TF domain. Thus, phase recovery of modified audio spec-
trograms is still an open issue. The High Resolution NMF
(HRNMF) model [5] has shown to be a promising approach,
since it models a TF mixture as a sum of autoregressive (AR)
components in the TF domain, thus dealing explicitly with a
phase model.

Another approach to reconstruct the phase of a spectro-
gram is to use a phase model based on the observation of
fundamental signals that are mixtures of sinusoids. Contrary
to consistency-based approaches using the redundancy of the
STFT, this model exploits the natural relationship between
adjacent TF bins due to the model. This approach is used in
the phase vocoder algorithm [6], although it is mainly dedi-
cated to time stretching and pitch modification of signals, and
it requires the phase of the original STFT. More recently, [7]
proposed a complex NMF framework with phase constraints
based on sinusoidal modeling, and [8] used a similar tech-
nique for recovering the phase of speech signals in noisy
mixtures. Although promising, these approaches are limited
to harmonic and stationary signals. Besides, the phase con-
strained complex NMF model [7] requires prior knowledge
on fundamental frequencies and numbers of partials. In the
speech enhancement framework introduced in [8], the funda-
mental frequency is estimated, however the estimation error
is propagated and amplified through partials and time frames.

In this paper, we propose a generalization of this approach
that consists in estimating the phase of mixtures of sinusoids
from its explicit calculation. We then obtain an algorithm
which unwraps the phaseshorizontally(over time frames) to
ensure the temporal coherence of the signal, andvertically
(over frequency channels) to enforce spectral coherence be-
tween partials, which is observed in musical acoustics for
several instruments [9]. Our technique is suitable for a vari-
ety of pitched music signals, such as piano or guitar sounds,
but percussive signals are outside the scope of this research.
A dynamic estimation (at each time frame) of instantaneous
frequencies extends the validity of this technique to non-
stationary signals such as cellos and speech. This technique
is tested on a variety of signals and integrated in an audio



restoration framework.
The paper is organized as follows. Section 2 presents the

horizontal phase unwrapping model. Section 3 is dedicated
to phase reconstruction on onset frames. Section 4 presentsa
performance evaluation of this technique through various ex-
periments. Section 5 introduces an audio restoration frame-
work using this phase recovery method. Finally, section 6
draws some concluding remarks.

2. HORIZONTAL PHASE RECONSTRUCTION

2.1. Sinusoidal modeling

Let us consider a sinusoid of normalized frequencyf0 ∈
[− 1

2 ;
1
2 ], initial phaseφ0 ∈ [−π;π] and amplitudeA > 0:

∀n ∈ Z, x(n) = Ae2iπf0n+iφ0 . (1)

The expression of the STFT is, for each frequency channel
k ∈ J−F−1

2 ; F−1
2 K (with F the odd-valued Fourier transform

length) and time framet ∈ Z:

X(k, t) =

N−1
∑

n=0

x(n+ tS)w(n)e−2iπ k

F
n (2)

where w is a N sample-long analysis window andS is
the time shift (in samples) between successive frames. Let
W (f) =

∑N−1
n=0 w(n)e−2iπfn be the discrete time Fourier

transform of the analysis window for each normalized fre-
quencyf ∈ [− 1

2 ;
1
2 ]. Then the STFT of the sinusoid (1)

is:

X(k, t) = Ae2iπf0St+iφ0W

(

k

F
− f0

)

. (3)

The unwrapped phase of the STFT is then:

φ(k, t) = φ0 + 2πSf0t+ ∠W

(

k

F
− f0

)

(4)

where∠z denotes the argument of the complex numberz.
This leads to a relationship between two successive time
frames:

φ(k, t) = φ(k, t− 1) + 2πSf0. (5)

More generally, we can compute the phase of the STFT of
a frequency-modulated sinusoid. If the frequency variation is
low between two successive time frames, we can generalize
the previous equation:

φ(k, t) = φ(k, t− 1) + 2πSf0(t). (6)

Instantaneous frequency must then be estimated at each
time frame to encompass variable frequency signals such as
vibratos, which commonly occur in music signals (singing
voice or cello signals for instance).

2.2. Instantaneous frequency estimation

Quadratic interpolation FFT (QIFFT) is a powerful tool for
estimating the instantaneous frequency near a magnitude peak
in the spectrum [10]. It consists in approximating the shape
of a spectrum near a magnitude peak by a parabola. This
parabolic approximation is justified theoretically for Gaus-
sian analysis windows, and used in practical applications for
any window type. The computation of the maximum of the
parabola leads to the instantaneous frequency estimate. Note
that this technique is suitable for signals where only one sinu-
soid is active per frequency channel.

The frequency bias of this method can be reduced by in-
creasing the zero-padding factor [11]. For a Hann window
without zero-padding, the frequency estimation error is less
than1 %, which is hardly perceptible in most music applica-
tions according to the authors.

2.3. Regions of influence

When the mixture is composed of one sinusoid, the phase
must be unwrapped in all frequency channels according to (5)
using the instantaneous frequencyf0. When there is more
than one sinusoid, frequency estimation is performed near
each magnitude peak. Then, the whole frequency range must
be decomposed in several regions (regions of influence[6])
to ensure that the phase in a given frequency channel is un-
wrapped with the appropriate instantaneous frequency.

At time frame t, we consider a magnitude peakAp in
channelkp. The magnitudes (resp. the frequency channels) of
neighboring peaks are denotedAp−1 andAp+1 (resp. kp−1

andkp+1). We define the region of influenceIp of the p-th
peak as follows:

Ip =

[

Apkp−1 +Ap−1kp

Ap +Ap−1
;
Apkp+1 +Ap+1kp

Ap +Ap+1

]

. (7)

The greaterAp is relatively toAp−1 andAp+1, the wider
Ip is. Note that other definitions of regions of influence exist,
such as choosing the limit between two peaks as the channel
of lowest energy [6].

3. ONSET PHASE RECONSTRUCTION

3.1. Impulse model

Impulse signals are useful to obtain a relationship between
phases over frequencies (vertical unwrapping) [12]. Although
they do not accurately model attack sounds, they provide sim-
ple equations that can be further improved for more complex
signals. The model is:

∀n ∈ Z, x(n) = Aδn−n0
, (8)



whereδ is equal to one ifn = n0 (the so-calledattack time)
and zero elsewhere andA > 0 is the amplitude. Its STFT is
equal to zero except within attack frames:

X(k, t) = Aw(n0 − St)e−2iπ k

F
(n0−St). (9)

We can then obtain a relationship between the phases of
two successive frequency channels within an onset frame, as-
suming thatw ≥ 0:

φ(k, t) = φ(k − 1, t)−
2π

F
(n0 − St), (10)

andφ(0, t) = 0. The similarity between (10) and (5) was
expected because the impulse is the dual of the sinusoid in
the TF domain. This comparison naturally leads to estimat-
ing parametern0 (the ”instantaneous” attack time) in each
frequency channel as we previously estimatedf0 (the instan-
taneous frequency) in each time frame (cf. equation (6)). This
leads to the following vertical unwrapping equation:

φ(k, t) = φ(k − 1, t)−
2π

F
(n0(k)− St). (11)

3.2. Attack time estimation

In order to estimaten0(k), we look at the magnitude of the
STFT of the impulse in a frequency channelk:

|X(k, t)| = Aw(n0(k)− St). (12)

We then choosen0 such that the STFT magnitude of
the impulse over onset frames has a shape similar to that
of the analysis window. For instance, a least-squares esti-
mation method can be used. We tested this technique on
synthetic mixtures of impulses: perfect reconstruction has
been reached. Alternatively, we can also estimaten0(k) with
a temporal QIFFT and update the phase with (11).

4. EXPERIMENTAL EVALUATION

4.1. Protocol and datasets

The MATLAB Tempogram Toolbox [13] provides a fast and
reliable onset frames detection from spectrograms. We use
several datasets in our experiments:

A: 30 mixtures of piano notes from the Midi Aligned Piano
Sounds (MAPS) database [14],

B: 30 piano pieces from the MAPS database,

C: 12 string quartets from the SCore Informed Source Sepa-
ration DataBase (SCISSDB) [15],

D: 40 speech excerpts from the Computational Hearing in
Multisource Environments (CHiME) database [16].

The data is sampled atFs = 11025 Hz and the STFT
is computed with a512 sample-long Hann window,75 %
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Fig. 1: Spectrogram of a mixture with vibrato (left) and
instantaneous frequencies in the2800 Hz channel (right)

Dataset Error GL PU
A 0.38 −6.9 2.5

B 0.36 −12.6 1.7

C 0.41 −9.7 5.3

D 0.52 −0.4 0.5

Table 1: Frequency estimation error (%) and reconstruction
performance (SDR in dB) for various audio datasets

overlap and no zero-padding. The Signal to Distortion Ra-
tio (SDR) is used for performance measurement. It is com-
puted with theBSS Eval toolbox [17] and expressed in dB.
The popular consistency-based Griffin and Lim (GL) algo-
rithm [3] is also used as a reference. We run200 iterations of
this algorithm (performance is not further improved beyond).
It is initialized with random values, except for TF bins where
the phase is known. Results are averaged over30 initializa-
tions.

Simulations are run on a3.60GHz CPU processor and
16Go RAM computer. The related MATLAB code and some
sound excerpts are provided on the author web page1.

4.2. Horizontal phase reconstruction

Figure 1 illustrates the instantaneous frequencies estimated
with the phase vocoder technique [6], used as a reference, and
with our algorithm on a vibrato. Identical results are obtained.
Our method is thus suitable for estimating variable instanta-
neous frequency signals as well as stationary components. We
computed the average frequency error between phase vocoder
and QIFFT estimates for the datasets presented in section 4.1.
The results presented in the first column of Table 1 confirm
that QIFFT provides an accurate frequency estimation.

Table 1 also presents reconstruction performance for Grif-
fin and Lim (GL) and our Phase Unwrapping (PU) algorithms.
In both cases the onset phases are known. Our approach sig-
nificantly outperforms the traditional GL method: both sta-
tionary and variable frequency signals are reconstructed ac-
curately. In addition, our algorithm is faster than the GL

1http://perso.telecom-paristech.fr/magron/.



Method GL Imp QI Rand 0 Alt
SDR (dB) −7.9 −4.0 −2.6 −4.3 −4.7 −3.5

Table 2: Signal reconstruction performance of different
methods on dataset A
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Fig. 2: Reconstruction performance of different methods and
percentages of corruption on dataset A

technique: on a3min 48s piano piece, the reconstruction is
performed in18s with our approach and in623s with GL al-
gorithm.

4.3. Onset phase reconstruction

Onset phases can be reconstructed withn0-estimation using
the impulse magnitude (Imp ) or with QIFFT (QI ). We also
test random phases values (Rand, no vertical coherence), zero
phases (0, partials in phase) and alternating partial phases be-
tween0 andπ (Alt , phase-opposed partials). These choices
are justified by the observation of the phase relationships be-
tween piano partials in musical acoustics [9]. The phase of
the partials is then fully recovered with horizontal unwrap-
ping. We test these methods on dataset A. Results presented
in Table 2 show that all our approaches provide better results
than GL algorithm on this class of signals. Onset phase un-
wrapping withn0-estimation based on QIFFT provides the
best result, ensuring some form of vertical coherence. In par-
ticular, we perceptually observe that this approach provides a
neat percussive attack.

4.4. Complete phase reconstruction

We consider unaltered magnitude spectrograms from datasetA.
A variable percentage of the STFT phases is randomly cor-
rupted. We evaluate the performance of our algorithm to
restore the phase both on onset and non-onset frames.

Figure 2 confirms the potential of this technique. Our
method produced an average increase in SDR of6dB over
the corrupted data. It also performs better than the GL algo-
rithm when a high percentage of the STFT phases must be
recovered.

However, note that this experiment consists in phase re-
construction ofconsistentspectrograms (i.e positive matrices
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Fig. 3: Piano note spectrogram: original (left), corrupted
(center) and restored (right)

Dataset AR HRNMF GL PU
A 11.4 16.9 8.6 11.7

B 4.3 10.9 5.9 7.1

C 8.2 10.6 6.6 7.1

D 8.3 10.9 8.9 9.4

Table 3: Signal restoration performance (SDR in dB) for
various methods and datasets

that are the magnitude of the STFT of a time signal): GL
algorithm is then naturally advantaged in this case. Realis-
tic applications (cf. next section) involve the restoration of
both phase and magnitude, which leads to inconsistent spec-
trograms.

5. APPLICATION TO AUDIO RESTORATION

A common alteration of music signals is the presence of noise
on short time periods (a few samples) called clicks. We cor-
rupt time signals with clicks that represent less than1 % of
the total duration. Clicks are obtained by differentiatinga 10
sample-long Hann window and added to the clean signal.

Magnitude restoration of missing bins is performed by
linear interpolation of the log-magnitudes in each frequency
channel. Figure 3 illustrates this technique. Phase recovery
is then performed with our method (PU) or alternatively with
the GL algorithm. We compare those results to the traditional
restoration method based on autoregressive (AR) modeling of
the time signal [18], and with HRNMF [5].

Table 3 presents results of restoration. HRNMF provides
the best results in terms of SDR. Though, our approach out-
performs the traditional method and GL algorithm. Besides,
we underline that the HRNMF model uses the phase of the
non-corrupted bins, while our algorithm is blind. Lastly, our
technique remains faster than HRNMF: for a3min55s piano
piece, restoration is performed in99s with our algorithm and
in 222s with HRNMF.



6. CONCLUSION

The new phase reconstruction technique introduced in this
work appears to be an efficient and promising method. The
analysis of mixtures of sinusoids leads to relationships be-
tween successive TF bins phases. Physical parameters such
as instantaneous frequencies and attack times are estimated
dynamically, encompassing a variety of signals such as piano
and cellos sounds. The phase is then unwrapped in all fre-
quency channels for onset frames and over time for partials.
Experiments have demonstrated the accuracy of this method,
and we integrated it in an audio restoration framework. Better
results than with traditional methods have been reached.

The reconstruction of onset frames still needs to be im-
proved as suggested by the variety of data. Further work
will focus on exploiting known phase data for reconstruction:
missing bins can be inferred from observed phase values. Al-
ternatively, time-invariant parameters such as phase offsets
between partials [19] can be used. Such developments will be
introduced in an audio source separation framework, where
the phase of the mixture can be exploited.
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