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Abstract—Due to the excellent temporal resolution, MEG/EEG
source imaging is an important measurement modality to study
dynamic processes in the brain. As the bioelectromagnetic inverse
problem is ill-posed, constraints have to be imposed on the
source estimates to find a unique solution. These constraints
can be applied either in the standard or a transformed domain.
The Time-Frequency Mixed Norm Estimate applies a composite
convex regularization functional promoting structured sparsity
in the time-frequency domain by combining an `2,1-mixed-norm
and an `1-norm penalty on the coefficients of the Gabor TF
decomposition of the source signals, to improve the reconstruction
of spatially sparse neural activations with non-stationary and
transient signals. Due to the `1-norm based constraints, the
resulting source estimates are however biased in amplitude and
often suboptimal in terms of source selection. In this work, we
present the iterative reweighted Time-Frequency Mixed Norm
Estimate, which employs a composite non-convex penalty formed
by the sum of an `2,0.5-quasinorm and an `0.5-quasinorm penalty.
The resulting non-convex problem is solved with a reweighted
convex optimization scheme, in which each iteration is equivalent
to a weighted Time-Frequency Mixed-Norm Estimate solved
efficiently using a block coordinate descent scheme and an active
set strategy. We compare our approach to alternative solvers
using simulations and analysis of MEG data and demonstrate the
benefit of the iterative reweighted Time-Frequency Mixed Norm
Estimate with regard to active source identification, amplitude
bias correction, and temporal unmixing of activations.
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I. INTRODUCTION

Functional neuroimaging allows for the noninvasive ex-
amination of brain function by identifying neuronal regions
involved in a specific cognitive task. To examine dynamic
processes in the brain, MEG/EEG source imaging can be ap-
plied due to its excellent temporal resolution. The MEG/EEG
inverse problem is however ill-posed in the sense of Hadamard
and constraints have to be imposed to obtain unique source
estimates. These constraints reflect assumptions on the neu-
ronal activation such as the number of active regions, and
the spatial or temporal characteristics. Several source imaging
methods promoting spatial sparsity of the neuronal activation
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have been proposed based on Bayesian modeling [1], [2]
or regularized regression [3], [4]. These methods implic-
itly assume stationarity of the source activation. In contrast,
the Time-Frequency Mixed Norm Estimate (TF-MxNE) [5]
improves the reconstruction of transient and non-stationary
sources by promoting structured sparsity in the time-frequency
(TF) domain. TF-MxNE computes a sparse group lasso in
the TF domain by applying a composite convex penalty, the
sum of an `2,1-mixed-norm and an `1-norm penalty, on the
Gabor transform of the source time courses. This involves
an automatic denoising of the source estimates improving
smoothness of the time courses. Due to the `1-norm based
constraints, the resulting source estimates are biased in am-
plitude and often suboptimal in terms of source selection [6].
Regularized regression with non-convex penalties, such as the
`p-quasinorm with 0 < p < 1, has been shown to outperform
convex approaches both in terms of amplitude bias and source
recovery [6], [7]. The resulting non-convex problems can be
solved e.g. using iterative reweighted convex optimization
schemes such as iterative reweighted `2 [7]–[9] and iterative
reweighted `1 [6], [10], [11]. In this work, we present the novel
iterative reweighted Time-Frequency Mixed Norm Estimate
(irTF-MxNE) for solving the MEG/EEG inverse problem.
This regularized regression technique applies a composite
non-convex penalty in the TF domain, which combines an
`2,0.5-quasinorm and an `0.5-quasinorm penalty on the TF
transformed source activations. We explain how to solve the
corresponding non-convex optimization problem using itera-
tive reweighted convex optimization. Each iteration of this
approach is a weighted TF-MxNE, which we solve efficiently
using block coordinate descent and an active set strategy.
We compare irTF-MxNE and TF-MxNE using simulations
and analysis of MEG data and demonstrate the benefit of
irTF-MxNE in terms of active source identification, amplitude
bias correction and temporal unmixing of activations.

Notation: The transpose of a vector a ∈ CN or matrix
A ∈ CN×M is indicated by aT and AT , and the Hermitian
conjugate by AH. The scalar a[i] indicates the ith element
of a. A[i, :] corresponds to the ith row, A[:, j] to the jth
column, and A[i, j] to the element in the ith row and jth
column of A. ‖A‖Fro indicates the Frobenius norm, ‖A‖ the
spectral norm, and ‖A‖W;p,q the weighted mixed norm with

‖A‖W;p,q =
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i
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j W[i, j] |A[i, j]|q

) p
q

) 1
p

.



II. MATERIALS AND METHODS

A. The M/EEG inverse problem with TF dictionaries

Using a tight Gabor frame Φ ∈ CT×C (T samples,
C Gabor atoms) the neuronal activation X ∈ RS×T
(S sources) can be modeled as a linear combination
of time-frequency atoms, X = ZΦH. The MEG/EEG
measurements M ∈ RN×T (N sensors) can thus be computed
based on the MEG/EEG forward model given in Eq. (1):

M = GX + E = GZΦH + E , (1)

where G ∈ RN×S is the gain matrix, Z ∈ CS×C is the TF co-
efficient matrix, and E is the measurement noise, which can be
assumed to be additive white Gaussian noise, E[:, j] ∼ N (0, I)
for all j after spatial whitening [12]. Estimating Z given M
is an ill-posed inverse problem and constraints have to be
imposed on Z to obtain a unique source estimate. For analyzing
evoked responses, we assume that the neuronal activation is
spatially sparse and temporally smooth. This corresponds to a
TF coefficient matrix with a block row structure with intra-
row sparsity [5], which we promote by applying a composite
non-convex regularization functional R(Z). The associated
regularized regression problem is given in Eq. (2).

Ẑ = argmin
Z

1

2
‖M−GZΦH‖2Fro + λR(Z) (2)

with
R(Z) = (1− ρ)R1(Z) + ρR2(Z) =

= (1− ρ)
∑
s

√
‖Z[s, :]‖2 + ρ

∑
s,c

√
|Z[s, c]|

where λ > 0 balances the data fit and penalty, and 0 ≤ ρ ≤ 1
controls the trade-off between the two non-convex penalties.

B. The iterative reweighted TF-MxNE

Following the framework of Majorization-
Minimization [6], we solve the optimization problem in
Eq. (2) by solving iteratively reweighted convex surrogate
optimization problems. Using local linear approximations of
the non-convex penalties at Ẑ(k−1), the estimate obtained in
the (k-1)th iteration, Ẑ(k) is computed using Eq. (3):

Ẑ(k) = argmin
Z

1

2
‖M−GZΦH‖2Fro + λR∗(Z) (3)

with
R∗(Z) = (1− ρ)‖Z‖

W
(k)
1 ;2,1
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W
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2 ;1,1

W
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∣∣∣+ ε(k−1)

)−1
Eq. (3) corresponds to a weighted TF-MxNE with weight
matrices W1 and W2, where ε(k−1) ∈ R+ is used to prevent
infinite weights [6].

For solving Eq. (3), we use a block coordinate descent
(BCD) scheme [13]. The BCD subproblem per source location
can be solved in closed form using the proximity operator
associated to R∗(Z). This is a hierarchical group penalty [14]
and the corresponding proximity operator is equivalent to

applying the proximity operators for ‖Z‖W;1,1 and ‖Z‖W;2,1

successively [4], [5]. The resulting closed form solution for the
sth source location is given in Eq. (4), where we use interme-
diate solutions Z[s, :](k) and Z̃[s, :](k) to improve readability.

R(k−1) = M−GẐ
(k−1)

ΦH

Z[s, :](k) = Ẑ[s, :](k−1) + µ[s]G[:, s]TR(k−1)Φ
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(
1− µ[s]λρW
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with (a)+ = max(a, 0) and 0
0 = 0 by definition. Since Φ is a

tight frame, µ[s] is given by µ[s] = (‖G[:, s]TG[:, s]‖)−1.

Since R(Z) promotes spatial sparsity, most blocks in Ẑ
should be zero. To speed up computation, we combine the
BCD scheme with an active set strategy proposed in [15],
which primarily updates sources, that are likely to be active,
while keeping the remaining sources inactive. Pseudo code for
the proposed BCD scheme with active set approach for solving
TF-MxNE can be found in Algorithm 1.

Algorithm 1 TF-MxNE with BCD and active set approach

1: for s = 1 to S do
2: Ẑ[s, :] ←− Solve Eq. (4)
3: end for
4: Â = {s | ‖Ẑ[s, :]‖2 > 0}
5: repeat
6: repeat
7: for s ∈ Â do
8: Z̃[s, :] ←− Solve Eq. (4)
9: end for

10: until convergence
11: Ã = {s | ‖Z̃[s, :]‖2 > 0}
12: for s = 1 to S do
13: Ẑ[s, :] ←− Solve Eq. (4)
14: end for
15: Â = {s | ‖Ẑ[s, :]‖2 > 0}
16: until Â = Ã

Using Alg. 1, we can derive the pseudo code for
irTF-MxNE given in Alg. 2. We terminate irTF-MxNE when
the minimum change in the cost function is below a user
specified threshold.

Algorithm 2 irTF-MxNE with BCD and active set approach

1: Require: Ẑ(0), ε(0)
2: repeat
3: W

(k)
1 , W

(k)
2 ←− Using Eq. 3 with Ẑ(k−1) and ε(k−1)

4: Ẑ(k) ←− Solve Alg. 1 with W
(k)
1 and W

(k)
2

5: until convergence

In Alg. 2, ε(k) can be selected constant [6] or reduced
iteratively using an annealing strategy [8]. Here, we set ε = 0
and handle infinite weights by a twofold approach. While
computing Ẑ(k) with TF-MxNE, we restrict the source space



to sources with ‖Ẑ(k−1)[s, :]‖2 6= 0 and set Ẑ(k)[s, c] = 0 if
W

(k)
2 [s, c] =∞. We found empirically that this procedure

does not affect the solution for the problem at hand, but
significantly decreases the computation time. The irTF-MxNE
solution depends on the initialization of W1 and W2, which
we set to W1 = W2 = 1. Due to the convexity of the
surrogate problems, Z can be freely selected and we use
Z = 0 in the first iteration and warm starts using the previous
estimates for subsequent iterations to speed up computation.
The first iteration of irTF-MxNE is thus equivalent to solving
TF-MxNE. To make the regularization parameter comparable
between different data sets, we compute λmax, i.e. the lowest
value of λ for a given ρ such that Ẑ = 0 if λ ≥ λmax [16],
and normalize λ. We compensate the bias towards superficial
sources inherent to source reconstruction approaches penal-
izing the source amplitude by applying the depth weighting
proposed in [17]. To correct the amplitude bias resulting from
the inherent shrinkage of `p-quasinorms with 0 < p ≤ 1, we
rescale the estimated source activations using the debiasing
procedure proposed in [5].

III. RESULTS

A. Simulation

The simulation setup is based a fixed-orientation source
model computed with a three-shell boundary element model
using a set of 4699 cortical locations and 102 magnetometers.
We simulated trials of auditory evoked fields (AEF) by acti-
vating two dipolar sources, one in each transverse temporal
gyrus, with Gabor functions peaking at 100 ms and 110 ms
(peak amplitude 50 nAm), Xsim, and adding background ac-
tivity generated by ten randomly chosen sources activated
with filtered white noise (peak amplitude 50 nAm). We av-
eraged 30 trials resulting in an SNR ≈ 2.0 after whitening
with SNR = ‖Msignal‖2Fro/‖Mnoise‖2Fro. We applied TF-MxNE
and irTF-MxNE with different values of λ, normalized to
λmax, and ρ, and computed the root mean square error in
the source space, RMSE = ‖Xsim −Xest‖Fro, the F1-score,
F1 = (2 · TP )/(2 · TP + FN + FP ) with TP true positives,
FN false negatives, and FP false positives, and the active
set size to evaluate the source reconstruction accuracy. The
results are presented in Fig. 1. By looking on the F1-score and
active set size, we see that irTF-MxNE outperforms TF-MxNE
in terms of active source recovery. While irTF-MxNE is able
to identify the true support as indicated by F1 = 1.0 for a
range of regularization parameters, the F1-score for TF-MxNE
is F1 < 1.0 for the whole λ-path. The RMSE for both
TF-MxNE and irTF-MxNE with ρ = 0, which is equivalent to
computing MxNE and irMxNE (imposing structured sparsity
in the time domain), is significantly higher compared to ρ > 0
demonstrating the advantage of imposing structured sparsity
in the TF domain for reconstructing smooth nonstationary
source signals [5]. Both approaches benefit from the debiasing
procedure, which however has a higher effect on TF-MxNE
indicating a higher amplitude bias.

B. Experimental MEG data

We evaluate the source reconstruction performance on
MEG data recorded during left auditory stimulation with pure
tones of 500 Hz [18] using a 306-channel Elekta Neuromag
Vectorview system (Elekta Neuromag Oy, Helsinki, Finland).

Fig. 1: RMSE, F1-score, and active set size for TF-MxNE and
irTF-MxNE without (dashed) and with (solid) debiasing for
simulated AEF data.

Signal preprocessing consisted of signal-space projection
for suppressing environmental noise, baseline correction and
spatial whitening based on prestimulus data, and threshold-
based epoch rejection. The evoked fields were then obtained
by averaging the remaining 96 artifact-free epochs. The gain
matrix was computed using a set of 7498 cortical locations and
a three-shell boundary element model. Source estimation was
performed with TF-MxNE and irTF-MxNE (with and without
debiasing) on the time interval from 0 ms to 250 ms with
fixed orientation constraint. The mean Goodness of Fit (GOF)
around the N100m component (from 90 ms to 150 ms) and
the active set size as a function of λ (ρ = 0.01) are presented
in Fig. 2. The results confirm that the debiasing procedure
has a significant effect on TF-MxNE due to the amplitude
bias. TF-MxNE with debiasing and irTF-MxNE (with and
without debiasing) allow for similar mean GOF values. The
reconstructed source estimates are however clearly sparser.
Fig. 3 shows source reconstruction results for TF-MxNE
and irTF-MxNE for selected regularization parameters.
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Fig. 2: Mean GOF and active set size for TF-MxNE and
irTF-MxNE without (dashed) and with (solid) debiasing for
experimental AEF data.



a) 

b) 
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Fig. 3: Source reconstruction using AEF data evoked by left
auditory stimulation: (a) TF-MxNE with λ/λmax = 55%, (b)
TF-MxNE with λ/λmax = 70%, and (c) irTF-MxNE with
λ/λmax = 55%. The dipole locations, marked with spheres,
and the corresponding dipole activations are color-coded. The
transverse temporal gyri are highlighted in red.

The transverse temporal gyrus (Heschl’s gyrus) on each
hemisphere is highlighted. We can see that irTF-MxNE with
λ/λmax = 55% shows activation in both primary auditory
cortices represented by single dipoles in both Heschl gyri
peaking around 110 ms (Fig. 3c). A similar reconstruction is
obtained using TF-MxNE with λ/λmax = 55%. The activation
on both hemispheres is however split into two correlated
dipoles, which are partly located outside of the primary
auditory cortex (Fig. 3a). Increasing λ to λ/λmax = 70% to
reduce the number of active dipoles, eliminates both dipoles
on the left hemisphere, while the activation on the right
hemisphere is still represented by two correlated dipoles
(Fig. 3b).

IV. DISCUSSION AND CONCLUSION

In this work, we presented irTF-MxNE, an MEG/EEG
inverse solver based on regularized regression with a composite
non-convex penalty. We solve the non-convex optimization
problem by solving iteratively reweighted convex surrogate
optimization problems and presented an algorithm based on
block coordinate descent and an active set strategy, which
to our experience converges faster than the Fast Iterative
Shrinkage-Thresholding algorithm (FISTA) proposed in [5].
Moreover, the BCD scheme is memory-efficient. Extending
irTF-MxNE to source reconstruction with a loose orientation
constraint or free orientation is not presented here but is
straightforward using an additional weighted `2-norm over
orientations [5]. The first iteration of the proposed irTF-MxNE
approach is equivalent to computing a standard TF-MxNE
solution. Thus, irTF-MxNE can be seen as a postprocessing
for TF-MxNE improving source recovery. According to the
results obtained on the real MEG data, this postprocessing
is to be preferred to increasing λ for TF-MxNE, since the

latter approach may eliminate plausible sources prior to erasing
spurious activity. We obtained empirical evidence based on
simulations and analysis of MEG data, that the source recon-
struction is improved by imposing structured sparsity not in the
time domain but in the TF domain. Moreover, we showed that
the iterative reweighted application of TF-MxNE improves the
active source identification and amplitude bias. In conclusion,
the proposed inverse solver is a promising tool for M/EEG
source analysis.
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