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This paper presents a likelihood ratio test based method of change detection and classification for synthetic aperture radar (SAR) time series, namely NORmalized Cut on chAnge criterion MAtrix (NORCAMA). This method involves three steps: 1) multi-temporal pre-denoising step over the whole image series to reduce the effect of the speckle noise; 2) likelihood ratio test based change criteria between two images using both the original noisy images and the denoised images; 3) change classification by a normalized cut based clustering-and-recognizing method on change criterion matrix (CCM). The experiments on both synthetic and real SAR image series show the effective performance of the proposed framework.
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Introduction

Change analysis in remote sensing images is the process of analyzing differences (including identifying, recognizing and so on) in regions of interest by observing them at different dates [START_REF] Singh | Digital change detection techniques using remotely-sensed data[END_REF]. Many applications of remote sensing images involve change analysis, such as rapid mapping of disaster, land-use and land-cover monitoring and so on. [START_REF] Lu | Object-oriented change detection for landslide rapid mapping[END_REF] used a change detection method to detect and locate the landslides for rapid mapping. Similarly, a multi-sensor change detection method between optical and synthetic aperture radar (SAR) imagery is proposed in [START_REF] Brunner | Earthquake damage assessment of buildings using VHR optical and SAR imagery[END_REF] for earthquake damage assessment of buildings. For urbanization monitoring, post-classification change detection methods are proposed [START_REF] Taubenböck | Monitoring urbanization in mega cities from space[END_REF][START_REF] Yin | Monitoring urban expansion and land use/land cover changes of Shanghai metropolitan area during the transitional economy (1979-2009) in China[END_REF]. From a methodological point of view, change analysis methods can be classified into two classes, binary-temporal change analysis and multi-temporal change analysis according to the number of images.

In the binary-date change analysis of two optical images, the most widely used operator is difference operator [START_REF] Singh | Digital change detection techniques using remotely-sensed data[END_REF]. For multi-spectral images, change vector analysis [START_REF] Bruzzone | Automatic analysis of the difference image for unsupervised change detection[END_REF] is proposed. People also perform the analysis on the transformed data instead of the spectral data directly, such as Tasseled Cap transformation [START_REF] Fung | An assessment of TM imagery for land-cover change detection[END_REF][START_REF] Huang | Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance[END_REF], principal component analysis [START_REF] Fung | Application of principal components analysis to change detection[END_REF][START_REF] Deng | PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data[END_REF] and independent component analysis [START_REF] Marchesi | ICA and kernel ICA for change detection in multispectral remote sensing images[END_REF]. Beyond change detection, [START_REF] Bruzzone | An iterative technique for the detection of land-cover transitions in multitemporal remote-sensing images[END_REF] explicitly identified land-cover transitions (changes among Bare soil, Corn, Soybean, Sugar beet, Wheat) in multi-temporal remote-sensing images based on supervised classification. Given SAR images, two main approaches have been developed in the literature for change analysis: coherent change detection and incoherent change detection. The former uses the phase information in the SAR images through the study of the coherence map [START_REF] Preiss | Coherent change detection: theoretical description and experimental results[END_REF]. In incoherent change detection, the amplitude log-ratio [START_REF] Rignot | Change detection techniques for ERS-1 SAR data[END_REF] is the most common operator. Improvements have been proposed thanks to automatic thresholding methods [START_REF] Bazi | An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images[END_REF] or multi-scale analysis to preserve details [START_REF] Bovolo | A detail-preserving scale-driven approach to change detection in multitemporal SAR images[END_REF]. [START_REF] Lombardo | Maximum likelihood approach to the detection of changes between multitemporal SAR images[END_REF] proposed a generalized likelihood ratio test given by the ratio between geometric and arithmetic means for SAR images. [START_REF] Quin | MIMOSA: An Automatic Change Detection Method for SAR Time Series[END_REF] extended this ratio of different means to a more general way with an adaptive and nonlinear threshold, which can be applied to not only SAR image pairs but also SAR time series.

Beyond change analysis between two dates, multi-temporal change analysis (more than 2 dates) mainly focuses on the long-term change information. SAR image features consisting of long-term coherence and temporal backscattering is proposed for a classification purpose [START_REF] Bruzzone | An advanced system for the automatic classification of multitemporal SAR images[END_REF]. [START_REF] Julea | Unsupervised spatiotemporal mining of satellite image time series using grouped frequent sequential patterns[END_REF][START_REF] Julea | Efficient Spatio-temporal Mining of Satellite Image Time Series for Agricultural Monitoring[END_REF] propose a crop monitoring using satellite image time series by a frequent sequential pattern (a group of pixels sharing common temporal patterns and satisfying a minimum spatial connectivity). A generic change detection approach is proposed in (Verbesselt et al., 2010a) for multi-temporal images by detecting and characterizing breaks for additive seasonal and trend changes. It integrates the decomposition of time series into trend, seasonal, and remaining components within a long-term time series. An improved harmonic seasonal model which requires fewer observations has been presented in (Verbesselt et al., 2010b). Transform tools [START_REF] Jong | Analysis of monotonic greening and browning trends from global NDVI time-series[END_REF][START_REF] Martínez | Vegetation dynamics from NDVI time series analysis using the wavelet transform[END_REF] have also been used for analysis of the normalized difference vegetation index time series.

In this paper, we address the problem of change classification of multitemporal SAR series. We will focus on same-sensor same-incidence case and consider binary changes between two dates with applications to urban areas. Although this is a restrictive case, this approach could be seen as a screening stage for improved change analysis taking into account continuous evolution. A global processing chain in 3 steps, namely NORmalized Cut on chAnge criterion MAtrix (NORCAMA), is defined, as shown in Fig. 1. In the pre-processing step, a multi-temporal SAR image filter is used to reduce speckle phenomenon. After that, two change criteria based on likelihood ratio test combining noisy and denoised data are developed and compared. The final step is a clustering-and-recognizing classification based on the change criterion matrix, in which changes are classified into different types (including step change, impulse change, cycle change and complex change). The last 2 steps as well as the global framework are the main contribution of this paper. Evaluation on synthetic and real images show the good performance of the proposed approach.

This paper is organized as follows. Section 2 briefly recalls the multitemporal denoising method for SAR images. The proposed approximate likelihood ratio test and generalized likelihood ratio test change criteria are presented in Section 3. The proposed clustering-and-recognizing change classification method is then detailed in Section 4. This is followed by evaluation (Section 5) and conclusion (Section 6).

Pre-Processing: Multi-Temporal Denoising

When dealing with multi-temporal images, lots of information is available and useful for estimation purposes in the time series. However, the presence of high fluctuations due to speckle in SAR images hampers their analysis. Based on this motive, we proposed a two-step probabilistic patch based (2SPPB) denoising method [START_REF] Su | Two-Step Multitemporal Nonlocal Means for Synthetic Aperture Radar Images[END_REF] relying on non local means [START_REF] Buades | A non-local algorithm for image denoising[END_REF] and probabilistic patch based weights (PPB) [START_REF] Deledalle | Iterative weighted maximum likelihood denoising with probabilistic patch-based weights[END_REF] adapted to multi-temporal SAR images. To allow a self-content reading of this paper and to introduction the useful notations, we briefly summarize the main steps of this approach. A complete description can be found in [START_REF] Su | Two-Step Multitemporal Nonlocal Means for Synthetic Aperture Radar Images[END_REF]. It consists of a temporal averaging step and a spatial denoising step (summarized in Algorithm 1). Firstly, an average image is created by combining stable pixels while keeping unchanged the pixels not in accordance with the other dates (temporal averaging step). Then, on this improved image, a spatial denoising step is applied. A key point in both the temporal and spatial averaging is the weights based on the similarity between pixels, which are measured by similarity between surrounding patches. This section presents a brief summary of 2SPPB which will be useful for the following steps.

Pixel similarity

We denote by y t the observed SAR image, by y t (i) the noisy intensity value at pixel index i at time t, and by ût (i) the estimation of the actual pixel value u t (i) (the true value that we are looking for). Considering {y t 1 , y t 2 , . . . , y t N } as the stack of multi-temporal images, the similarity criterion S y t (i), y t ′ (i), h, h ′ between pixels y t (i) and y t ′ (i) is defined through the similarity of their surrounding patches y t (i) and y t ′ (i) (the lower, the more similar they are supposed to be):

S y t (i), y t ′ (i), h, h ′ = S GLR y t (i), y t ′ (i) h + S KL ût (i), ût ′ (i) h ′ (1) 
S y t (i), y t ′ (i), h, h ′ consists of the sum of a generalized likelihood ratio S GLR (GLR) from noisy images y t and y t ′ and a Kullback-Leibler divergence S KL (KL) from currently denoised images ût and ût ′ . S GLR and S KL are normalized by parameters h and h ′ . For any pair of pixels y(1) and y(2), the GLR criterion S GLR is comparing two small square patches y(1) and y(2) of size K surrounding pixels at the positions of y(1) and y(2), and is defined as [START_REF] Su | Two-Step Multitemporal Nonlocal Means for Synthetic Aperture Radar Images[END_REF]:

S GLR [y(1), y(2)] = k∈K [L(1 + k) + L(2 + k)] log [L(1 + k)y(1 + k) + L(2 + k)y(2 + k)] -[L(1 + k) + L(2 + k)) log (L(1 + k) + L(2 + k)] -L(1 + k)log (y(1 + k)) -L(2 + k)log (y(2 + k)) (2) 
where, y(1 + k) is k-pixel in patch y(1) and L(1 + k) is the (equivalent) number of looks of y(1 + k) (idem for y(2 + k) and L(2 + k)). The KL criterion S KL is computed from a pair of denoised results ût and ût ′ of the noisy image y t and y t ′ respectively. The criterion S KL is also defined on two patches û(1) and û(2) as [START_REF] Su | Two-Step Multitemporal Nonlocal Means for Synthetic Aperture Radar Images[END_REF]:

S KL [û(1), û(2)] = k∈K L(1 + k) û(2 + k) û(1 + k) + L(2 + k) û(1 + k) û(2 + k) -L(1 + k) -L(2 + k) + L(1 + k) [ψ(L(1 + k)) -ψ(L(2 + k)) + ln(û(1 + k)) + ln(û(2 + k))] -L(2 + k) [ψ(L(1 + k)) -ψ(L(2 + k)) + ln(û(1 + k)) + ln(û(2 + k))] (3) 
where ψ( ) is the digamma function.

Two steps denoising

The first step of 2SPPB is to average the temporal pixels with binary weights:

y 1st t (i) = 1 Z t ′ ∈[t 1 ,t N ] ϕ S y t (i), y t ′ (i), h 1st , h ′ 1st • y t ′ (i) (4) with, Z = t ′ ∈[t 1 ,t N ] ϕ S y t (i), y t ′ (i), h 1st , h ′ 1st (5) ϕ S y t (i), y t ′ (i), h 1st , h ′ 1st = 1, if S y t (i), y t ′ (i), h 1st , h ′ 1st < 1 0, otherwise (6) 
where, S y t (i),

y t ′ (i), h 1st , h ′ 1st
is computed from noisy images y t (i) and y t ′ (i), and denoised images by PPB. The quantity Z is the weight normalizing parameter. The second step of 2SPPB approach is to exploit similar pixels in the temporally average image y 1st tt rather than in the stack {y t 1 , . . . , y t N }. The estimation at time t is thus given by ût

(i) = 1 Z j∈Ω i exp -S y t (i), y t ′ (i), h 2nd , h ′ 2nd • y 1st t (j) (7) 
Z = j∈Ω i exp -S y t (i), y t ′ (i), h 2nd , h ′ 2nd ( 8 
)
where the GLR criterion in S y t (i), y t ′ (i), h 2nd , h ′ 2nd is computed using the temporal step (the first step) result y 1st tt . To improve the final ût estimation, the KL criterion is iteratively refined by using the previous estimate. According to [START_REF] Deledalle | Iterative weighted maximum likelihood denoising with probabilistic patch-based weights[END_REF] and [START_REF] Su | Two-Step Multitemporal Nonlocal Means for Synthetic Aperture Radar Images[END_REF], the number of iterations is set to 10. The final result of this temporal denoising step will be denoted by ût for date t (with a map of corresponding number of looks Lt ). Algorithm 1 summarizes the multi-temporal denoising processing.

Algorithm 1 The multi-temporal denoising (2SPPB) algorithm.

Input:

Registered temporal SAR images {y t 1 , y t 2 , . . . , y t N }.

A date t 1 of interest. Output:

ût 1 : the denoising result of image y t 1 .

----Step 1 (Temporal step):----1: for each y t in {y t 1 , y t 2 , . . . , y t N } do 2: denoise y t using PPB filter [START_REF] Deledalle | Iterative weighted maximum likelihood denoising with probabilistic patch-based weights[END_REF];

3:
obtain pre-denoised results ûPPB t ; 4: end for 5: for each pixel index i do

6: Calculate y 1st t 1 (i); (Eq. 5) 7: end for ------------------ ----Step 2 (Spatial step):----- 8: Set ût 1 = 1; 9:
for Iteration from 1 to 10 do 10:

for each pixel index i do 11:

Calculate S y t (i), y t ′ (i), h 2nd , h ′ 2nd using y 1st t 1 (i) and ût 1 (i); 12:
Update ût 1 (i) using Eq.8;

13:

end for 14: end for ------------------15: return Denoised result ût 1 ;

Change Detection

In statistics, change detection problem can be considered as a comparison of two hypotheses H 0 and H 1 [START_REF] Radke | Image change detection algorithms: a systematic survey[END_REF]:

H 0 : u(1) = u(2) = u(12) (null hypothesis) H 1 : u(1) = u(2) (alternative hypothesis) (9)
where H 0 is unchanged case and hypothesis H 1 is changed case. Likelihood ratio tests are classical techniques that can be used here to decide between both of our hypotheses by thresholding the response of the following likeli-hood ratio (see e.g., [START_REF] Kay | Fundamentals of statistical signal processing[END_REF]):

R(Y) = p(Y|u(12), H 0 ) p(Y|u(1), u(2), H 1 ) ( 10 
)
where Y is an observation or a set of observations that typically depends on u(1) and u(2). In this section, we propose to develop the likelihood ratio test using the multi-temporal denoising results. Contrary to most likelihood ratio tests which only use noisy data, both the denoised data and the noisy data are involved in the proposed criteria.

Change Criterion by Approximate Likelihood Ratio Test

Recall that by y we denote a pixel intensity value. Under the speckle noise model described in [START_REF] Goodman | Some fundamental properties of speckle[END_REF], y is a realization of a random number characterized by the Gamma probability density function (pdf) p(y|u). The quantity u is the parameter of this Gamma pdf denoted as the noise-free pixel value. According to Eq.10, the change criterion between y(1) and y(2) using likelihood ratio can be defined as:

R ALRT (y(1), y(2)) = p (y(1), y(2)|u(12), H 0 ) p (y(1), y(2)|u(1), u(2), H 1 ) (11) 
The criterion in Eq. 11 is a composite hypothesis problem because it requires the noise-free value u which is unavailable in practice. Instead of using usual generalized likelihood ratio extensions, we propose to use an approximation which replaces the unknown noise free u by their estimated values û. Combined with the Gamma probability density function, the likelihood ratio in Eq. 10 becomes:

R ALRT (y(1), y(2)) = p (y(1), y(2)|u(12), H 0 ) p (y(1), y(2)|u(1), u(2), H 1 ) = 1 4 û(2) û(1) + û(1) û(2) + 2 -L exp L y(1) û(1) + y(2) û(2) - 2y(1) + 2y(2) û(1) + û(1) (12) 
where L = L(1) = L(2) is the original spatially-invariant (equivalent) number of looks. Note that the approximate likelihood ratio R ALRT highly depends on the denoised values û(1) and û(2), since R ALRT (y(1), y(2)) ≡ 1 when û(1) = û(2) whatever y(1) and y(2).

Change Criterion by Generalized Likelihood Ratio Test

In a more general way, we can take into account the denoised values and consider the likelihood probability of H 0 and H 1 as p(y(1), y(2), û(1), û(2)|H 0 ) and p(y(1), y(2), û(1), û(2)|H 1 ). To simplify this likelihood probability, we can assume that {y(1), û(1)} and {y(2), û(2)} are independent, although this assumption is not well justified (since, typically y(1) can intervene in the estimation of û( 2)). Thus,

p(y(1), y(2), û(1), û(2)|H 0 ) =p(y(1), û(1)|u(12), H 0 )p(y(2), û(2)|u(12), H 0 ) p(y(1), y(2), û(1), û(2)|H 1 ) =p(y(1), û(1)|u 1 , H 1 )p(y(2), û(2)|u 2 , H 1 ) .
The likelihood ratio test is given by:

R GLRT (y(1), y(2)) = p(y(1), û(1) | u(12), H 0 )p(y(2), û(2) | u(12), H 0 ) p(y(1), û(1) | u(1), H 1 )p(y(2), û(2) | u(2), H 1 ) . (13) 
Since u( 12), u 1 and u 2 are not available, they can be replaced by their maximum likelihood (ML) estimation:

u 1 = Ly(1) + L(1)û(1) L + L(1) u 2 = Ly(2) + L(2)û(2) L + L(2) (14) u(12) = Ly(1) + Ly(2) + L(1)û(1) + L(2)û(2) 2L + L(1) + L(2) . L = y(1) = y(2), L ( 
1) and L(2) are the number of looks of y(1), û(1) and û(2) respectively. Note that this is very similar to [START_REF] Lombardo | Maximum likelihood approach to the detection of changes between multitemporal SAR images[END_REF]. Nevertheless, the multi-temporal denoised values used in the proposed approach can provide more accurate estimation without loss of spatial resolution. It was not the case in [START_REF] Lombardo | Maximum likelihood approach to the detection of changes between multitemporal SAR images[END_REF] where spatial partitioning and averaging were introduced as post-processing steps. In case of Gamma distributions with different number of looks, each probability term p(y, û|u) in Eq.13 can be approximated under conditional independence assumption by:

p(y, û|u) = p(y|u)p(û|u) = y -1 û-1 Γ(L)Γ( L) (Ly) L ( Lû) L u L+ L exp - Ly + Lû u . (15) 
Finally, the change criterion given by the generalized likelihood boils down to:

R GLRT (y(1), y(2)) = Ly(1) + L(1)û( 1)

L + L(1) L+ L(1)
Ly(2) + L(2)û( 2)

L + L(2) L+ L(2)
2L + L(1) + L( 2)

Ly(1) + L(1)û(1) + Ly(2) + L(2)û(2) 2L+ L(1)+ L(2) (16) 
Unlike R ALRT , the generalized likelihood ratio R GLRT does not rely much on the denoised values û(1) and û(2). Indeed, even though û(1) = û(2), R GLRT still depends on the noisy values y(1) and y(2).

Thresholds for Change Detection

In [START_REF] Kervrann | Optimal spatial adaptation for patchbased image denoising[END_REF], the authors proposed to define the parameters according to the quantiles of the similarity criterion when it is subject to identical and independent distributed random variables. Pursuing this idea, we propose to choose the thresholds according to the quantiles of R ALRT and R GLRT . The change detection threshold can be set by τ ALRT = quantile(R ALRT , α = 0.01) (and τ GLRT = quantile(R GLRT , α = 0.01)), which means the false alarm rate is 1%. However, it is not easy to obtain the distribution of R ALRT and R GLRT since they depend on the number of looks of noisy images, the number of images used in the denoising process and all the parameters of multi-temporal filter (such as the h, h ′ , search window size, patch size and so on). Thus, R ALRT and R GLRT distributions are simulated using synthetic SAR images to choose the thresholds.

For our purpose of parameter setting, any picture can be used to generate multiple speckle images with no change. Note that all the synthetic multitemporal noisy images use the same true image, which guarantees no changes among them. The same number of images and the same number of looks as the real SAR images to be processed have to be used. Then, the multitemporal denoising process in section 2 is performed. The approximate and generalized likelihood ratio test change criteria calculated from these images are considered as pure distributions of R ALRT and R GLRT . As shown in Fig. 2, the histograms of R ALRT and R GLRT are truncated by the thresholds (red lines) with false alarm 1%. The parts on the right of the thresholds are considered as unchanged case, the left part is changed case. Fig. 3 shows the R ALRT and R GLRT histograms of changed and unchanged pixels in real SAR data Paris (image information detailed in section 5). Those changed pixels are labeled manually. The robustness of the proposed change criteria R ALRT and R GLRT can be epitomized by the overlap of R ALRT and R GLRT histograms. 

(a) R ALRT (b) R GLRT

Change Classification

Change detection between 2 dates aims at detecting a binary pattern (change or no-change). When dealing with a multi-temporal data set (more than 2 dates), the analysis among them is much more complex. As said in the introduction, we will focus in this work on binary changes which means that we will not take into account continuous changes. This is well adapted for few time series and urban applications. This approach can also be seen as a preliminary step of screening before improved classification of continuous changes. For instance, the temporal behaviors of a new building usually can be considered as a step change, which means that comparing the oldest date with other dates, it was unchanged at the beginning but it changed since a certain date (shown in Fig. 4.a). Similarly, we can define the boats in rivers or cars on the roads as impulse changes (Fig. 4.b). These change information can be used in the multi-temporal image interpretation tasks. Therefore, a clustering-and-recognizing method is proposed to classify changes into different types. This method consists of two steps, clustering using normalized cut on a change criterion matrix (to assign a same label to similar or unchanged temporal pixels) and classification according to their temporal behaviors. The following subsections detail the proposed approach.

Change Criterion Matrix (CCM)

At position i of a multi-temporal SAR series {y t 1 , . . . , y t N }, we have the two pixel series {y t 1 (i), . . . , y t N (i)} (original noisy data), {û t 1 (i), ..., ût N (i)} (denoised data by multi-temporal filter of section 2) and associated equivalent number of looks {L t 1 (i), ..., L t N (i)}. The change criterion matrix (CCM) at position i is defined as:

M(i) =     R(y 1 , y 1 ) R(y 1 , y 2 ) ... R(y 1 , y N ) R(y 2 , y 1 ) R(y 2 , y 2 ) ... R(y 2 , y N ) ... ... ... ... R(y N , y 1 ) R(y N , y 2 ) ... R(y N , y N )     (17)
where R(y n , y m ) shorts for R [y tn (i), y tm (i)] and denotes the change criterion (R ALRT or R GLRT ) between pixel y tn (i) and y tm (i). Note that R(y n , y m ) = 1 when n = m. Contrary to the multi-date divergence matrix in [START_REF] Atto | Multidate Divergence Matrices for the Analysis of SAR Image Time Series[END_REF] performing at the image or sub-image level, the CCM presents the change information at pixel level. Each CCM M(i) denotes the temporal behavior of the pixel series at position i.

Clustering by Normalized Cut

Spectral clustering techniques make use of the similarity matrix of the data to perform clustering. Since the CCM can be considered as a similarity matrix of the time series, spectral clustering method has been applied on CCM to cluster the temporal pixels. In this case, no more similarity measurements is needed compared with other clustering methods (like K-Means algorithm for which new similarity to cluster center has to be computed).

Normalized spectral clustering proposed by [START_REF] Shi | Normalized cuts and image segmentation[END_REF] is employed in this work, which can be summarized in Algorithm 2. In this algorithm, the normalized Laplacian matrix M u (i) is computed by:

M u (i) = M s (i) -M(i) (18) M s (i) =     R(y 1 , y n ) 0 ... 0 0 R(y 2 , y n ) ... 0 ... ... ... ... 0 0 ... R(y N , y n )     R(y m , y n ) = n=1,...,N R(y m , y n )
The only parameter in Algorithm 2 is the number of clusters p. Choosing the number of clusters p is a general problem for all clustering algorithms, and a variety of successful methods have been devised (more details in [START_REF] Luxburg | A tutorial on spectral clustering[END_REF]. Eigengap heuristic is one of them and particularly designed for spectral clustering. The main idea is to choose the number p such that all eigenvalues λ 1 , ..., λ p are very small, but λ p+1 is relatively larger (all eigenvalues are sorted in ascending order). However, this heuristic fails when the clusters of the data are overlapping (because of noise). To solve this problem, we binarize the CCM M(i) using the change detection threshold.

M b (i) =     R b (y 1 , y 1 ) ... R b (y 1 , y N ) R b (y 2 , y 1 ) ... R b (y 2 , y N ) ... ... ... R b (y N , y 1 ) ... R b (y N , y N )     (19) R b (y m , y n ) = 0 if R(y m , y n ) < τ 1 if R(y m , y n ) τ
The Eigengap heuristic performed on the binary change criterion matrix M b (i) can easily be used to estimate the number of clusters p (see the example shown in Fig. 5). The toy model in Fig. 5.a has 2 clusters. Using CCM M(i) in 5.b, the difference between eigenvalues λ 2 and λ 3 is not large enough compared with the one between λ 1 and λ 2 . It is very easy to find the best estimation of p using the binary CCM M b (i) in 5.c because of the large gap between λ 2 and λ 3 . It is obvious that this estimation of p highly depends on the choice of the thresholds. However, the robustness of the proposed change criteria (especially R GLRT shown in Fig. 3) can guaranty the estimation accuracy of p.

Recognizing

After clustering, each pixel series {y t 1 (i), . . . , y t N (i)} has a cluster label series {l t 1 (i), ..., l t N (i)}, in which l tn (i) ∈ {1, ..., p}. We can identify different types of change according to the transformation in the cluster label series {l t 1 (i), ..., l t N (i)}. For example, if p = 1, there is no change among this pixel series. If p = 2 with cluster label series {1, 1, ..., 1, 2, 2, ..., 2}, it is a step change. Impulse change usually has p = 2 and cluster label series is {1, 1, ..., 1, 2, 2, ..., 2, 1, 1, ..., 1}. When p 3, the transformation is complex and changes are defined as complex case. According to these identifications (details in Table 2), changes can be classified into several classes. Algorithm 2 Clustering of the pixel series (Normalized spectral clustering [START_REF] Shi | Normalized cuts and image segmentation[END_REF]) Input:

A change criterion matrix M(i) of pixel series {y t 1 (i), . . . , y t N (i)}, number p of clusters to construct.

Output:

The clustering labels {l t 1 (i), ..., l t N (i)} for pixel series {y t 1 (i), ..., y t N (i)} 1: Compute the normalized Laplacian matrix M u (i) using Eq.18.

2: Compute the first p generalized eigenvectors v 1 , ..., v p of M u (i) (M u (i)v = λIv). 3: Let v ′ be the matrix containing the vectors v 1 , ..., v p as columns. 4: Consider each row of v ′ as a sample, v ′ = {v ′ 1 , ..., v ′ N }. 5: Cluster the samples v ′ 1 , ..., v ′
N with the k-means algorithm into clusters with K = p as the number of clusters. The cluster labels of v ′ 1 , ..., v ′ N are l t 1 (i), . . . , l t N (i) (l tn (i) ∈ {1, ..., p}). 6: return Cluster labels l t 1 (i), . . . , l t N (i) 

Types p Label series {l t 1 (i), ..., l t N (i)} Unchanged 1 {1, 1, ...} Step 2 {1, 1, ...,

Experiments

The proposed methods are evaluated on both synthetic images and real multi-temporal SAR images.

Experiments of Change Detection 5.1.1. Data Set

Synthetic images: Fig. 6.a shows the noisy synthetic images y t and y t ′ corrupted by single-look multiplicative speckle noise respectively and the ground truth of changes between them. The four squares are 32×32 pixels with true value 128. The darker frame is 8 pixels width with 32 as true value and the true value of background is 64.

Realistic SAR synthetic images: A denoised image of 21 single-look TerraSAR X-band images in Paris (France) sensed in 2011 is considered as the noise-free image (multi-temporal denoising approach in section 2), as shown in Fig. 6.b. Two single-look noisy images y t and y t ′ are generated with changes added in y t ′ . These changed regions are about 15-25 pixels width and length, for instance a 20×20 pixels patch of vegetation is replaced by a same size patch of building and so on. The right of Fig. 6.b shows the ground truth of changes.

Real SAR images 1: 26 single-look TerraSAR images in Saint-Gervaisles-Bains (France) (13 images are sensed in 2009 and the other 13 images in 2011) are shown in Fig. 7.a, identified as Saint-Gervais-les-Bains. Reference Ground truth of changes is labeled manually in the right of Fig. 7.a.

Real SAR images 2: Experiment in Fig. 7.b uses 21 single-look Ter-raSAR X-band images identified as Paris in Paris (France) sensed in 2011. We label the ground truth of changes manually, as shown in right of Fig. 7.b.

Real SAR images 3: Experiment in Fig. 9 uses 24 CARABAS-II magnitude images acquired in Vidsel, Sweden 2002, identified as CARABAS (Sensor Data Management System (SDMS) Public web site, 2008). We only detect the changes between image v02 2 1 1 and image v02 4 1 1, while all the 24 images are used in the multi-temporal denoising process.

Real SAR images 4: Experiment in Fig. 10 uses 9 single-look TerraSAR X-band images identified as Sendai in Sendai Harbor (Japan) sensed in 2011. Fig. 10.a and b show the images acquired respectively on May 6, 2011 and June 8, 2011. All the 9 images are used in the multi-temporal denoising step.

Change detection methods

The proposed change criteria approximate likelihood ratio test R ALRT and generalized likelihood ratio test R GLRT are compared with some stateof-the-art methods, such as Log-Ratio operator [START_REF] Rignot | Change detection techniques for ERS-1 SAR data[END_REF], the generalized likelihood ratio test (GLRT) proposed in [START_REF] Lombardo | Maximum likelihood approach to the detection of changes between multitemporal SAR images[END_REF], Wilcoxon Test based change criterion [START_REF] Krylov | Change detection with synthetic aperture radar images by Wilcoxon statistic likelihood ratio test[END_REF] and Method for generalIzed Means Ordered Series Analysis [START_REF] Quin | MIMOSA: An Automatic Change Detection Method for SAR Time Series[END_REF], summarized in Tab.3.

Results

The change detection results are assessed by the True-Positive versus False-Positive curves using the reference map of changes as shown in Fig. 6.c and Fig. 7.c. The proposed methods R ALRT and R GLRT can generally obtain higher receiver operating characteristic (ROC) curves than others. The experiments on CARABAS and Sendai data in Fig. 9 and 10 show that the proposed GLRT change detection has comparable performance with MIMOSA [START_REF] Quin | MIMOSA: An Automatic Change Detection Method for SAR Time Series[END_REF]. R ALRT and R GLRT outperform other change criteria, but the latter is more reliable than the former (the ROC curves of R GLRT are higher than R ALRT in Fig. 6 and 11).

In Saint-Gervais-les-Bains data set, there are only 1817 changed pixels according to the reference map. While, the synthetic data set and the Paris data set have 8116 and 28941 changed pixels respectively (according to the reference map). Too less changed pixels cause the 'noise' in the ROC curves (and all the change detection methods on the Saint-Gervais-les-Bains data set have this 'noise' phenomenon).

Experiments of Change Classification 5.2.1. Test on realistic SAR synthetic images

This experiment uses one denoised image of 21 single-look TerraSAR Xband images of Paris (France) sensed in 2011 as the noise-free image (multitemporal denoising approach in section 2), as shown in Fig. 6 

Test on real SAR images

We have 21 single-look TerraSAR X-band images identified as Paris in Paris (France) sensed in 2011 and 6 single-look TerraSAR X-band images identified as San-Francisco sensed in San-Francisco, U.S.A. 2007 and 2011. These images have been accurately registered using the sensor parameters. Fig. 12.a and b only show the first noisy image and its denoising result. Fig. 12.c shows the results of the change classification approach by R GLRT , in which red regions denote step changes, green are impulse changes and blue are cycle changes. We can observe that many boats in river have been classified as impulse change. Fig. 13 gives an illustration of examples of step change, impulse change; cycle change and complex change with the corresponding optical images c Google (but the dates of the optical images are not exactly the same as the SAR images). We can see that the step changes probably corresponds to the presence of some facilities in the stadium, impulse and complex changes corresponds to boats that are moored at piers, while cycle changes might correspond to the river bank.

Conclusion

In this work, a global framework NORmalized Cut on chAnge criterion MAtrix (NORCAMA) for change classification of multi-temporal SAR time series has been presented. To reduce the effect of speckle, a multi-temporal denoising approach is applied in the pre-processing step. Using both noisy data and denoised data, the approximate likelihood ratio and the generalized likelihood ratio are computed as change criteria. The change classification is performed by clustering on change criterion matrix and classifying of label transformation. Different types of change, like step changes, impulse changes and cycle changes, have been defined by the proposed method, which can be used for multi-temporal SAR image interpretation. Our proposed framework is flexible enough to consider alternative methods during the three steps, for instance other denoising approaches for the pre-processing step and other change criteria for the change detection step.

The future work will be focused in introducing spatial information into change analysis such as combining types of change and shapes to identify objects and developing a temporal-spatial SAR image analysis framework. The spatial information should allow us to extend this approach to multiincidence images. Extension of our method for the classification of complex changes with more than three clusters constitutes another perspective. This would require a more detailed analysis for the complex change and more information on the application context.

Figure 1 :

 1 Figure 1: The global diagram of the proposed framework NORmalized Cut on chAnge criterion MAtrix (NORCAMA). It consists of 3 steps, from left to right: 1) the preprocessing step using a multi-temporal SAR filter (2S-PPB) (Su et al., 2014) to denoise; 2) a change detection step using the proposed change criteria based on likelihood ratio test; 3) a change classification by the proposed clustering-and-recognizing method.

Figure 2 :

 2 Figure 2: The simulated histograms of R ALRT and R GLRT using synthetic images. The red lines are thresholds τ ALRT and τ GLRT with false alarm 1%. The blue lines are the histograms of unchanged R ALRT and R GLRT .

Figure 3 :

 3 Figure 3: An example of the normalized histograms (peak normalization) of R ALRT and R GLRT using real SAR images Paris (detailed in section 5). The red lines are thresholds τ ALRT and τ GLRT with false alarm 1%. The blue lines are the histograms of unchanged R ALRT and R GLRT . The green lines are the histograms of changed R ALRT and R GLRT .

Figure 4 :

 4 Figure 4: Examples of step changes and impulse changes. From left to right: original multi-temporal SAR images at time t 1 , t 2 , t 3 , t 4 , t 5 , change criterion matrix of a pixel in the red rectangle (cold color: unchanged; warm color: changed).

  A pixel series {y t1 (i), ..., y t12 (i)} which should be clustered into 2 groups (red and blue).

  CCM M(i) and its eigenvalues.

  Binary CCM M b (i) and its eigenvalues.

Figure 5 :

 5 Figure 5: Estimation of number of clusters. (a). a pixel series {y t1 (i), ..., y t12 (i)} which should be clustered into 2 groups; (b). Estimation of the number of clusters using CCM M(i), the gap between λ 2 and λ 3 is not obvious; (b). Estimation of the number of clusters using binary CCM M b (i), the gap between λ 2 and λ 3 is larger.

  .a. 6 single-look images are generated with different changes added in them. As shown in Fig.6.c, different kinds of changes have been introduced, such as step change (in red), impulse change (in green) and cycle change (in blue). Fig.6.d shows the change classification result by R GLRT with confusion matrix shown in Tab.4.

  (a) Saint-Gervais-les-Bains data set. From left to right: noisy image y t1 , noisy image y t26 and the reference map of changes. (b) Paris data set. From left to right: noisy image y t1 , noisy image y t26 and the reference map of changes. positive alarm vs true positive curves of Saint-Gervais-les-Bains and Paris data set.

Figure 7 :

 7 Figure 7: Change detection results for real SAR images Saint-Gervais-les-Bains and Paris data set.

Figure 9 :

 9 Figure 9: Change detection results of real SAR images CARABAS (Sensor Data Management System (SDMS) Public web site, 2008).

Figure 10 :

 10 Figure 10: Change detection results of real SAR images Sendai.

Figure 13 :

 13 Figure 12: Change classification on Real SAR images. From top to bottom: Paris, 21 single-look TerraSAR-X images and San-Francisco, 6 single-look TerraSAR-X images. From left to right: noisy image y t1 , multi-temporal denoising result of y t1 and change classification results by criterion R GLRT . (black: no change, red: step change, green: impulse change, blue: cycle change yellow: complex change.)

  Noisy image acquired at time t; {y t 1 , y t 2 , . . . , y t N } Noisy multi-temporal images;

	Pixels:	
	y t (i)	
	Notations	
	Images:	
	y t	
	u t	Noise-free image of y t ;
	ût	Denoised image of y t ;
	ûPPB t y 1st t	Denoised image of y t by PPB filter; Output of the first (temporal) step in the proposed
		filter;

Table 2 :

 2 The identifications of different types of change.

			2, 2, ...}
	Impulse Cycle Complex	2 2	{1, 1, ..., 2, 2, ..., 1, 1, ...} {1, 1, ..., 2, 2, ...1, 1, ...2, 2, ...} 3 {1, 1, ..., 2, 2..., 3, 3...4, 4...}

Table 3 :

 3 The change detection methods used in the comparison experiments.

	Name	Reference	Description
	Log-Ratio	Rignot and van Zyl (1993) Log-Ratio operator
	GLRT	Lombardo and Oliver (2001)	Generalized likelihood ratio test
	Wilcoxon	Krylov et al. (2012)	Change detection using a Wilcoxon Test
	MIMOSA	Quin et al. (2013)	Method for generalIzed Means Or-dered Series Analysis
	R ALRT	-	The proposed approximate likeli-hood ratio test
	R GLRT	-	The proposed generalized likelihood ratio test

Table 4 :

 4 Confusion matrix of change classification results. Unch.: unchanged, Step: step change, Impl.:impulse change, Cyc.: cycle change and Comp.: complex change.
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