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Abstract—Magnetoencephalography (MEG) and electroen-
cephalography (EEG) are imaging methods that measure neu-
ronal dynamics non invasively with high temporal precision. It
is often desired in MEG and EEG analysis to estimate the neu-
ral sources of the signals. Strategies used for this purpose often
take into account the covariance between sensors to yield more
precise estimates of the sources. Here we investigate in greater
detail how the quality of such covariance estimates conditions
the estimation of MEG and EEG sources. We investigated
three distinct source localization methods: dynamic Statistical
Parametric Maps (dSPM), the linearly constrained minimum
variance (LCMV) beamformer and Mixed-Norm Estimates
(MxNE). We implemented and evaluated automated strategies
for improving the quality of covariance estimates at different
stages of data processing. Our results show that irrespective
of the source localization method, accuracy can suffer from
improper covariance estimation but can be improved by relying
on automated regularization of covariance estimates.

Keywords-MEG; EEG; covariance estimation; source local-
ization; statistical learning.

I. INTRODUCTION

Magnetoencephalography (MEG) and electroencephalog-
raphy (EEG) allow imaging brain dynamics non invasively
at a millisecond time scale. To image brain activity, sensor
signals are projected onto a cortical model using inverse
solvers. These solvers typically involve Euclidean L2 con-
straints which inherently assume Gaussian noise with zero
mean and equal variances across sensors and therefore
necessitate a spatial whitening step for input data [1]. The
success of source localization thus depends on the quality
of the covariance estimate from which the whitening is
computed. Covariances, however, are subject to estimation
errors when the number of samples is not sufficient. To
address this problem, the covariance estimation can be reg-
ularized. The most common approach to regularize the co-
variance is to down-weight off-diagonal matrix coefficients,
while more advanced regularization methods are based on
shrinkage techniques [2] or generative models with low rank
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assumptions: probabilistic PCA (PPCA) and factor analysis
(FA) [3], [4]. Through the use of cross-validation, all of
these models can be tuned and compared based on Gaussian
likelihood computed on unseen data [1].

Here we investigate in greater detail the impact of proper
regularization on source estimation obtained from three
distinct inverse solvers: dynamic Statistical Parametric Maps
(dSPM) [5], the linearly constrained minimum variance
(LCMV) beamformer [6] and Mixed-Norm Estimates [7].
Each of these methods makes use of covariance estimates in
different ways.

II. MATERIALS AND METHODS

A. Datasets

We used two datasets. The SPM-faces MEG dataset 1

was recorded with a VSM MedTech Inc. whole-head axial
gradiometer system with 274 channels (CTF/VSM) at the
Functional Imaging Laboratory, London. The paradigm is
detailed in [8]. The auditory sample dataset is shipped
with the MNE software [9] and includes combined M/EEG
recordings. This dataset was acquired using a Neuromag
VectorView whole-head system with 306 channels (Elekta
Neuromag, Finland), which are formed from 102 sensor
triplets, each comprising two orthogonal planar gradiometers
and one magnetometer. The protocol is detailed in [9].

B. Covariance estimation

The automated approach to covariance estimation is de-
tailed in [1]. Here we used its implementation that is
provided by the MNE software [9]. The best and the worst
estimates are obtained out of a series of alternative strate-
gies using cross-validation and log-likelihood computation.
The methods compared were Factor Analysis (FA), Shrunk
Covariance (SC) diagonal regularization, and unregularized,
empirical covariance [1].

We evaluated one additional strategy for improving spatial
whitening obtained from the covariance, which is based on
empirical rank estimation and singular value decomposition

1http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces/



(SVD) truncation. Spatial whitening amounts to multiplying
the data by the square root of the inverse of the noise
covariance [1], which is commonly computed using SVD.
When the covariance is rank deficient, numerical instabil-
ities appear in this inverse. Inverse solvers such as MNE
must thus truncate small singular values obtained from the
covariance matrix. The number of remaining singular values
is the effective numerical rank of the data. This quantity
can either be derived from the data processing history or
estimated directly from the data. When the rank is estimated,
a singular-value truncation threshold must be chosen. The
result therefore depends on the scaling of the data. As MEG
and EEG measurements data have different units and scales,
how the data are rescaled before joint modeling ultimately
affects the computed rank. As reducing the estimated rank
achieves a form of regularization, choosing the rescaling
factor can be used to stabilize source localization results.

Here we implemented an empirical rank estimator based
on SVD. In a first step, this rank estimator was calibrated
such that it provides correct rank estimates when using the
empirical unregularized covariance. Rescaling factors were
selected to transform all channel types to approximately
unity scale (1×1015 for magnetometers, 1×1013 for gra-
diometers, and 1×106 for EEG). SVD values were then dis-
carded if they were smaller than 1×10−5. Subsequent tests2

established that rank estimates matched the expected rank
across differently processed data sets. The expected rank
was computed as the number of channels minus the number
of components that were removed from the decomposition
of the data, e.g., when applying Signal Space Separation
(SSS) [10]. To investigate how automated rank estimation
can be used for regularization, smaller rescaling factors
were also chosen (1×1012 for magnetometers, 1×1011 for
gradiometers and 1×105 for EEG). For these values, the
empirical covariance no longer produced the correct rank
estimates. If the covariance is not regularized, the mismatch
between the expected and the estimated rank increases as
fewer trials are used. In other words, more singular values
will be discarded, and more regularization will be applied
when computing the whitening matrix. To investigate this
relationship more closely, rank estimates were computed on
the SPM faces dataset when varying the numbers of samples
and the scaling factors.

C. Distributed inverse solvers

We used the SPM-faces MEG dataset to test distributed
solvers. Data were bandpass filtered between 1-30 Hz using
a zero-phase 4th order Butterworth filter. Baseline segments
between -200 to 0 ms were used to estimate the noise covari-
ance. The data covariance used by the LCMV beamformer

2The procedure is documented in the unit tests of the covariance code
in MNE- Python. See functions test_rank and test_cov_scaling,
https://github.com/mne-tools/mne-python/blob/master/mne/tests/test cov.
py

Figure 1. Rank estimation across epochs using different scaling factors.
The dotted line indicates the expected rank. Here the expected rank equals
the number of channels in the dataset (274). The regularized covariance
estimators yielded the expected rank estimates. Rank estimation based on
the empirical covariance led to lower than expected rank estimates where
the discrepancy decreased as a function of the number of samples available.
This trend was further modulated by the scaling factor: with a smaller
rescaling more samples were required to produce a more accurate estimate.

was computed from 50 to 350 ms, reflecting a conserva-
tive choice regarding the face-selective evoked components.
Source estimates were separately computed for the faces and
the scrambled faces condition using MNE with dSPM noise
normalization and LCMV [5], [6]. A paired contrast of the
form dSPM faces - dSPM scrambled was then computed
with positive values reflecting face-selective activation. This
analysis was conducted over varying numbers of epochs
using either the best or the worst covariance estimator, as de-
fined by the cross-validated negative log-likelihood [1]. The
worst estimate was consistently the empirical covariance,
while the best was either SC and FA. Pearson correlations
were then computed between activation maps based on the
worst and the best estimator at a given number of epochs
and then between each of these activation maps and the ones
obtained from processing all available data. M/EEG data
were processed using MNE [9]. For cross-validation and
model selection of covariance parameters, the scikit-learn
library for machine learning [11] was used. The computation
of inverse solutions was based on fixed rank values and on
the automated rank estimator, which is currently used as
default in the development version of MNE-Python [12].

To evaluate the effect of noise covariance estimation
on source estimates obtained with sparse solvers, we used
the MNE auditory sample dataset. Data were processed
in the same manner as the SPM face dataset. We used
the iteratively reweighted mixed-norm inverse solver (IR-
MxNE) [13], which promotes focal sources while enforcing
temporal consistency. Instead of a contrast, source estimates
for a single auditory condition were computed. To avoid
redundancy, the best and the worst covariance estimators
were directly compared for a reduced number of samples.
The computation of inverse solutions was only based on the
empirical rank estimator.

https://github.com/mne-tools/mne-python/blob/master/mne/tests/test_cov.py
https://github.com/mne-tools/mne-python/blob/master/mne/tests/test_cov.py


Figure 2. From left to right dSPM results with various numbers of
epochs used for noise covariance estimation. Worse covariance (empirical)
is compared to best regularized covariance. The mid-row represents average
temporal dynamics for worst and best estimators superimposed. The lines
refer to the average signal across vertices, the areas depict the standard
deviation across vertices.

III. RESULTS

A. Empirical rank estimation

The rank estimates across varying numbers of samples and
scaling factors are presented in Figure 1. The lower scaling
factor consistently lead to stronger mismatches between the
expected and the estimated rank as a function of the number
of samples available. The lower scaling factor should there-
fore lead to stronger regularization when computing spatial
whitening.

B. Distributed inverse solvers

For both MNE and LCMV, source amplitudes were nega-
tively correlated to the number of samples if no regulariza-
tion was applied to the covariance. (cf. Figure 2 and 3). If
regularization was applied, the source amplitudes remained
more similar across varying numbers of samples (cf. Figure
3). Third, the similarity between the worst and the best
solution increased as a function of the number of epochs
available (cf. Figure 4, panels (A) and (B)). Generally, the
discrepancy between the worst and the best solution was
higher for LCMV compared to MNE/dSPM with fewer num-
bers of samples. In other words, cross-validated covariance
estimates yield more stable results and LCMV suffered more
than MNE from the availability of limited data. Optimization
benefits consistently seemed negligible beyond 50 epochs of
data. The impact of improper regularization was mitigated
if the whitening was based on the empirical rank estimation.
Interestingly, the difference between results using the worst
and the best covariance estimate at a given number of

Figure 3. From left to right LCMV results with various numbers of
epochs used for noise covariance estimation. Worse covariance (empirical)
is compared to best regularized covariance. The mid-row represents average
temporal dynamics for worst and best estimators superimposed. The lines
refer to the average signal across vertices, the areas depict the standard
deviation across vertices.

samples did not visibly change for LCMV beamformers
when the empirical covariance was used (cf. Figure 4, panels
(C) and (D)).

(A) (B)

(C) (D)

fixed rank estimated rank  
(scaling = 1e12)

Figure 4. Correlations between MNE and LCMV sources estimates based
on the best versus the worst covariance estimator. Panels (A) and (B) show
results for a fixed (expected) rank value. Panels (C) and (D) show results
based on the estimated rank using a reduced scaling factor. (A) and (C)
depict the correlation between the source estimate based on a reduced
number of epochs with the source estimate based on all epochs. Panels
(B) and (D) show the correlation between the corresponding alternative
source estimates at a given number of samples. In all cases, correlation
increases as function of the number of samples available.



Figure 5. IR-MxNE with 15 epochs using empirical covariance with
automated rank estimation (scaling = 1×1012). One observes spurious
active sources.

Figure 6. IR-MxNE with 15 epochs using best covariance with automated
rank estimation (scaling = 1×1012). One observes two expected active
sources in bilateral auditory cortices.

C. Sparse inverse solvers

Time courses and source locations based on the IR-MxNE
estimates are presented in 5 and 6. Although this analysis
was based on the empirical regularized rank estimates, it
suggested additional unexpected sources, beyond bilateral
auditory cortices, when the worst covariance estimate was
used. The corresponding time-courses were characterized by
increased noise.

IV. CONCLUSION

Results demonstrate that proper regularization of co-
variance estimates stabilize source localization results. In
particular our findings suggest that beamformers and sparse
source estimates are more affected by incorrect covariance
estimation and thus benefit more greatly from automated
regularization. Importantly, while simpler models such as
MNE/dSPM can be corrected post-hoc based on SVD
truncation, complex models clearly benefit from covari-
ance estimates that were optimized in the first place. The
variance-reducing effect of automated regularization [1] can
be said generalize across different inverse solvers and hence
is expected to improve analysis of infrequent events, and
comparisons across subjects in a general way.
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