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1. Introduction

In this paper, we consider a nonlinear inverse problem arising in nuclear sci-
ence: neutron transport or gamma spectroscopy. For the latter, a radioactive
source, for instance an excited nucleus, randomly emits gamma photons accord-
ing to a homogeneous Poisson point process. These high frequency radiations
can be associated to high energy photons which interact with matter via three
phenomena: the photoelectric absorption, the Compton scattering and the pair
production (further details can be found in [14]). When photons interact with
the semiconductor detector (usually High-Purity Germanium (HPGe) detectors)
arranged between two electrodes, a number of electron-holes pairs proportional
to the photon transferred energy is created. Accordingly, the electrodes gener-
ate an electric current called impulse response whenever the detector is hit by
a particle, with an amplitude corresponding to the transferred energy. In this
context, a feature of interest is the distribution of this energy. Indeed, it can
be compared to known spectra in order to identify the composition of the nu-
clear source. In practice, the electric current is not continuously observed but
the sampling rate is typically smaller than the mean inter-arrival time of two
photons. Therefore, there is a high probability that several photons are emitted
between two measurements so that the energy deposited is superimposed in the
detector, a phenomenon called pile-up. Because of the pile-up, it is impossible to
establish a one-to-one correspondence between a gamma ray and the associated
deposited energy.

This inverse problem can be modeled as follows. The electric current gener-
ated in the detector is given by a stationary shot-noise process X = (X;)
defined by:

teR

Xe= Y Yeh(t—Ty), (1)
BTy <t

where h is the (causal) impulse response of the detector and
(SN-1) >, 07,,v, is a Poisson point process with times T}, € R arriving homoge-

neously with intensity A > 0 and independent i.i.d. marks Y; € R having a
probability density function (p.d.f.) # and cumulative distribution function

(c.d.f) F.
We wish to estimate the density 6 from a regular observation sample X1, ..., X,
of the shot noise (1). Note that the sampling rate is set to 1 without meaningful
loss of generality. If a different sampling rate is used, e.g. we observe Xs, ..., Xys

for some 9 # 1, it amounts to change A and to scale h accordingly.
The process (1) is well defined whenever the following condition holds on the
impulse response h and the density 6

/min(l, 1y h(s))0(y)dyds < oo . @)

As shown in [12], this condition is also necessary. Moreover, the marginal
distribution of X belongs to the class of infinitely divisible (ID) distributions
and has Lévy measure v satisfying, for all Borel sets B in R\ {0},
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v(B) 2 /\/OOOIP(h(s)Yl € B) ds. (3)

The ID property of the marginal distribution shows that this estimation
problem is closely related to the estimation of the Lévy measure v. This property
strongly suggests to use estimators of the Lévy triplet, see for instance [16] and
[8]. However, up to our best knowledge, these estimators use the increments of
the corresponding Lévy process which are i.i.d. and they assume a finite Lévy
Khintchine measure. In contrast, the observations are not independent and the
Lévy measure of the process is infinite since from (3), we have that

v(R) = )\/ODO P(h(s)Y1 € R)ds = 0. (4)

In order to tackle this estimation problem, we then propose to bypass the es-
timation of v and directly retrieve the density 6 of the marks distribution F'
from the empirical characteristic function of the measurements. Coarsely speak-
ing, using (3), the Lévy-Khintchine representation provides an expression of the
characteristic function px of the marginal distribution as a functional of §. The
estimator is built upon replacing px by its empirical version and inverting the
mapping 6 — ¢x. A more standard marginal-based approach would be to rely
on the p.d.f. of X. However, the density of X is intractable, which precludes the
use of a likelihood inference method. Consequently, although shot-noise models
are widespread in applications (for example, such models were used to model
internet traffic [1], river streamflows [4], spikes in neuroscience ([11], [10]) and
in signal processing ([19], [20])), theoretical results on the statistical inference of
shot-noise appear to be limited. Recently, Xiao and al. ([24]) provide consistent
and asymptotically normal estimators for parametric shot-noise processes with
specific impulse responses.

In this contribution, we consider the particular case given by the following
assumption.

(SN-2) The impulse response h is an exponential function with decreasing rate
a>0: A
h(t) = e * 1, (t) .

Under (SN-2), the process (X¢)ier is usually called an exponential shot-noise.
In this case, Condition (2) becomes

E [log, (I1)] < oo . (5)

Under (SN-2), the process (X;);>0 can alternatively be introduced by consider-
ing the following stochastic differential equation (SDE) :

dX; = —aXydt+dL;, Xo=z€R (6)
where L = (L¢):>0 is a Lévy process defined as the compound Poisson process

Na(t)

A . A
L; = E Y. with Ny(¢) = g Ir.<t s (7)
k=1 k
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where (T, Yi)r>o satisfies (SN-1). The solution to the equation (6) is called a
Ornstein-Uhlenbeck(O-U) process ([18, Chapter 17]) driven by L with initial
condition Xy = x and rate «. Note that L defined by (7) has Lévy measure AF'.
Thus, by [18, Theorem 17.5], this Markov process admits a unique stationary
version if (5) holds, and this stationary solution corresponds to the shot-noise
process (1).

In recent works, [3, Brockwell, Schlemm] exploit the integrated version of
(6) to recover the Lévy process L and show that the increments of L can be
represented as:

nh

Lon = Linepe = Xon = X +a [ Xods
(n—1)h

These quantities are only well estimated for high frequency observations so that
we cannot rely on this method in our regular sampling scheme.

To the best of our knowledge, the paper that best fits our setting is [13]. The
authors propose a nonparametric estimation procedure from a low frequency
sample of a stationary O-U process which exploits the self decomposability
property of the marginal distribution. The authors construct an estimator of
the so called canonical function k defined by:

v(de) = @dx.

The two main additional assumptions are that k is decreasing on (0, 00) and
v satisfies the integrability condition [;°(1 A z)v(dz) < oo. In our setting (i.c.
when specifying the Lévy process to be the compound Poisson process defined
in (7)), it is easily shown that these conditions hold and the canonical function
and the cumulative distribution of the marks are related by the equation:

k(z) =AP (Yo >z)=A(1— F(x)).

In this article, we introduce an estimator of 6 based on the empirical char-
acteristic function and a Fourier inversion formula. This algorithm is numeri-
cally efficient, being able to handle large datasets typically used in high-energy
physics. Secondly, we establish an upper bound of the rate of convergence of our
estimator which is uniform over a smoothness class of functions for the density
0.

The paper is organized as follows. In Section 2, we introduce some prelim-
inaries on the characteristic function of an exponential shot-noise process and
provide both the inversion formula and the estimator of the density 6. In par-
ticular, we derive an upper bound of convergence for our estimator over a broad
class of densities under the assumption that A/« is known. In Section 3, we
present in details the algorithm used to perform the density estimation and il-
lustrate our findings with a limited Monte-Carlo experiment. Section 4 provides
error bounds for the empirical characteristic function based on discrete-time
observations and exploit the S-mixing structure of the process. Finally, Section
5 is devoted to the proofs of the various theorems.
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2. Main result

2.1. Inversion formula

As mentioned in the introduction, it is difficult to derive the probability density
function of the stationary shot-noise unless the marks are distributed according
to an exponential random variable and the impulse response is an exponential
function. In this case, it turns out that the marginal distribution of the shot-noise
is Gamma-distributed (the reader can refer to [2] for details). In all other cases,
we can only compute the characteristic function of the marginal distribution

of the stationary version of the shot-noise when treating it as a filtered point
process (see for example [17] for details). We have for every real u:

o) 2 Bl —exp( [ [ e - >dvF<dy>). ®)

From (8), the characteristic function of Xy can be expressed as follows:

exotu) = e [ A F(@). )

where K}, the kernel associated to h is given by:

a [T
Kn(z) £ / () — 1)dw.
0
Note that if h is integrable, then K} is well defined since, for any real =z,

> etrh(s) — 1|ds < |z J57 [h(s)|ds. Moreover, if h is integrable, then Kj is
a C}(R, C) function whose derivative is bounded and equal to:

“+o0
K (z) = /0 ih(5)e™h ) dy,

Furthermore, if E [|Y)|] < oo, then the characteristic function of Xy is differen-
tiable and we have:

o (1) = A oy (1) / YK (uy) F(dy). (10)
Under (SN-2), the kernel K}, takes the form

e o [tet -1
Kp(u) :/0 (e - 1) dv—/o o ds. (11)

With (10), we obtain that

P () = 2, (1) 2 (v () = 1). (12)

Since the marginal distribution of X is infinitely divisible, we have by [18,
Lemma 7.5.] that ¢x (u) does not vanish. If in addition ¢y is integrable, (12)
provides a way to recover 6 knowing a/\, namely, for all z € R,
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1
_27TR

. 1 [ ou P, (uv)
izu du = — izu (4 22 0 du . 13
o (= o [ ¢ ( P

0(x)

This relation shows that the estimation problem of the p.d.f. 8 is directly related
to the estimation of the second characteristic function.

Remark 2.1. We assume in the following that the ratio a/\ appearing in
the inversion formula (13) is a known constant, as it typically depends on the
measurement device. Interestingly, however, an estimator of this constant can be
derived from [12, Theorem 1], where it is shown that the marginal distribution
G of the stationary shot-noise is regularly varying at 0 with index A/a, i.e.:

G(z) ~2NL(x) , =0

with L being slowly varying at 0. Hence it is possible to estimate a/ A by applying
Hill’s estimator [9] to the sample X;*',--- X 1.

2.2. Nonparametric estimation

Let @, (u) 2 p-t 2?21 el“Xi denotes the empirical characteristic function (e.c.f.)
obtained from the observations and ¢/, its derivative. From (13), we are tempted
to plug the e.c.f. of the observations to estimate the p.d.f. 8. Let (hy,)n>0
and(kn)n>0 be two sequences of positive numbers such that

lim h, = lim x, =0,
n—oo n—oo

and consider the following sequence of estimators:

1
o (1 L augl)
Gn(x):max (%/ ) e (14—7@ Eu)1|@n(u)|>nn) du,0> . (14)
- n

Remark 2.2. We estimate 1/¢(u) by 1|5, (u)|>#,}/%Pn(u) with a suitable choice
of a sequence (ky,)n>1 which converges to zero. The constant ., is chosen such
that |@,(u) — ¢(u)| remains smaller than |@,(u)| and |p(u)| with high proba-
bility in order to avoid large errors when inverting ¢, (u). In [16], the authors
deal with the empirical characteristic function of i.i.d. random variables. In this
case, the deviations of /n(y,(u) —¢(u)) are bounded in probability, hence, they
use lyjs. (u)|>nn—1/2}/Pn(u) as an estimator of 1/p(u). Here we truncate the in-

terval of integration R by [fh; Lh 1], where h,, is a bandwidth parameter.
This allows us to bound the estimation error 6,, — 6 in sup norm. The devia-
tion of \/n(@y(u) —¢(u)) on [—h;*, ht] depends on hy, see Theorem 4.1. The
resulting &, is then taken slightly larger than n—1/2.

In order to evaluate the convergence rate of our estimator, we consider par-

ticular smoothness classes for the density . Namely we define, for any positive
constants K, L,m and s > 1/2,
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O(K,L,s,m) = {0 is a density s.t. /|y|4+m0(y) dy < K, (15)

[y 7o dus 22}
R
where F6 denotes the Fourier transform of 6

FO(u) = /e(y) e Wudy | uweR.

Hence L is an upper bound of the Sobolev semi-norm of 6. Note also that under
(SN-1)—(SN-2), 6 belongs to ©(K, L, s, m) is equivalent to assuming that

E [\m“m} <K and /R(l + ) oy, (w) Pdu < L2 .

In the following, under assumptions (SN-1)—(SN-2), we use the notation Py and
Egy, where the subscript # added to the expectation and probability symbols
indicates explicitly the dependence on the unknown density 6. The following
result provides a bound of the risk Py (||0—0,, || > M,,) for well chosen sequences
(hn), (Kr) and (My,), which is uniform over the densities § € O(K, L, s,m).

Theorem 2.1. Assume that the process X = (Xy),~, given by (1) satisfies the
assumptions (SN-1)—(SN-2) for some positive constants X\ and . Let K, L,m be
positive constants and s > 1/2. Let C 1, m x/a e the constant defined by

«

A A m
CK,L,m,,\/a = exp ( (Kl/(4+ )+ L)) ,

and C be a positive constant such that 0 < C < Cg 1, mr/a - Set
h, = n~ Y/ @s+142)0/a) 0 by = C (1 + h;l)—?)\/a 7
and define 6,, by (14). Then, for n > 3, the densily estimator 0, satisfies

sup Eg {HQ — én
0€O(K,L,s,m)

} < Mp~(2s=1)/(As+2+4)/a) log(n)uz’ (16)

oo

where M > 0 is a constant only depending on C, K, L,m,s and \/a.
Proof. See Section 5.4. O

Remark 2.3. The constant C' in Theorem 2.1 might be adaptively chosen.
Indeed, the well known relationship (see [5, Chapter 6] for example) between
the cumulant function of a filtered Poisson process and its intensity measure
implies that the mean ugy of Xy is given by

> — Qs >\ )\ m
o = AEqg [YO]/O e~ ds = ~Ey o] < aK1/<4+ ). (17)

Since X is ergodic (see Section 4), the empirical mean [, of the sample X7, - -,
X, converges to pg almost surely and thus, replacing C' in Theorem 2.1 by
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¢, 2 exp(—fin)/2, leads to the same rate of convergence since

n—oo

A A
lim C,, = exp <a]E9 [Y0]> /2€(0,Ck pimrsa) &

Remark 2.4. This theorem provides that the error in uniform norm converges
at least at a polynomial rate n~(2s—1)/(4s+2+81/a) log(n)/? that depends both
on the quantity A/a and the smoothness coefficient s. For a given ratio A/«
the convergence rate becomes faster as s increases and tend to behave as n=1/2
when s — oco. On the other side, for a given smoothness parameter s, the
rate of convergence decreases when the ratio A\/a tends to infinity. This can
be interpreted as the consequence of the pileup effect that occurs whenever the
intensity A is large or the impulse response coeflicient « is close to zero.

Remark 2.5. Based on the previous theorem, one might wonder whether the
rates of convergence are optimal. According to similar but not identical problems
([16], [8]) in which authors estimate in a nonparametric fashion a Lévy triplet
(with finite activity) based on a low frequency sample of the associated process,
the optimal rates of convergence are identical to ours. Our estimation procedure
lies on stationary but dependent infinitely divisible random variables associated
to an infinite Lévy measure so that these results do not apply here. However we
believe that the rates obtained in Theorem 2.1 are also optimal in this dependent
context. The proof of this conjecture is left for future work.

3. Experimental results

The estimation procedure based on the estimator 0, given by (14) can be made
time-efficient and thus well suited to a very large dataset. In nuclear applications,
it is usual to deal with several million of observations while the intensity of the
time-arrival point process can reach several thousand of occurrences per second.
Typically, the shot-noise process in nuclear applications corresponding to the
electric current is discretely observed for three minutes at a sampling rate of
10Mhz and the mean number of arrivals between two observations lies between
10 and 100. Such large values for the intensity and the number of sampled points
motivate us to present a practical way to compute the estimator (14).

Practical computation of the estimator

In Section 2, we have defined the estimator of mark’s density by (14). Although
it theoretically converges to the true density of shot-noise marks, the evaluation
of the empirical characteristic function and its derivative based on observa-
tions X1, -+, X, might be time-consuming when the sample size n is large. To
circumvent this issue, we propose to compute the empirical characteristic func-
tion using the fast fourier transform of an appropriate histogram of the vector
Xy, , X,,. More precisely, for a strictly positive fixed h, we consider the grid
G = {hl : |ming<,(X%)/h] <1 < [maxp<,(X%)/h]} and compute the normal-
ized histogram H of the sample sequence (X;)1<;<n with respect to the grid G



3106 P. Ilhe et al.

defined by

lkg_j owraarn (X, min(X0)/h) <1< [max(Xe)/h] - 1.

3

Denoting m,, = |ming<, (X)/h| and M, £ [maxy<,(Xg)/h] — 1, remark
that for every real u, we have:

1 1 n & X
== Z == >N Licwscarny (Xe) X

k=1l=m,
Replacing ]-[G(l);G(l—i-l)] (Xk) eiuXk by ]-[G’(l);G(l—&-l)} (Xk> eiuh(l+1/2) for any real u,
we get an approximation of the empirical characteristic function by defining

M,
o A iu
Gnn(u) = Y He 2 (18)

l=m,
For any real u, we have the following upper bounds

R . h
|Phn () = Pn(u)] < 5 ul

and

Bhnl) ~ ()] < 5 (1 n Y ) 0+ 1/2)) ,

l=mn,
showing that the approximations are close to the true functions for small val-
ues of h and u. From these empirical characteristic functions, we construct an
estimator of the marks’ characteristic function ¢y setting for any positive w:

~ (07 Sph n( )
14— 1z .
Pynn(u) = N () Henn I
The advantage of using ¢y, is that @5, »(u) and @), ,, (u) can be evaluated on a
regular grid using the fast Fourier Transform algorithm.
The last step in the numerical computation of the estimator (14) consists in
evaluating the quantity

h;l 00
[ e ovnntidu= [ e oy, )du
0 0

Using the Inverse fast Fourier Transform, we approximate the integral on a
regular grid € by a Riemann sum.

Numerical results

We now illustrate the finite sample behavior of our estimator on a simulated data
set when the marks (in keV energy units) density follows a Gaussian mixture

Y PiNy, o2(x) with
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Furthermore, in order to fit with nuclear science applications, where detectors
have a time resolution of 10 Mhz, corresponding to a sampling time A = 107
seconds. The parameters of the experiment are set to a = 8.10%, A = 10°.
Moreover, in nuclear spectrometry, the bandwidth h,, is directly related to the
known precision of the measuring instrument. For the following numerical ex-
periment, we set it to 2.5 which is in range with the detector resolution as
described in [14], Chapter 4. Figure 1 below shows a simulated sample path of
such a shot-noise with its associated marked point process. As shown in Figure
2 below, our estimator ,, defined by (14) well retrieves the three modes of the
Gaussian mixture as well as the corresponding variance from a sample of size

T T T T T T T T
ol shot-noise
—— marked point process
B -
kS =
3 =f
15
10+
s
LI L, Al
1 i 3 4 5 6 7
time (s)
Fi1c 1. Simulated Shot-Noise.
0.25 T T T T T T
estimated mark density
mark density
0.2 4
0.15[ ]
1 A e j A, s =
10 15 20 25 30 35

energy (keV)

Fi1c 2. Gaussian mizture case.
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TABLE 1
Mean £° error Eg[||0 — On||oo] for different sample sizes n with 6 given by the Gaussian
mizture defined above. The displayed values are obtained by averaging ||6 — O ||oo over 100
Monte Carlo simulations. The variance of the error over the Monte Carlo runs is indicated
between parentheses to assess the precision of the given estimates

Sample size (n) || Mean ¢*° error (variance)
107 0.1015 (5,10.10~ %)
10° 0.0741 (9,51.107?)
10° 0.0622 (9,38.10~9)

10°, which corresponds to a signal observed for one hundredth second. Current
estimators used in nuclear spectrometry for similar data requires much longer
measurements (up to 10 seconds). The reason is that these estimators do not
consider observations where pile-up is suspected to occur, thus throwing away
a large part of the available information. Moreover, an estimation of the risk

Ey [||9 — 0|0 | is provided in Table 1 for the shot-noise configuration described

at the beginning of this section and for three different sample sizes.

4. Error bounds for the empirical characteristic function and its
derivatives

To derive Theorem 2.1, since our constructed estimator involves the empirical
characteristic function and its derivative, we rely on deviation bounds for

Ey sup 2 () — cp(k)(u)‘ , k=01 , h>0, (19)
u€[—h—1,h=1]

which are uniform over § € O(K,L,s,m), where the smoothness class
O(K, L,s,m) is defined by (15). Here, ©*) and cﬁ%k) respectively denote the
k-th derivative of the characteristic function and its empirical counterpart as-
sociated to the sample Xi,...,X,,. These bounds are of independent interest
and therefore are stated in this separate section. Upper bounds of the empirical
characteristic function deviations have been derived in the case of i.i.d. sam-
ples: [8, Theorem 2.2] provides upper bounds of (19) for i.i.d. infinitely divisible
random variables, based on general deviation bounds for the empirical process
of i.i.d. samples found in [22]. Here we are concerned with a dependent sample
X1, -+, X, and we rely instead on [7]. We obtain upper bounds with the same
rate of convergence as in the i.i.d. case but depending on the S-mixing coeffi-
cients, see Theorem 4.1. An additional difficulty in the non-parametric setting
that we consider is to derive upper bounds that are uniform over smoothness
classes for the density 6, and thus to carefully examine how the 3 coefficients
depend on 6, see Theorem 4.2.

Let us first recall the definition of S-mixing coefficient (also called abso-
lutely regular or completely regular coefficient) as introduced by Volkonskii and
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Rozanov [23]. For A, B two o-algebras of €2, the coefficient 5(A, B) is defined by

1
BAB)2 Zsup > [P(4iN B)) — P(A)E(B;)
(i,5)€IxJ

the supremum being taken over all finite partitions (A4;);er and (B;) e of 2 re-
spectively included in A and B. When dealing with a stochastic process (X;)¢>o,
the S-mixing coeflicient is defined for every positive s by:

B(s) 2 SUp 5 (0 (X, 0 < 1), (7 (X 02 1)

The process (X¢):>0 is said to be S-mixing if lim;_,~, 5(t) = 0 and exponentially
B-mixing if there exists a strictly positive number a such that 3(t) = O(e™ %)
as t — o0.

We first state a result essentially following from [7] which specify how the 3
coefficients allows us to derive bounds on the estimation of the characteristic
function and its derivatives.

Theorem 4.1. Let k be a non-negative integer and X1, -+ , X,, a sample of a
stationary B-mizing process. Suppose that there exists C > 1 and p € (0, 1) such
that B, < Cp™ for allm > 1. Let r > 1 and suppose that E [|X1|2(’“+1)”} < 0.

Then there exists a constant A only depending on C, p and r such that for all
h >0 andn > 1, we have

E| swp o) - w(k)(U)”
u€[—h—1,h—1]
max (E [|X1|2/€T]1/2T E [‘X1|2(k+1)r]1/2r) (1 + Vg + 7T h*l))
<A 7 . (20)
Proof. The proof is deferred to Section 5.3 d

It turns out that the stationary exponential shot-noise process X defined
by (1) is exponentially S-mixing if the first absolute moment of the marks is
finite, see [15, Theorem 4.3] for a slightly more general condition. However, in
order to obtain a uniform bound of the risk of our estimator én over a smoothness
class, a more precise result is needed. In the sequel, we add a superscript 6 to the
[B-mixing sequence to make explicit the dependence with respect to the mark’s
density 6. The following theorem provides a geometric bound for the S-mixing
coefficients of the shot noise which is uniform over the class ©(K, L, s, m).

Theorem 4.2. Let X1, -+, X, be a sample of the stationary shot-noise process
given by (1) satisfying (SN-1)—(SN-2). Let K, L,m > 0 and s > 1/2. Then there
exist two constants C > 0 and p € (0,1) only depending on A\, o, K, L, s and
m such that, for allmn > 1,

sup BY < Cpt < oo. (21)
0O (K,L,s,m)
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Proof. See Section 5.2. O

As a corollary of Theorems 4.1 and 4.2, we obtain error bounds for the em-
pirical characteristic function when dealing with observations X1, --- , X,, of the
stationary shot-noise process given by (1).

Corollary 4.1. Let X1,--- , X, be a sample of the stationary shot-noise process
given by (1) satisfying (SN-1)—(SN-2). Let K, L,m > 0 and s > 1/2 and let k
be an integer such that 0 < k < 1+ n/2. Then there exists a constant B only
depending on k, \, o, K, L, s and m such that for all andn > 1,

R 1+ 4/log(1+ h-1
s Ey| sw (el - M| < B o
0€O(K,L,s,m) w€[—h—1,h=1] n

This result can be compared to [8, Theorem 2.2]. Note however that although
our sample has infinitely divisible marginal distributions, it is not independent
and the Lévy measure is not integrable.

5. Proofs
5.1. Preliminary results on the exponential shot noise

We establish some geometric ergodicity results on the exponential shot noise
that will be needed in other proofs.

Definition 5.1 (Geometric drift condition). A Markov Kernel P satisfies a
geometric drift condition (called D(V, u, b)) if there exists a measurable function
V:R — [1,00[ and constants (u,b) € (0,1) x Ry such that

PV <uV+b.

Definition 5.2 (Doeblin set). A set C is called a (m,e€)-Doeblin set if there
exists a positive integer m, a positive number € and a probability measure v on
R such that, for any x in C and A in B(R)

P (z,A) > ev(A) .

The following proposition is borrowed from [21] and relates explicitly the
geometrical drift condition to the convergence in V-norm (denoted by |- |y/) to
the stationary distribution.

Proposition 5.1. Let P be a Markov kernel satisfying the drift condition
D(V, u,b). Assume moreover that for some d > 2b(1 — p) — 1, m € N — {0}
and € € (0,1), the level set {V < d} is an (m,€)-Doeblin set. Then P admits a
unique invariant measure ™ and P is V-geometrically ergodic, that is, for any
O<u<e/(bp+pmd—1+¢), V1, neNandzxecR,

1P (2, ) = wllv < e(w)[x(V) + V(@)]p!" ™ (u) (22)

where
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— _b 1-p™
MM ™ minV 1—p

(w) =u (1 —u) + ™+ by,
(u

C
d)(1—p™ —2bm,
o plu) = (1= ulby +pmd + e~ 1) v (1 - u 2

m(V)=P(Z € V) where Z is a random variable with distribution

[ ]
(=

In order to apply such a result to the sample (X7, -+, X,) of the exponential
shot-noise defined by (1), observe that it is the sample of a Markov chain which
satisfies the autoregression equation X; 11 = e~*X;+ W, 11 , where the sequence
of innovations (W;);cz is made up of i.i.d. random variables distributed as

Na([0.1])
Wo2 S Yie U, (23)
k=1

where

N ([0,1]) is a Poisson r.v. with mean A,

(Y;)i>1 are 1.i.d. r.v.’s with probability density function 0,
(U;)i>1 are i.i.d. and uniformly distributed on [0, 1],

all these variables are independent.

In the following, we denote by @y the Markov kernel associated to the Markov
chain (X;);>o under (SN-1)—(SN-2).

Proposition 5.2 (Uniform Geometric drift condition). Let K,L,m > 0 and
s>1/2 andlet @ € ©(K, L,s,m). Then the Markov kernel Qg satisfies the drift
condition D(V, 1, b), where

Vie—o1+z] , p=e® | b=1+4+IKYEM 7o, (24)
Proof. We have for all § € ©(K, L,s,m) and z € R,

QoV(z) =Eg [1+ |e %z 4+ Wo|]
<e W (z)4+1—e Y AKYE) — yV(z) +b. O

Remark 5.1. A similar result holds for the functions V; : 2 — 1 + |z|* where
ie{l,---,|4+m]}.

Proposition 5.3 (Doeblin set). Letl > 1, K,L,m >0 and s > 1/2 and define

V' as in (24). There exists € > 0 only depending on l, o, A, K, L,m >0 and s

such that, for all 0 € ©(K, L,s,m), the Markov kernel Qg admits {V <1} as
n (1, €)-Doeblin set.

Proof. Let § € O(K,L,s,m). Denote by # the density of random variable
Yie Ut with U; and Y7 two independent random variables respectively dis-
tributed uniformly on [0, 1] and with density . It is easy to show that, for all
v E€R,

i) =+ [ oty (25)
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The distribution of Wy is thus given by the infinite mixture

®© K
e0(dE) + 3 Ne €A 2 ay(de) + (L e fo(O)de,  (26)
k=1 """

where 8o is the Dirac point mass at 0 and #** denote the k-th self-convolution
of 6. It follows that, for all Borel set A,

Qolo. ) = e Ma(e0) + [ (1= e Mol + o) de

A

In order to show that {V < I} is a (e, 1)-Doeblin-set for the kernels Qy, it is
sufficient to exhibit a probability measure v such that, for all [x| <1—1 and all
Borel set A

/Afe(g +e %z)d¢ > (1 — e_)‘)_le v(A) .

Hence if for each 6 € ©(K, L, s,m) we find ¢(f) < d(6) such that

[d(0) = c(0)] fo(§ +e7x) >0,

€ = inf inf inf
0€O(K,L,s,m) c(0)<£<d(0) |z|<l-1

the result follows by taking v with density [d(0) — ¢(0)] ' 11, (g).q¢0)) and € =
(1 — e *)€’. By definition of fo above, it is now sufficient to show that there
exist ¢(f) < d(f) and k(6) > 1 such that

inf inf inf [d(0) — c(6)] 6*F® —o )
6CO(KLL..m) () <E<d(0) |w\1£z—1[ (6) = <(0)] (E+e2) >0

Observe that for ¢ < £ < dand |z| <I—1 we have £+e “z € [c—e *(I—1),d+
e~ “(l — 1)]. So for any interval [¢,d] of length d' — ¢ > 2e~%*(l — 1), we may
sete=c4+e(l—-1)<d=d —e*(l—1)sothat c< ¢ <dand |z] <]-1
imply £ + e %z € [/, d']. Hence the proof boils down to showing that for each
0 € ©(K, L, s,m), there exist ¢/(0) < d'(0) with d'(8) — ¢/(0) > 2e~*(l — 1) and
k(9) > 1 such that

inf inf d'(0) — ¢ (0) — 2e (] — 1)] §*F©) . 2
PGS L SRS L (0) = () —2e7*(1 = 1)] (§)>0 (27)

By Lemma A.3, there exists a > 0, A > 0, § > 1 and ¢y > 0 and such that ¢
and A = b — a only depend on m, K, L and s (although a may depend on ),
and

inf 0(z) > e .
a<:c<1(2+A)/6 (1’) €

Finally, Lemma A.4 and the previous bound yield (27), which concludes the
proof. O
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5.2. Proof of Theorem 4.2

As explained in Section 5.1, (X;);>0 is a stationary V-geometrically ergodic
Markov chain with Markov kernel denoted by Qg. By [6], the S-coefficient of
the stationary Markov chain (X;);>0 can be expressed for all n > 1 and 0 €
O(K,L,s,m) as

89 = / 103 @, ) — mollzy mol(dar)

where 7y is the invariant marginal distribution and | - |7y denotes the total
variation norm, i.e. the V-norm with V = 1. Combining Propositions 5.2, 5.3
and 5.1, we can find constants C' > 0 and p € (0,1) only depending on A, «,
K, L,s and m such that

1Q5 (2, ) = mollry < [QF (2, ) = mollv < C(2+ o [|Xa[] + [2]) " ,
where V(z) = 1 + |z|. The last two displays yield

BY <2C (1+Eg [|X1]))p"
<2C (L4 AKYEm)pn (28)

which concludes the proof.

5.3. Proof of Theorem 4.1

In [7], the authors establish a Donsker invariance principle for the process

{Z.(f), f € F} where Z, 2 12 > (0x, — P) is the normalized centered
empirical process associated to a stationary sequence of S-mixing random vari-
ables (Xi,---,X,) with marginal distribution P and F is a class of functions
satisfying an entropy condition. To be more precise, suppose that the sequence
(Xi)i>1 is f-mixing with } B, < oo. The mixing rate function 3 is defined
by B(t) = B¢y if t > 1 and B(t) = 0 otherwise while its cadlag inverse g1 is
defined by:

57 (w) = inb{A(1) < u)

Further, for any complex-valued function f, denote by @ the quantile function
of the r.v. | f(Xp)| and introduce the norm:

Il 2 (| 1 5wy

The space Lo g is defined as the class of functions f such that ||f|2,s < co. In
[7], the authors proved that (L2 5, | - ||2,8) is a normed subspace of L£o. A useful
and trivial result from the definition of the norm £ g(P) provides the following
relation:

1/2

IF1 <19l = I fllz.p < llgll2,p -

For any real r > 1, another useful (less trivial) result in [7] states that under
the condition
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ano Bn nr/(r—l) < 00,

we have Lo, C L9 g with the additional inequality

1l < ||f||2r\/1 7S B0 (20)

n>0

where || fl2» = E [|f(X0)]*"] /2" denote the usual L2 -norm.

Now, we can state a result directly adapted from [7, Theorem 3] that will
serve our goal to prove Theorem 2.1. For the sake of self-consistency, we recall
that, given a metric space of real-valued funtions (F, || - ||) and two functions I,
u, the bracket [, u] represents the set of all functions f such that I < f < u. For
any positive €, [I,u] is called an e-bracket if ||l — u|| < e.

Theorem 5.1. Suppose that the sequence (X;)i>1 is exponentially B-mizing
and that there exists C > 1 and p € (0,1) such that B, < Cp™ for allmn > 1.
Let 0 > 0 and let F C Lo g be a class of functions such that for every f in F,
[fll2.6 < 0. Define

o) = [ /1108 (N (0, )
0
where Nj(u, F, || - |l2,3) denotes the bracketing number, that is, the minimal
number of u-brackets with respect to the norm | - |2, that has to be used for

covering F. Suppose that the two following assumptions hold.

(DMR1) F has an envelope function F such that | F||2, < oo for some r > 1.
(DMR2) ¢(1) < oo .

Then there exist a constant A > 0 only depending on C and p such that, for
all integer n, we have

HF”QT
E ;gngn(f)l < Ad(o) (1 + ﬁ) . (30)

Having this result at hand, we now remark that (19), for a fixed integer k,
can be rewritten as

E| sw @@ - M) =n B | swp Zu(0)]| . (8)
uw€[—h—1,h=1] feFk
where A 4
FEE{furz— (iz)ke™ ue [-h~ 1 1]} (32)

The proof of Theorem 4.1 based on an application of the previous theorem is as
follows.

Proof. We apply Theorem 5.1 for a fixed integer k, F = f,’f, F = F; and
r = (4+m)/4 where Fj, : x — |z|*.
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Assumption (DMR1): Let k be a fixed integer. On the one hand, the function
F}, is an envelope function of the class F,’f and on the other hand, for any real
r > 1, from (29), we have

1Bl s < B [|3,[27) /" \/ LY /o020 <00 (33)
n>0

Assumption (DMR2): For k a fixed integer, the class FF is Lipschitz in the
index parameter: indeed, we have for every s,t in [—h’l, h’l] and every real x

|(iz)*el*® — (ix)kelt®| < |s — ] |2* (34)
A direct application of [22, Theorem 2.7.11] for the classes FF¥ gives for any
€ > 0:
Ny (26l|Frralla,s: Fis |l - Mla,8) < N (e [=h™ 71 ]-1)

2h1
<1+

(35)
where N and N[ are respectively called the covering numbers and bracketing
number (these numbers respectively represent the minimum number of balls

and brackets of a given size necessary to cover a space with respect to a given
norm). From (35), it follows that for any o > 0, we have

d(0) = /OU \/1 +log (N (u, i, || - [l2,8) ) du

4 4||F h—1

S/ \/1—|—10g (1+ﬂ>du (36)
0 u
o APl

< /0 <1 + 172 du

=0+ 4V7 | Fipa |y fh 7?2 < 0 (37)

because we supposed Fj11 € Lo, and (3, < Cp™ which, from (29), implies that
[Fr+1ll2,8 < o0

Conclusion of the proof The application of Theorem 5.1 gives

Eo

sup o) () — ¢ ()|

u€[—h—1 h1]

where A = A(1+1/v1—r~1) since, from (33), we have || Fi|l2r/0orr < 1.
Set ¢, 3 e \/1 + 73,50 Bn 17/~ From (36) and (33), we can write

g 4||Frs1]l2rc, gh=?
W)S/ \/Hlog<1+ | Frstll2re, 5 )du,
0 u
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4||Fk+1\|2,rcr,¢§0’r,lch71
u

4 [~ dv
072 < max (|Fillar | Filr) s (1407 [ VioaT 01 ) -
h—1
By Lemma A.6, we get for a universal constant B > 0 that

00 k) < Bmax (| Felar || Frsal2r) 5 (14 Viog (T 57T -

In the particular context of Corollary 4.1, we use the fact that ||Fy||2, can be
bounded by max(1, K4k/(4+m)) and ¢, 3 by a constant only depending on the
parameters K, L,s,m O

For o = 0,1, we get after the change of variable v =

5.4. Proof of Theorem 2.1

Proof. We denote by 6° the function defined by:
—n;t

1ot
0% (x) 2 max (0, o / e oy, (u)du) . (38)

Since 8 € ©(K, L, s,m) and s > 1/2, we have that F [0] is integrable and, under
0 > 0, we have

1 .
0(z) = max (0, — / e oy, (u)du) . (39)
2 R
We decompose the error in infinite norm as
16 = Balloo < 116 = 0 lloc + 1165 — Onlloo - (40)

From (38) and (39), we get
1 oo
N IO

1 o0
== /hi1 |u_su3<py0(u)| du

7T n
1 0o 1/2 oo 1/2
<3 ([ ran) ([ poooro)
T ol hit
5—1/2
. LhS L n—(25—1)/(4s+2+4x/a) (41)

25— 1 :(25—1)7r

where we used the Cauchy-Schwartz inequality and the assumption that 8 €
O(K, L,s,m).

We conclude with a bound of the term involving ||6% —6,,|| s in (40). To this end,
the following inequality will be useful. Using (12) and the mean-value theorem,
we have

P, (1)

A A A
< Zsup ok (u)] < ZEy (Y]] < £ K1/(4+m) 42
o ()| = D |y, (u)] 5 ol OH_a (42)

sup =
O yeR

u€eR
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By (12), we can bound the term |02 — 6, || by

hot ~t
) a m P () gy (u)
00 - 0n oo — N —=0_ - n 1 d
|| n || AT /h_l L,OXO(U) @n(u) |&n (W) >kn u
—1
a M ey, (W) g (u) e
Y —hit SDXO(U) @n(u> [fn(u)|>kKn
< 2ah’;1 <‘0/X0 (u) @n(u) L () [>n
AT Jui<hi? Pxo(u)  @nlu) " "

Pixo (W) @1 (u)
pxo(u)  Pulw)

2ah !
S o oy |60 () [>rin
u|xhn

/

xo (4)
su 14
+|UIS§;1 @Xo(u) |Wn(u)§5n>
A
= An,l + An,z .

’ ’ ’ ’

.. @ >’ @ @ » ~1

Writing —50 — Zn a5 (o _ “Xo) 4 (ZXo _ Zu) the term A, can be
PXq Pn PXq Pn Pn Pn ’

bounded as follows.

/

P (w) @)

sup ~ Dn (U Kn

lehet | 9x6 (W) nu)| 11

<kt osup [W(u)| |@n () — oxo(w)] + 5, sup |3 (u) — @y, (u)]
lu|<hy* lu|<hit

Thus, using (42), we get

Qh;IHEIKl/(4+m)E9 [SupluKh_l ‘@;(u) — (p’XO (u)ﬂ
EO [An,l] S S
T
20h 1k Ey [suplu‘ghzl |on(u) — ©x, (u)ﬂ
9 '

+

The two terms on the right hand side can be bounded using Corollary 4.1 with
r=(44+m)/4. It gives

B K(4m) <1 + Jlog(1 + h#))

/2

<

Eol sup | @], (u) — @y, (u)]
lu|<h;'

and
B (1 +y/log(1 + hﬁl))

<
= nl/2

Eel sup [P (u) — px,(u)]
[u|<h*
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In the following, for two positive quantities P and @, possibly depending on 6
and n we use the notation

P
P<Q@Q <« foraln>3, sup — < 00. (43)
9cO(K,L,s,m) @

(P is less than @ up to a multiplicative constant uniform over § € ©(K, L, s, m)).
We thus have that

1+ 4/log(1 + hyt)
Eg [An,l} Sj

K nY/2h,
- 1+ /log(1 + hyt)
~ nl/Qhﬁ/a+1
< n—(23—1)/(4s+2+4)/(x) IOg (n)l/Q 7 (44)
where we used the fact that k2 < 2C~1h)/® for any integer n.
We now bound A, 5. From (42), remark that
2
Eg[A, 2] < TKl/(4+m)P9 (Elu c [—h;l, h;l] s on(u)| < Hn)
Tl
2
< —— KV [ inf g (u)] < K | (45)
hy, lu|<hp!

From Lemma (A.5), we have

inf |gn(u)| = inf Jox,(u)] = sup |@n(u) —px,(u)]
|u‘§hn1 ‘ulghnl |u|§h;1

1\ — AN« N
> Crpmaje (107 7V = sup [@n(u) — oo (u)] -
lu|<hy*

It follows that

Py ( infi1 |n (u)] < Iin>

~ _1\ N«
< PQ < sup |<pﬂ(u) - @Xo(u” > (OK,L;m,)\/a - C) (1 + hnl) / > :

Since 0 < C' < Ck,1,m,r/a» applying Corollary 4.1 combined to the Markov’s
inequality, and using (45), we get

1+ \/log(l-i-hﬁl)
EG [An,Q} S n1/21€nhn

< n7(2571)/(4s+2+4)\/a) IOg (n)1/2 ’ (46)

~

Equations (41), (44) and (46) imply (16) and the proof is concluded. O
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Appendix A: Useful lemmas

The following classical embedding will be useful.

Lemma A.1 (Sobolev embedding). Let K,L,m > 0 and s > 1/2. Let 0 €
O(K, L,s,m) defined in (15). Then, for any v € (0,(s — 1/2) A1), there is a
constant C' > 0 depending on L, s and vy such that, for every real numbers x,vy,

0(z) = 0(y)| < Clz —y|" | (47)

3 )
-5t ([arar) .

The following result is used in the proof of Proposition 5.3.
Lemma A.2. Let K,L,m > 0 and s > 1/2. Let v € (0,(s — 1/2) A1) and
0 € ©(K,L,s,m). Then, there exists 0 < a < Tk such that
1

inf  O(x) > —(2K)" Y/ E+m)
a<z<a+A 16

where Ty = (2K)~Y0@+m) A = (2K)~Y/(O@+m)(16C) =1/ with C defined
by (48).
Proof. We first show that, for every T' > 0, we have

where

sup O(z) > (2T (1 - T*<4+m>K) :
|z|<T

Denote by Y a random variable with p.d.f 6 belonging to the class O(K, L, s, m).
On the one side, we have

P(|Y|<T)<2T sup 0(x)
|| <T

and on the other side

P(V|<T)=1-P(Y|>T)>1-E[y[*m] r-t+m > (1 - T*<4+m>K)

9

where the first inequality is obtained via an application of the Markov inequality.
Setting Tk = (2K)Y/(4+7)  we thus have

sup O(z) > (4Tx) L.

|z|<Tx
Moreover, since f is continuous, we can without loss of generality suppose
that there exists a positive number a in the interval (0, Tx| such that
9(&) > (STK)_1 .
From Lemma A.1, there exists a positive number A = (16TxC)~ /7, indepen-
dent of the choice of § such that

inf  O(x) > (16Tx) " O
z€la,a+A]

Lemma A.3. Let K,L,m,a >0 and s > 1/2. Let v € (0,(s —1/2) A1) and
0 € O(K,L,s,m). Define Ty = (2K)~ VM) A = (2K)~V/04+m)(16C)~1/7
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with C' defined by (48) and let & be a positive number satisfying

Tx + A
1<(5<min(eo‘7 x + ) .
Tk
For any strictly positive v, define the function 6 by 6(v) = i fvvea O(x)dx .

Then, there exists 0 < a < Tk such that

y —1/(4+m)(§ _
inf O(v) > (2K) ©0=1 .
a<v<(a+A)/é 16

Proof. From Lemma A.2, we have

inf 6(z) > —

(QK) 1/(4+m)
a<z<a+A 16 ’

for some a € (0,Tk]. Let § € (1,e® A L T A) . Since (a + A)/a is a decreasing
function in a for a fixed A and 0 < a < T , we have that
T + A

Tk

(a+A)ja>

Qu av f,
> e o)
v z€fv,vd]
Z GK(5 — 1) .
Q
which concludes the proof. O

The following elementary lemma generalizes the previous result for convolu-
tions of lower bounded functions.

Lemma A.4. Let 6, 6 two positive functions such that there exist positive num-
bers a,b,c,d, e and € satisfying

0(x) > elpgp)(z) and () > €lfe q ()
Then, for any § satisfying 0 < 6 < (b—a) A (d — ¢), we have
(6 * é) () > min(1,0) €€ Ujgyctsprd—s)(T) - (49)

As a consequence, for any integer n in N*, we have

*n . b—a et n
0" (x) > <mln (1, W)) " Unat(b—a)/2,mb—(b—a)/2)(x) - (50)

A lower bound of the decay of the absolute value of the shot-noise character-
istic function is given by the following lemma.
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Lemma A.5. Assume that the process X is given by (1) under (SN-1)—(SN-2)
with some positive constant o and A. Let K, L,m and s be positive constants.

Then for all 8 € O(K, L,s,m) and u € R, we have
(00 ()] = Crc . nsa (14 [ul) (51)

where Ck [.m )/ 2 exp(—\(L + KY/@+m) /q).
Proof. From (9) and (11), we have for all u € R,

¢ x,(u) = exp (2 /]R ( /O v eivv_ 1dv> 9(x)da:> .

If follows that

el =eo (2 [ ([0 00 oy

= exp (—é /O“| —1 — Re SDYO(Z))dZ> . (52)

(67

First, we have for any real z and any function 6 € ©(K, L, s,m),
/ (1—€"%) (z)dx
R
< / |1 — e[ 0(z)dx
R
<9 / sin(22/2)| 0(z)dz
R

11— Re (v (2))] =

< / |2z 0(z)da < KV 2
R
We thus get that

1
/ L= Relew(2)) 4. o per/catm) (53)
0 z

Now, for |u| > 1, we have that

/“' 1 —Re (¢, (2))
1

Jul
. dz <log |u| +/ 271 Re (py, (2))| dz
1

<loglul + L, (54)

where we use the Cauchy-Schwartz inequality and

([ Re(wo>|2)1/2 <L

Inserting (53) and (54) in (52), we get the result. O
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Lemma A.6. There exists a constant B > 0 such that, for all uw > 0, we have
e d
u/ \/log(1+v)—;}§B\/log(1+u)
“ v
Proof. For all u > 0, we have
> dv > dy < dy
u \/log(1+v)ﬁz \/log(1+uy)y—2§\/ﬂ W:%/ﬂ.
u 1 1
As u — 0, \/log (1 + u) is equivalent to /u.

As u — oo, the Karamata’s Theorem (see [17, Theorem 0.6]) applied to the
function u — +/log(1 + u)u~2, which is regularly varying with index —2, gives

that
(oo}
d
u/ V1og (1 —i—v)v—;j - Vieg (1 +u) ,
w u oo
which concludes the proof. O
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