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Abstract

An important challenge in the aeronautic industry is to cope with maintenance issues of the prod-
ucts, notably detection and localization of components breakdowns. Modern equipments enjoy better
recording and processing capacities, allowing the storage of a large amount of data, on which better
maintenance systems are expected to be built. Efficient probabilistic models able to represent the
statistic distribution of the collected variables in the “normal state” of the system are needed in order
to derive anomaly detection algorithms. Graphical models constitute a rich class of models and are
natural candidates to address this task. This article proposes a method for learning undirected hy-
brid graphical models from heterogeneous data. The data are heterogeneous as they include physical
(quantitative) measures as well as a collection of inherently discrete variables for instance describing
the state of electronic devices. The model we propose is adapted from the Ising and Gaussian models
so that the data don’t require to be translated from their original space, allowing the user to easily
interpret the dependency graph learned from data. The learning step is carried out by minimizing
the negative pseudo-log-likelihood using a proximal gradient algorithm with Lasso and group Lasso
penalization for addressing the high dimension of variables. Once the model is learned, we use the
penalized negative pseudo-log likelihood as a test statistics for detecting anomalous events.

Introduction

Probabilistic graphical models are used to represent joint distribution over a set of N random variables
X1, . . . , XN , in an efficient and compact way. When the dimension N is small, the joint distribution can be
explicitly represented, whereas for high dimension explicit representations are intractable. Probabilistic
graphical models are a framework especially designed for the modeling of complex systems. This approach
can be applied in many fields of application, and in particular, it can be used for anomaly detection and
localization. Bayesian networks constitute a widespread class of graphical models to achieve this goal, see
[1], [2], [3], [4] and the references therein. Namely, given a Bayesian network for the data, the parameters
of the conditional distributions are estimated from normal data. Then the computation of the likelihood
is easily performed for new records of data to decide weather a record is anomalous or not. Indeed, the
lower the likelihood, the higher the probability to have an anomalous record. This method has been
successfully applied for network intrusion detection [2] and in the medical fields for disease outbreak
detection [3].

The application in the aeronautic field is much more recent: a study about the benefits of Bayesian
networks can be found in [5]. The anomaly detection and localization problem is confronted to some
industrial constraints: difficulty of data acquisition, high dimensionality of data, computation time con-
straints, and heterogeneity of the variables. Variables can be categorical, e.g. when they correspond to
working states of systems or electronic components, and quantitative when they reflect physical measures
such as temperatures, pressures or phases.

In the graphical model literature, if the inference in models involving both categorical and quantitative
variables – what we refer thereafter as hybrid graphical models (HGM) – has attracted some studies (see
[6], [7], [4] and the references therein), few works have addressed the problem of learning the graph
structure in the presence of both categorical and quantitative variables. In [8], such hybrid graphs are
treated by translating all variables into a common feature space using Mercer kernel. It is interesting to
note that all the references above consider models based on Bayesian networks. However, if the Bayesian
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network is not given, it can be extremely cumbersome to learn it from data both from a statistical and
numerical point of view, especially for a large number of variables.

Here we focus on learning hybrid sparse pairwise undirected graphical models. A sparse network is
preferable for mostly two reasons: first it avoids overfitting the model over the data, and secondly it makes
probabilistic inference easier. For this purpose, the use of regularization has been widely studied over the
last years, especially for Lasso (`1) and group Lasso (`1/`2) regularizations, see [9] for recent reviews and
[10] for the use of `1/`2 in graph structure estimation. Contrary to directed graphical models, undirected
models have the advantage of having a concave likelihood (in the framework of log-linear models, see [7,
Section 20.2] ), which guarantees the existence of a global optimum of the likelihood. This allows us to
use convex optimization algorithms to find the maximum likelihood estimator, that we want to use as
reference model for anomaly detection. For that purpose, we use the proximal gradient algorithm. This
algorithm is an iterative scheme that is assured to find a global minimum of our objective function, under
some hypothesis (see [11], Section 2). Combined with `1 and `1/`2 regularizations, the proximal operator
becomes a simple soft-threshold operation. Nevertheless, the complexity of the partition function makes
the calculation of the likelihood and its derivatives intractable, especially for hybrid network, since it
would require summation over the categorical variables and integration over the quantitative variables,
which may not have a closed-form integral. To perform an approximation this quantity, the partition
function can be approximated through MCMC simulations. The impact of the stochastic step on the
proximal gradient algorithm is studied in [11]. This method is detailed in the context of heterogeneous
data in [12]. An alternative method consists in optimizing the pseudo-log-likelihood rather than the
log-likelihood (see [13]). The optimization of the `1-penalized pseudo-log-likelihood is admittedly sub-
optimal, but does not require any approximation as it can be expressed in closed-form.

In this paper, we present a hybrid model learning algorithm based on the optimization of the pseudo-
log-likelihood. The model is derived from the classical Ising model and Gaussian model, thus it can
deal with continuous and discrete variables. The Ising model [14] has only binary variables, whereas
known Potts [15] model can have discrete non-binary variables. However the Potts model requires all
variables to be equally labelled, what is not the case in our application, where variables have different
labels with different meanings. We use the 1-of-K encoding scheme to represent every non binary discrete
variable taking K values by a K-dimensional binary vector. This transformation requires us to use `1/`2
regularization (see [9] and [16, Section 4.3.4]).

This paper is organized as follows: in Section 1 we introduce the hybrid model, and we present some
interesting properties for MCMC simulations. In Section 2 we explain the algorithm we use for structure
learning. In Section 3, we present the application of our model to the problem of anomaly detection on
real industrial data. The application we target is designed in a semi-supervised fashion: we learn a model
from normal data set, which is assumed to contain no anomaly. We use that reference model to score
new records, and label as anomalies low-scored records. We show an application of our approach on a
real aeronautic industrial case of breakdown detection for Active Electronically Scanned Array (AESA)
Radars.

1 Presentation of the hybrid model

The concept of graphical models relies on the factorisation of the joint distribution. The density
p(x1, . . . , xN ) of N random variables can be factorized over the maximal cliques in an undirected network,
according to

p(x1, . . . , xN ) =
1

Z

∏
C∈I

ϕ(xC)

where I is the set of indices of variables involved in the cliques decomposition, ϕ(xC) is a clique potential,
and Z is the normalizing constant (also called partition function). The joint distribution can be specified
by using a log-linear model, where the clique potentials are replaced by exponential weighted sum of
features, according to

p(x1, . . . , xN ) =
1

Z
exp

(∑
C∈I

wCfC(xC)

)
where {fC , C ∈ I} is the set of features and {wC , C ∈ I} the set of associated weights. Several
parametrization are available for the choice of the features. The class of pairwise networks has been
widely studied (see [9]). In pairwise models, the features are functions of one or two variables. The
density p of N random variables takes the form

p(x) =
1

Z
exp

(
N∑
i=1

ϕi(xi) +
∑
i,j∈E

ϕij(xi, xj)

)
, (1)
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where E is the set of pairs of variables we want to include in the model: the related graph will contain
an edge between node i and node j if ϕij 6= 0. The normalisation constant Z is intractable in high
dimension, since its calculation requires the summation/integration over every possible instantiation of
(x1, . . . , xN ), e.g. if each random variable xi is binary, then this summation has 2N terms.

There are several choices for the potentials, each leading to several class of models. Among them, we
will use the Ising Graphical Model (IGM) and Gaussian Graphical Model (GGM). The Gaussian model
has continuous Gaussian random variables, and the density p takes the form of a Gaussian density. In
that specific case, the partition function Z is easy to calculate and only requires the calculation of the
determinant of a N × N matrix. The Ising model is one of the earliest studied undirected model for
modeling energy of a physical system involving interactions between atoms (see [14]). The Ising model
has binary variables, i.e. each xi takes values in {−1, 1} or {0, 1}, depending on the authors. Here we
use the state space {0, 1}.

The Ising model can be generalized for discrete variables, for example with the Potts model [15], but
this one can be reparametrized as an IGM using 1-of-K encoding, as explained in [16], 4.3.4 (see Section
2 for more precisions). In the case of an IGM, the density takes the form

pΘ(x) =
1

ZΘ
exp

 N∑
i=1

θiixi + 2

N∑
i<j

θi,jxixj

 , (2)

where Θ = (θi,j) is a parameter of RN(N+1)/2. For practical reasons we consider Θ to be a N × N
symmetric matrix. Since xi = x2

i for xi ∈ {0, 1}, we can then rewrite

pΘ(x) =
1

ZΘ
exp

(
xTΘx

)
. (3)

This form is fundamentally similar to a Gaussian density, but Θ has not any constraint because it is not
associated to a covariance matrix. The calculation of ZΘ is costly in high dimension, since it requires the
summation over 2N terms.

Now we present the hybrid model mixing binary variables XC = {Xi, i ∈ C} (called categorical
thereafter), and continuous variables XQ = {Xu, u ∈ Q} (called quantitative thereafter). Let X =
(XC , XQ) be the variables of our model with values in {0, 1}|C| × R|Q|. We study the pairwise hybrid
model

pΩ(x) =
1

ZΩ
exp

(
xTCΘxC

+ µTxQ −
1

2
xTQ∆xQ + xTCΦxQ

)
, (4)

where Ω = (Θ, µ,∆,Φ) with Θ = (θij)i,j∈C is a symmetric matrix, µ = (µi)i∈Q ∈ RQ, ∆ = (δuv)u,v∈Q is
a symmetric matrix and Φ = (φiu)i,u∈C×Q is a general matrix. In order that pΩ would be a valid density
with respect to the product measure made up by the counting measure over {0, 1}C and the Lebesgue
measure over RQ, one only requires ∆ to be positive-definite, hypothesis we will make thereafter. On the
other hand, no condition is imposed to Θ, µ and Φ, other than Θ symmetric.

The density (4) has interesting properties. Seen as a function of xQ only, we get

pΩ(x) ∝ exp

((
µT + xTCΦ

)
xQ −

1

2
xTQ∆xQ

)
,

where ∝ means equality between functions up to a constant multiplier (that here depends on xC). We
recognize a Gaussian density, we thus conclude that given XC , XQ is a Gaussian vector with mean
∆−1

(
µ+ ΦTXC

)
and covariance matrix ∆−1.

Likewise it is easy to prove that, given XQ, XC is an Ising model. More surprisingly, we can show that
the non-conditional law of XC is still an Ising model (whereas it is clearly not the case for XQ, where the
non-conditional law of XQ isn’t Gaussian but is a mixture of Gaussian). Indeed, if pCΩ is the density of
XC , we get

pCΩ(xC) ∝ exp
(
xTCΘxC

) ∫
R|Q|

exp

(
(µ+ ΦTxC)

TxQ −
1

2
xTQ∆xQ

)
dxQ .
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We can interpret the integral term (up to a constant multiplier) as an the expectation E[exp
(
(µ+ ΦTxC)

TU
)
]

where U is a Gaussian vector with zero mean and covariance matrix ∆−1. Thus we get

pCΩ(xC) ∝ exp

(
xTCΘxC +

1

2
(µ+ ΦTxC)

T∆−1(µ+ ΦTxC)

)
∝ exp

(
xTC (Θ + Φ∆−1ΦT /2)xC + µT∆−1ΦTxC

)
∝ exp

(
xTC
(
Θ + Φ∆−1ΦT /2 + Diag

(
Φ∆−1µ

))
xC
)
,

where we used in the last line that x2
i = xi. Here Diag (U) denotes the diagonal matrix with diagonal

entries given by the vector U . We recognize the Ising model (3) with parameter Θ + Φ∆−1ΦT /2 +
Diag

(
Φ∆−1µ

)
.

These properties yield an algorithm to sample from (4), which provides a numerical approximation of
the partition function ZΩ and could lead to a stochastic optimization algorithm to minimize the penalized
negative log-likelihood, but this quantity is complex to calculate and would be approximated with MCMC
simulations.

2 Structure Learning

We show now how to learn hybrid sparse networks by minimizing a likelihood function penalized by `1
regularization and `1/`2 regularization. This penalization is reasonable, since it allows to learn networks
with few connections between nodes. Group Lasso is useful for penalizing when additional structures in
the data are known a priori. Here, since we use binary variables, each categorical variable is transformed
in a set of binary variables using 1-of-K encoding scheme, as proposed in [16, Section 4.3.4] and [9]. The
principle is the following: for i ∈ C, if xi takes values in 1, . . . ,mi, we use instead the binary vector

t(i) ∈ {0, 1}mi , with t
(i)
k0

= 1 if xi = k0, and t
(i)
k = 0 elsewhere for k 6= k0. This transformation will

only be done for categorical variables and thus will only impact Θ and Φ, whose dimensions will be
consequently increased. Thereafter in this paper, when we use the notation X and XC , we will suppose
that the discrete data were already transformed following this scheme.

Since we force a structure over the data, we need to penalize variables by groups. The penalization g
we use involves `1 and `1/`2 penalty, plus a compact constraint on ∆. That constraint is compulsory to
ensure that ∆ remains inside a compact set included in the cone of positive-definite matrices. It follows
that our learning criterion is L-Lipschitz, what is a required hypothesis for proximal gradient (see [11],
H1).

For any 0 < ρ < 1, denote by Kρ the compact subset of positive definite symmetric matrices defined
by

Kρ = {∆
1/2
0 (I + ε)∆

1/2
0 : ε is symmetric with

−ρ < λmin(ε) < ρ}

where ∆0 is the empiric precision, I is the identity matrix, λmin denotes the minimal eigenvalue and λmax

denotes the maximal one. Observe that Kρ can be seen as the ball of symmetric matrices endowed with
the Euclidean operator norm, centered at ∆0 and with radius ρ. Here ρ is arbitrary chosen to ensure the
convergence of the numerical optimization. In practice, one needs to check that the obtained optimizer
is in the interior of the compact set.

Thus the penalization we use is

g(Ω) = λθ
∑

g 6=g′∈GΘ

‖θgg′‖2 + 1{Kρ}(∆)

+ λ∆

∑
u<v∈Q

|∆uv|+ λΦ

∑
g∈GΘ,u∈Q

‖Φgu‖2 , (5)

where θgg′ = (θii′)i∈g,i′∈g′ and φgu = (φiu)i∈g with GΘ = {g1, . . . , g|C|} and, for all i ∈ C, gi is the set of
indexes of binary variables created after applying 1-of-K scheme over non binary discrete variable xi.

The general problem we want to solve is finding the estimator

Ω̂ = Argmin
Ω

− `(Ω) + g(Ω) , (6)

where ` is a likelihood function, and g the penalization (5) we describe above. Usually one uses the
log-likelihood, which is a concave function (see [7], corollary 20.1).

4



Here, we rather focus on the minimization problem with the negative pseudo-log-likelihood −p`(Ω).
This approach is admittedly sub-optimal, however it does not require any approximation and all involved
quantities can explicitly be calculated. Indeed, we define the pseudo-log-likelihood, for a sample X, by

p`(Ω | X) = log pΩ(XQ | XC) +
∑
i∈C

log pΩ(Xi | X−i) , (7)

where X−i represents all the variables except Xi. Note that this pseudo-likelihood is defined over a
parametrization space such that Θ and ∆ are, respectively, symmetric and symmetric positive-definite.
Remark also that p` is also concave like the log-likelihood. Since, given XC , XQ admits a conditional
normal density with mean ∆−1(µ+ ΦTXC) and covariance matrix ∆−1, we have

log pΩ(XQ | XC) = −1

2
XT
Q∆XQ + (µ+ ΦTXC)

TXQ

− 1

2
(µ+ ΦTXC)

T∆−1(µ+ ΦTXC)

+ log[(2π)−
|Q|
2 |∆| 12 ] .

That formula involves only linear terms in XQ and a term independent of XQ, so pΩ(XQ | XC) is a
special case of log-linear model and thus it has a concave log-likelihood. Differentiating in ∆, Φ and µ
yields the gradients

∂∆ log pΩ(XQ | XC) = −1

2

[
XQX

T
Q −∆−1

+∆−1(µ+ ΦTXC)(µ+ ΦTXC)
T∆−1

]
∂Φ log pΩ(XQ | XC) = XCX

T
Q −XC(µ+ ΦTXC)

T∆−1

∂µ log pΩ(XQ | XC) = XQ −∆−1µ−∆−1ΦTXC .

Concerning the Ising part of p`, for i0 ∈ C, we calculate the conditional probability of Xi0 given X−i0 .
We get the logistic-like formula

PΩ(Xi0 = 1 | X−i0) =
eqΩ(X,i0)

1 + eqΩ(X,i0)
,

with

qΩ(X, i0) = θi0i0 + Θi0,−i0X−i0 +XT
−i0Θ−i0,i0 + Φi0,QXQ ,

where Θ−i0,i0 represents (θi0,j)j 6=i0 , the i0th line of Θ without the i0th element, and Φi0,Q represents the
i0th line of Φ. Note that X−i0 here denotes the vector XC with the i0 entry removed, whereas previously
it denoted the whole X with the i0 entry removed. Thus we get

log pΩ(Xi0 | X−i0) = Xi0 logPΩ(Xi0 = 1 | X−i0)

+ (1−Xi0) log(1− PΩ(Xi0 = 1 | X−i0))

= Xi0qΩ(X, i0)− log(1 + exp qΩ(X, i0)) ,

This formula also involves only linear terms in Xi0 and a term independent of Xi0 , so pΩ(Xi0 | X−i0) is
a special case of log-linear model and thus it has a concave log-likelihood. As a sum of concave terms,
the pseudo-log-likelihood (7) is actually concave. Observe that, for all i, j ∈ C,

∂Θi,jqΩ(X, i0) =

{
1{i=i0} if i = j,

1{i=i0}Xj + 1{j=i0}Xi if i 6= j.

and, for all i ∈ C and v ∈ Q,
∂Φi,vqΩ(X, i0) = 1{i=i0}Xv .

It follows that

∂Θ

∑
i0∈C

log pΩ(Xi0 | X−i0) = −Diag (EΩ(X, C) ◦ (2XC − 1))

+ 2XCX
T
C − (EΩ(X, C)XT

C +XCEΩ(X, C)T ) ,

5



where here Diag (A) denotes the vector with entries given by the diagonal of the square matrix A, A ◦B
denotes the Hadamard product of two matrices A and B, and EΩ(X, C) is the vector defined by

EΩ(X, i) =
eqΩ(X,i)

1 + eqΩ(X,i)
, i ∈ C .

Similarly, we get that

∂Φ

∑
i0∈C

logPΩ(Xi0 | X−i0) = XCX
T
Q − EΩ(X, C)XT

Q .

Note also that another way to write qΩ(X, C) = (qΩ(X, i))i∈C is to set

qΩ(X, C) = (Θ + ΘT )XC + Diag (Θ) ◦ (1− 2XC) + ΦXQ .

Those equations carry out an algorithm for structure learning, using proximal gradient. This algorithm
is particularly relevant for convex optimization when the regularization is not differentiable, as it is the
case here. The algorithm is proposed in [11]. If Ω0 denotes the starting estimates, and {γn, n ∈ N} a
sequence of positive step sizes, then given Ωn, we compute

Ωn+1 = Proxγn+1(θn + γn+1∇p`(Ωn)) , (8)

where Proxγ is the proximal operator defined by

Proxγ(θ) = Argmin
ϑ

{
1

2γ
‖ϑ− θ‖2 + g(ϑ)

}
.

The penalization g that we are using, defined in (5), is the sum of `1 and `1/`2 regularization over
different variables, plus a compact constraint. Note that there is no overlapping groups here. With such `1
and `1/`2 regularizations, the proximal operator can be reformulated as a component-wise soft-threshold
σλ,γ(Ω) defined by

σλ,γ(Ω) = (s̃λ,γ(Θ), sλ,γ(µ), sλ,γ(∆), s̃λ,γ(Φ)) ,

where, for a general matrix A, sλ,γ(A) is the matrix defined by blocks, for any g, g′ ∈ GΘ, by

sλ,γ(A)ij =


Aij − λγ if Aij > λγ

Aij + λγ if Aij < λγ

0 elsewhere,

and s̃λ,γ(A) is the matrix defined by blocks, for g, g′ ∈ GΘ, by

s̃λ,γ(A)gg′ =

{
Agg′ − λγ

Agg′

‖Agg′‖2
if ‖Agg′‖2 > λγ ,

0 elsewhere.

With the compact constraint 1{Kρ}, the proximal operator is the orthogonal projection on Kρ, which
is the map ΠKρ such that ‖∆−ΠKρ(∆)‖ = min∆′ ‖∆−∆′‖.

Since our penalization is composed of two regularization terms, we solve (6) using the generalized
forward-backward splitting algorithm [17]. Note that applying the compact constraint does not insure
that ∆n will remain in Kρ for every iteration, it only tends to bring ∆n back inside Kρ. To guarantee
that ∆n remains definite positive during the learning process, one must control the gradient step γn.

3 Application to anomaly detection

Graphical models are particularly well fitted to the anomaly detection task. A classic method (see [1]) for
that purpose is to learn a model from data and then to estimate the likelihood on new records; records
with low likelihood can be labelled as anomalies. [2] and [3] have successfully applied that approach in
the network security and medical fields, respectively for intrusion and diseases detection.

The potential of Bayesian networks for breakdown detection in the aeronautic field was shown in [5].
However, this study assumed that every variable were categorical. Also the learning of Bayesian networks
by optimization of a criterion (BIC, MDL . . . ) implies local search and heuristics (see [7] chapter 18).
There is therefore no warranty that the learned model is actually an optimum of the learning criterion.
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Our algorithms were designed for breakdown detection in complex electronic systems, especially Active
Electronically Scanned Array Radars (AESA Radars). The complexity of the systems growing alongside
the capacity of storage, new maintenance systems had to be developed. The amount of variables can
be very high (around 100 000), but for this application we used a restrained subset of 310 variables.
Our dataset was built over 140 categorical variables and 20 quantitative variables. After the categorical
data have been transformed with 1-of-K scheme – as explained in 2 – we had a final data set of 290
categorical variables and 20 quantitative variables. Figure 1 shows the minimisation of the penalized
negative pseudo-log-likelihood.

20 40 60 80 100 120 140
Iterations

10000

15000

20000

25000

30000

35000

40000

45000

50000
penalized negative pseudo-log-likelihood

Figure 1: Minimization of the penalized negative pseudo-log-likelihood when learning graph structure.
The +∞ values of score (caused by the compact constraint in 5) are not represented.

The anomaly detection is then performed by analysing the pseudo-log-likelihood of new records.
Figure 3. shows histograms of pseudo-log-likelihood, for new records without anomalies (at the top)
and records with anomalies (at the bottom). Figure 2 shows the pseudo-log-likelihood of each sample of
normal records, followed by anomalous records. One can observe that the pseudo-log-likelihood allows to
score and spot efficiently anomalous records.

0 500 1000 1500 2000 2500
Samples

20

30

40

50

60

70

(a) (b) (c)

negative penalized pseudo-log-likelihood

Figure 2: Negative penalized pseudo-log-likelihood of: (a) 800 training samples, (b) 800 new records
without anomalies and (c) 1000 new records with anomalies in the first 500 samples.

4 Conclusion

In this paper, we proposed a method to learn an hybrid Markov model from heterogeneous data, composed
by categorical (non necessarily binary) and quantitative variables. The learnt graphical model is sparse,
because of the use of an `1 and `1/`2 penalty. It reveals interactions between variables, that can be easily
interpreted and checked by the user. To our knowledge, this approach is new in the context of hybrid
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negative penalized pseudo-log-likelihood

20 30 40 50 60 70
0.00

0.02

0.04
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0.10 negative penalized pseudo-log-likelihood

Figure 3: Histogram of negative penalized pseudo-log-likelihood of new AESA radar normal records (at
the top) and records with anomalies (at the bottom). The anomalous records are producing new lobes
of hight negative pseudo-log-likelihood.

undirected graphical models without translating the data into new feature spaces. We successfully applied
our learning method to the problem of anomaly detection in the specific case of breakdown detection in
AESA radars. In the field of aeronautic industry, and more precisely of the AESA radars, the learned
graph provides a solution for practical maintenance issues. It brings a way to find interactions between
hardware and/or software components of complex systems. When learned from normal data, the model
can be considered as a reference of a good-working system, and subsequent comparisons with new records
are obtained in the form of a pseudo-likelihood statistic, which can be computed online.
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