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Abstract
In this paper, we consider a nonlinear inverse problem occurring in nu-

clear science. Gamma rays randomly hit a semiconductor detector which
produces an impulse response of electric current. Because the sampling
period of the measured current is larger than the mean inter arrival time
of photons, the impulse responses associated to different gamma rays can
overlap: this phenomenon is known as pileup. In this work, it is as-
sumed that the impulse response is an exponentially decaying function.
We propose a novel method to infer the distribution of gamma photon en-
ergies from the indirect measurements obtained from the detector. This
technique is based on a formula linking the characteristic function of the
photon density to a function involving the characteristic function and its
derivative of the observations. We establish that our estimator converges
to the mark density in uniform norm at a logarithmic rate. A limited
Monte-Carlo experiment is provided to support our findings.

1 Introduction
In this paper, we consider a nonlinear inverse problem arising in nuclear science:
neutron transport or gamma spectroscopy. For the latter, a radioactive source,
for instance an excited nucleus, randomly emits gamma photons according to
a homogeneous Poisson point process. These high frequency radiations can be
associated to high energy photons which interact with matter via three phe-
nomena : the photoelectric absorption, the Compton scattering and the pair
production (further details can be found in [14]). When photons interact with
the semiconductor detector (usually High-Purity Germanium (HPGe) detectors)
∗This research was partially supported by Labex DigiCosme (project ANR-11-LABEX-

0045-DIGICOSME) operated by ANR as part of the program “Investissement d’Avenir” Idex
Paris-Saclay (ANR-11-IDEX-0003-02).
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arranged between two electrodes, a number of electron-holes pairs proportional
to the photon transferred energy is created. Accordingly, the electrodes gen-
erate an electric current called impulse response whenever the detector is hit
by a particle, with an amplitude corresponding to the transferred energy. In
this context, a feature of interest is the distribution of this energy. Indeed, it
can be compared to known spectra in order to identify the composition of the
nuclear source. In practice, the electric current is not continuously observed but
the sampling rate is typically smaller than the mean inter-arrival time of two
photons. Therefore, there is a high probability that several photons are emitted
between two measurements so that the energy deposited is superimposed in the
detector, a phenomenon called pile-up. Because of the pile-up, it is impossible to
establish a one-to-one correspondence between a gamma ray and the associated
deposited energy.

This inverse problem can be modeled as follows. The electric current gen-
erated in the detector is given by a stationary shot-noise process X = (Xt)t∈R
defined by:

Xt =
∑

k:Tk≤t
Yk h(t− Tk) , (1)

where h is the (causal) impulse response of the detector and

(SN-1)
∑
k δTk,Yk is a Poisson point process with times Tk ∈ R arriving homoge-

neously with intensity λ > 0 and independent i.i.d. marks Yk ∈ R having
a probability density function (p.d.f.) θ and cumulative distribution function
(c.d.f) F .

We wish to estimate the density θ from a regular observation sample X1, . . . , Xn

of the shot noise (1). Note that the sampling rate is set to 1 without mean-
ingful loss of generality. If a different sampling rate is used, e.g. we observe
Xδ, . . . , Xnδ for some δ 6= 1, it amounts to change λ and to scale h accordingly.

The process (1) is well defined whenever the following condition holds on
the impulse response h and the density θ∫

min(1, |y h(s)|)θ(y)dyds <∞ . (2)

As shown in [12], this condition is also necessary. Moreover, the marginal
distribution of X belongs to the class of infinite divisible (ID) distributions and
has Lévy measure ν satisfying, for all Borel sets B in R \ {0},

ν(B) ∆= λ

∫ ∞
0

P (h(s)Y1 ∈ B) ds . (3)

The ID property of the marginal distribution shows that this estimation
problem is closely related to the estimation of the Lévy measure ν. This property
strongly suggests to use estimators of the Lévy triplet, see for instance [16] and
[8]. However, up to our best knowledge, these estimators use the increments of
the corresponding Lévy process which are i.i.d. and they assume a finite Lévy
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Khintchine measure. In contrast, the observations are not independent and the
Lévy measure of the process is infinite since from (3), we have that

ν(R) = λ

∫ ∞
0

P (h(s)Y1 ∈ R) ds =∞. (4)

In order to tackle this estimation problem, we then propose to bypass the es-
timation of ν and directly retrieve the density θ of the marks distribution F
from the empirical characteristic function of the measurements. Coarsely speak-
ing, using (3), the Lévy-Khintchine representation provides an expression of the
characteristic function ϕX of the marginal distribution as a functional of θ. The
estimator is built upon replacing ϕX by its empirical version and inverting the
mapping θ 7→ ϕX . A more standard marginal-based approach would be to rely
on the p.d.f. of X. However, the density of X0 is intractable, which precludes
the use of a likelihood inference method. Consequently, although shot-noise
models are widespread in applications (for example, such models were used to
model Internet traffic [1], but also to model river stream-flows [4], spikes in neu-
roscience ([11],[10]) and in signal processing ([19] , [20])), theoretical results on
the statistical inference of shot-noise appear to be limited. Recently, Xiao and
al. ([24]) provide consistent and asymptotically normal estimators for paramet-
ric shot-noise processes with specific impulse responses.

In this contribution, we consider the particular case given by the following
assumption.

(SN-2) The impulse response h is an exponential function with decreasing rate α > 0 :

h(t) ∆= e−αt 1R+(t) .

Under (SN-2), the process (Xt)t∈R is usually called an exponential shot-noise.
In this case, Condition (2) becomes

E
[
log+(|Y1|)

]
<∞ . (5)

Under (SN-2), the process (Xt)t≥0 can alternatively be introduced by consider-
ing the following stochastic differential equation (SDE) :

dXt = −αXtdt+ dLt , X0 = x ∈ R (6)

where L = (Lt)t≥0 is a Lévy process defined as the compound Poisson process

Lt
∆=
Nλ(t)∑
k=1

Yk with Nλ(t) ∆=
∑
k

1Tk≤t , (7)

where (Tk, Yk)k≥0 satisfies (SN-1). The solution to the equation (6) is called a
Ornstein-Uhlenbeck(O-U) process ([18, Chapter 17]) driven by L with initial
condition X0 = x and rate α. Note that L defined by (7) has Lévy measure λF .
Thus, by [18, Theorem 17.5], this Markov process admits a unique stationary
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version if (5) holds, and this stationary solution corresponds to the shot-noise
process (1).

In recent works, [3, Brockwell, Schlemm] exploit the integrated version of
(6) to recover the Lévy process L and show that the increments of L can be
represented as:

Lnh − L(n−1)h = Xnh −X(n−1)h − α
∫ nh

(n−1)h
Xsds.

These quantities are only well estimated for high frequency observations so that
we cannot rely on this method in our regular sampling scheme.

To the best of our knowledge, the paper that best fits our setting is [13]. The
authors propose a nonparametric estimation procedure from a low frequency
sample of a stationary O-U process which exploits the self decomposability prop-
erty of the marginal distribution. The authors construct an estimator of the so
called canonical function k defined by:

ν(dx) = k(x)
x

dx.

The two main additional assumptions are that k is decreasing on (0,∞) and ν
satisfies the integrability condition

∫∞
0 (1 ∧ x)ν(dx) < ∞. In our setting (i.e.

when specifying the Lévy process to be the compound Poisson process defined
in (7)), it is easily shown that these conditions hold and the canonical function
and the cumulative distribution of the marks are related by the equation:

k(x) = λP (Y0 > x) = λ (1− F (x)) .

In this article, we introduce an estimator of θ based on the empirical char-
acteristic function and a Fourier inversion formula. This algorithm is numeri-
cally efficient, being able to handle large datasets typically used in high-energy
physics. Secondly, we establish an upper bound of the rate of convergence of our
estimator which is uniform over a smoothness class of functions for the density
θ.

The paper is organized as follows. In Section 2, we introduce some prelim-
inaries on the characteristic function of an exponential shot-noise process and
provide both the inversion formula and the estimator of the density θ. In par-
ticular, we derive an upper bound of convergence for our estimator over a broad
class of densities under the assumption that λ/α is known. In Section 3, we
present in details the algorithm used to perform the density estimation and il-
lustrate our findings with a limited Monte-Carlo experiment. Section 4 provides
error bounds for the empirical characteristic function based on discrete-time ob-
servations and exploit the β-mixing structure of the process. Finally, Section 5
is devoted to the proofs of the various theorems.
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2 Main result
2.1 Inversion formula
As mentioned in the introduction, it is difficult to derive the probability density
function of the stationary shot-noise unless the marks are distributed according
to an exponential random variable and the impulse response is an exponential
function. In this case, it turns out that the marginal distribution of the shot-
noise is Gamma-distributed (the reader can refer to [2] for details). In all other
cases, we can only compute the characteristic function of the marginal distri-
bution of the stationary version of the shot-noise when treating it as a filtered
point process (see for example [17] for details). We have for every real u:

ϕ(u) ∆= E[eiuX0 ] = exp
(
λ

∫
R

∫ ∞
0

(eiuyh(v) − 1)dv F (dy)
)
. (8)

From (8), the characteristic function of X0 can be expressed as follows:

ϕX0(u) = exp
(∫

R
λKh(uy)F (dy)

)
. (9)

where Kh, the kernel associated to h is given by:

Kh(x) ∆=
∫ +∞

0
(eixh(v) − 1)dv.

Note that if h is integrable, then Kh is well defined since, for any real x,∫∞
0 |e

ixh(s) − 1|ds ≤ |x|
∫∞

0 |h(s)|ds. Moreover, if h is integrable, then Kh is
a C1(R,C) function whose derivative is bounded and equal to:

K ′h(x) =
∫ +∞

0
ih(s)eixh(v)dv.

Furthermore, if E [|Y0|] <∞, then the characteristic function of X0 is differen-
tiable and we have:

ϕ′X0
(u) = λ ϕX0(u)

∫
R
yK ′h(uy)F (dy). (10)

Under (SN-2), the kernel Kh takes the form

Kh(u) =
∫ ∞

0

(
eiue−αv − 1

)
dv =

∫ u

0

eis − 1
αs

ds. (11)

With (10), we obtain that

ϕ′X0
(u) = ϕX0(u) λ

αu
(ϕY0(u)− 1) . (12)
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Since the marginal distribution of X is infinitely divisible, we have by [18,
Lemma 7.5.] that ϕX(u) does not vanish. If in addition ϕY is integrable, (12)
provides a way to recover θ knowing α/λ, namely,

θ(x) =
∫
R

e−ixuϕY0(u)du =
∫
R

e−ixu
(

1 + αu

λ

ϕ′X0
(u)

ϕX0(u)

)
du , x ∈ R. (13)

This relation shows that the estimation problem of the p.d.f. θ is directly related
to the estimation of the second characteristic function.

Remark 2.1. We assume in the following that the ratio α/λ appearing in
the inversion formula (13) is a known constant, as it typically depends on the
measurement device. Interestingly, however, an estimator of this constant can
be derived from [12, Theorem 1], where it is shown that the marginal distribution
G of the stationary shot-noise is regularly varying at 0 with index λ/α, i.e. :

G(x) ∼ xλ/αL(x) , x→ 0

with L being slowly varying at 0. Hence it is possible to estimate α/λ by
applying Hill’s estimator [9] to the sample X−1

1 , · · · , X−1
n .

2.2 Nonparametric estimation

Let ϕ̂n(u) ∆= n−1∑n
j=1 eiuXj denotes the empirical characteristic function (e.c.f.)

obtained from the observations and ϕ̂′n its derivative. From (13), we are tempted
to plug the e.c.f. of the observations to estimate the p.d.f. θ. Let (hn)n≥0
and(κn)n≥0 be two sequences of positive numbers such that

lim
n→∞

hn = lim
n→∞

κn = 0 ,

and consider the following sequence of estimators:

θ̂n(x) ∆= max
(

1
2π

∫ 1
hn

− 1
hn

e−ixu
(

1 + αu

λ

ϕ̂′n(u)
ϕ̂n(u)1|ϕ̂n(u)|>κn

)
du, 0

)
. (14)

Remark 2.2. We estimate 1/ϕ(u) by 1{|ϕ̂n(u)|≥κn}/ϕ̂n(u) with a suitable
choice of a sequence (κn)n≥1 which converges to zero. The constant κn is cho-
sen such that |ϕ̂n(u)− ϕ(u)| remains smaller than |ϕ̂n(u)| and |ϕ(u)| with high
probability in order to avoid large errors when inverting ϕ̂n(u). In [16], the au-
thors deal with the empirical characteristic function of i.i.d. random variables.
In this case, the deviations of

√
n(ϕ̂n(u) − ϕ(u)) are bounded in probability,

hence, they use 1{|ϕ̂n(u)|≥κn−1/2}/ϕ̂n(u) as an estimator of 1/ϕ(u). Here we
truncate the interval of integration R by

[
−h−1

n , h−1
n

]
, where hn is a bandwidth

parameter. This allows us to bound the estimation error θ̂n−θ in sup norm. The
deviation of

√
n(ϕ̂n(u)−ϕ(u)) on

[
−h−1

n , h−1
n

]
depends on hn, see Theorem 4.1.

The resulting κn is then taken slightly larger than n−1/2.
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In order to evaluate the convergence rate of our estimator, we consider par-
ticular smoothness classes for the density θ. Namely we define, for any positive
constants K,L,m and s > 1/2,

Θ(K,L, s,m) =
{
θ is a density s.t.

∫
|y|4+mθ(y) dy ≤ K , (15)∫

R
(1 + |u|2)s |Fθ(u)|2 du ≤ L

}
,

where Fθ denotes the Fourier transform of θ

Fθ(u) =
∫
θ(y) e−iy u dy , u ∈ R .

Hence L is an upper bound of the Sobolev semi-norm of θ. Note also that under
(SN-1)-(SN-2), θ belongs to Θ(K,L, s,m) is equivalent to assuming that

E
[
|Y0|4+m

]
≤ K and

∫
R
(1 + |u|2)s|ϕY0(u)|2du ≤ L .

In the following, under assumptions (SN-1)-(SN-2), we use the notation Pθ and
Eθ, where the subscript θ added to the expectation and probability symbols
indicates explicitly the dependence on the unknown density θ. The following
result provides a bound of the risk Pθ(‖θ−θ̂n‖∞ > Mn) for well chosen sequences
(hn), (κn) and (Mn), which is uniform over the densities θ ∈ Θ(K,L, s,m).

Theorem 2.1. Assume that the process X = (Xt)t≥0 given by (1) satisfies the
assumptions (SN-1)-(SN-2) for some positive constants λ and α. Let K,L,m
be positive constants and s > 1/2. Let γ, δ be positive constants such that

γ < 1/2− δ λ K
2/(4+m)

4α . (16)

Set
hn = (δ log(n))−1/2 and κn = nγ−1/2 ,

and define θ̂n by (14). Then, for all M > 2 L1/2/(2s− 1)π,

lim sup
n

sup
θ∈Θ(K,L,s,m)

Pθ
(∥∥∥θ − θ̂n∥∥∥

∞
> M hs−1/2

n

)
= 0. (17)

Proof. See Section 5.4.

Recall that α/λ is assumed to be a known constant of the experiment, so the
estimator θ̂n defined in (14) only relies on the tuning parameters hn and κn. The
choice of hn and κn in Theorem 2.1 only requires the constantsK andm. Indeed,
for given K and m (and α/λ), it is easy to find δ, γ > 0 satisfying (16), which in
turn sets the choice of hn and κn. In particular, we see that the definition of the
estimator does not require the knowledge of the Sobolev exponent s (although
the rates depends on s). In other words the estimator adapts to the unknown
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smoothness of θ. In practice, the knowledge of m and K is a mild assumption.
For instance, in the nuclear science application mentionned above, Y is a.s.
bounded by a known constant. However a too crude knowledge of the upper
bounding constant constant K1/(4+m) may yield a smaller δ, thus a larger hn,
that is, a poorer rate of convergence. It can thus be interesting to deduce δ
directly from the data in order to improve this rate in practice. To apply such
an approach, we rely on the well known relationship (see [5][Chapter 6] for
example) between the cumulant function of a Poisson process and its intensity
measure, which implies that the variance σ2

θ of X0 is given by

σ2
θ = λEθ

[
Y 2

0
] ∫ ∞

0
e−2αsds = λ

2αEθ
[
Y 2

0
]
. (18)

Since X is ergodic, the empirical variance σ̂2
n of the sampleX1, · · · , Xn converges

to σ2
θ almost surely. Thus the estimator

δ̂n = 3α
4ασ̂2

n + 2λ (19)

satisfies, almost surely,

lim
n→∞

δ̂n = δ
∆= 3α

4ασ2
θ + 2λ = 3α

2λ (Eθ [Y 2
0 ] + 1) .

In fact, to obtain uniform bounds, the following lemma will be useful.

Lemma 2.1. Assume that the process X = (Xt)t≥0 given by (1) satisfies the
assumptions (SN-1)-(SN-2) for some positive constants λ and α. Let K be a
positive constant. Then there exists a constant C only depending on K, α and
λ such that, if Eθ

[
|Y0|4

]
≤ K, we have

Eθ
[(
σ̂2
n − σ2

θ

)2] ≤ C n−1 .

Proof. See Section 5.4.

Then we have the following result, where we adapt Theorem 2.1 by taking
m = 1, γ = 1/64 and a data-driven choice of δ so that the estimator no longer
depends on the knowledge of K.

Theorem 2.2. Assume that the process X = (Xt)t≥0 given by (1) satisfies the
assumptions (SN-1)-(SN-2) for some positive constants λ and α. Let K,L be
positive constants and s > 1/2. Define θ̂n as in (14) with

hn =
(
δ̂n log(n)

)−1/2
and κn = n−31/64 ,

where δ̂n is defined by (19). Then, for all M > 2 L1/2/(2s− 1)π, we have

lim sup
n

sup
θ∈Θ(K,L,s,1)

Pθ
(∥∥∥θ − θ̂n∥∥∥

∞
> M hs−1/2

n

)
= 0. (20)
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Proof. See Section 5.4.

Note that in (20), we compute the minimax rate over Θ(K,L, s, 1), that
is, we require a finite moment of order 4 + 1 = 5 on Y0. This is to have a
convergence of the empirical variance σ̂2

n which holds uniformly over θ ∈ Θ.

Remark 2.3. Based on the two previous theorems, one might wonder whether
the rates of convergence are optimal. According to similar but not identical
problems ([16],[8]) in which authors estimate in a nonparametric fashion a Lévy
triplet (with finite activity) based on a low frequency sample of the associated
process, the optimal rates of convergence are identical to ours. Our estimation
procedure lies on stationary but dependent infinitely divisible random variables
associated to an infinite Lévy measure so that these results do not apply here.
However we believe that the rates obtained in Theorem 2.1 are also optimal in
this dependent context. The proof of this conjecture is left for future work.

3 Experimental results
The estimation procedure based on the estimator θ̂n given by (14) can be made
time -efficient and thus well suited to a very large dataset. In nuclear applica-
tions, it is usual to deal with several million of observations while the intensity
of the time-arrival point process can reach several thousand of occurrences per
second. Typically, the shot-noise process in nuclear applications corresponding
to the electric current is discretely observed for three minutes at a sampling rate
of 10Mhz and the mean number of arrivals between two observations lies be-
tween 10 and 100. Such large values for the intensity and the number of sampled
points motivate us to present a practical way to compute the estimator (14).

Practical computation of the estimator
In Section 2, we have defined the estimator of mark’s density by (14). Al-
though it theoritically converges to the true density of shot-noise marks, the
evaluation of the empirical characteristic function and its derivative based on
observations X1, · · · , Xn might be time-consuming when the sample size n is
large. To circumvent this issue, we propose to compute the empirical character-
istic function using the fast fourier transform of an appropriate histogram of the
vector X1, · · · , Xn. More precisely, for a strictly positive fixed h, we consider
the grid G = {hl : bmink≤n(Xk)/hc ≤ l ≤ dmaxk≤n(Xk)/he} and compute the
normalized histogram H of the sample sequence (Xl)1≤l≤n with respect to the
grid G defined by

H(l) = 1
n

n∑
k=1

1[G(l);G(l+1)](Xk), bmin
k≤n

(Xk)/hc ≤ l ≤ dmax
k≤n

(Xk)/he − 1 .

Denoting mn
∆= bmink≤n(Xk)/hc and Mn

∆= dmaxk≤n(Xk)/he − 1, remark
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that for every real u, we have:

ϕ̂n(u) = 1
n

n∑
k=1

eiuXk = 1
n

n∑
k=1

Mn∑
l=mn

1[G(l);G(l+1)](Xk) eiuXk .

Replacing 1[G(l);G(l+1)](Xk) eiuXk by 1[G(l);G(l+1)](Xk) eiuh(l+1/2) for any real u,
we get an approximation of the empirical characteristic function by defining

ϕ̂h,n(u) ∆=
Mn∑
l=mn

H(l)eiuh(l+1/2) . (21)

For any real u, we have the following upper bounds

|ϕ̂h,n(u)− ϕ̂n(u)| ≤ h

2 |u|

and ∣∣ϕ̂′h,n(u)− ϕ̂′n(u)
∣∣ ≤ h

2

(
1 + |u|h

Mn∑
l=mn

H(l) (l + 1/2)
)

,

showing that the approximations are close to the true functions for small values
of h and u. From these empirical characteristic functions, we construct an
estimator of the marks’ characteristic function ϕY setting for any positive u:

ϕ̂Y,h,n(u) ∆= 1 + α

λ
u
ϕ̂′h,n(u)
ϕ̂h,n(u)1|ϕ̂h,n(u)|>κn .

The advantage of using ϕ̂h,n is that ϕ̂h,n(u) and ϕ̂′h,n(u) can be evaluated on a
regular grid using the fast Fourier Transform algorithm.

The last step in the numerical computation of the estimator (14) consists in
evaluating the quantity∫ h−1

n

0
e−ixuϕ̂Y,h,n(u)du =

∫ ∞
0

e−ixuϕ̂Y,h,n(u)1[0,h−1
n ](u)du .

Using the Inverse fast Fourier Transform, we approximate the integral on a
regular grid x ∈ by a Riemann sum.

Numerical results
We now illustrate the finite sample behavior of our estimator on a simulated
data set when the marks density follows a Gaussian mixture

∑3
i=1 piNµi,σ2

i
(x)

with

p = [0.3 0.5 0.2] , µ = [4 12 22] , σ = [1 1 0.5]

Furthermore,in order to fit with nuclear science applications, where detectors
have a time resolution of 10 Mhz, corresponding to a sampling time ∆ = 10−7
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seconds. Moreover, the parameters of the experiment are set to α = 8.108 ,
λ = 109. Figure 1 below shows a simulated sample path of such a shot-noise
with its associated marked point process.

Figure 1: Simulated Shot-Noise

As shown in Figure 2 below, our estimator θ̂n defined by (14) well retrieves
the three modes of the Gaussian mixture as well as the corresponding variance.

Figure 2: Gaussian mixture case
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4 Error bounds for the empirical characteristic
function and its derivatives

To derive Theorem 2.1, since our constructed estimator involves the empirical
characteristic function and its derivative, we rely on deviation bounds for

Eθ

[
sup

u∈[−h−1,h−1]

∣∣∣ϕ̂(k)
n (u)− ϕ(k)(u)

∣∣∣] , k = 0, 1 , h > 0 , (22)

which are uniform over θ ∈ Θ(K,L,m, s), where the smoothness class
Θ(K,L,m, s) is defined by (15). These bounds are of independent interest
and therefore are stated in this separate section. Upper bounds of the empirical
characteristic function deviations have been derived in the case of i.i.d. samples:
[8][Theorem 2.2.] provides upper bounds of (22) for i.i.d. infinitely divisible ran-
dom variables, based on general deviation bounds for the empirical process of
i.i.d. samples found in [22]. Here we are concerned with a dependent sample
X1, · · · , Xn and we rely instead on [7]. We obtain upper bounds with the same
rate of convergence as in the i.i.d. case but depending on the β-mixing coeffi-
cients, see Theorem 4.1. An additional difficulty in the non-parametric setting
that we consider is to derive upper bounds that are uniform over smoothness
classes for the density θ, and thus to carefully examine how the β coefficients
depend on θ, see Theorem 4.2.

Let us first recall the definition of β-mixing coefficient (also called abso-
lutely regular or completely regular coefficient) as introduced by Volkonskii and
Rozanov [23]. For A,B two σ-algebras of Ω, the coefficient β(A,B) is defined
by

β(A,B) ∆= 1
2 sup

∑
(i,j)∈I×J

|P(Ai ∩Bj)− P(Ai)P(Bj)|

the supremum being taken over all finite partitions (Ai)i∈I and (Bj)j∈J of Ω
respectively included in A and B. When dealing with a stochastic process
(Xt)t≥0, the β-mixing coefficient is defined for every positive s by:

β(s) ∆= sup
t≥0

β (σ (Xu, u ≤ t) , (σ (Xs+u, u ≥ t))

The process (Xt)t≥0 is said to be β-mixing if limt→∞ β(t) = 0 and exponentially
β-mixing if there exists a strictly positive number a such that β(t) = O(e−at)
as t→∞.

We first state a result essentially following from [7] which specify how the
β coefficients allows us to derive bounds on the estimation of the characteristic
function and its derivatives.

Theorem 4.1. Let k be a non-negative integer and X1, · · · , Xn a sample of a
stationary β-mixing process. Suppose that there exists C ≥ 1 and ρ ∈ (0, 1) such
that βn ≤ Cρn for all n ≥ 1. Let r > 1 and suppose that E

[
|X1|2(k+1)r] <∞.

12



Then there exists a constant A only depending on C, ρ and r such that for
all h > 0 and n ≥ 1, we have

E

[
sup

u∈[−h−1,h−1]

∣∣∣ϕ̂(k)
n (u)− ϕ(k)(u)

∣∣∣]

≤ A
max

(
E
[
|X1|2kr

]1/2r
,E
[
|X1|2(k+1)r]1/2r)(1 +

√
log(1 + h−1)

)
n1/2 . (23)

Proof. The proof is deferred to Section 5.3

It turns out that the stationary exponential shot-noise process X defined
by (1) is exponentially β-mixing if the first absolute moment of the marks is
finite, see [15][Theorem 4.3] for a slightly more general condition. However, in
order to obtain a uniform bound of the risk of our estimator θ̂n over a smoothness
class, a more precise result is needed. In the sequel, we add a superscript θ to the
β-mixing sequence to make explicit the dependence with respect to the mark’s
density θ. The following theorem provides a geometric bound for the β-mixing
coefficients of the shot noise which is uniform over the class Θ(K,L, s,m).

Theorem 4.2. Let X1, · · · , Xn be a sample of the stationary shot-noise process
given by (1) satisfying (SN-1)-(SN-2). Let K,L,m > 0 and s > 1/2. Then
there exist two constants C > 0 and ρ ∈ (0, 1) only depending on λ, α, K, L, s
and m such that, for all n ≥ 1,

sup
θ∈Θ(K,L,s,m)

βθn ≤ Cρn <∞ . (24)

Proof. See Section 5.2.

As a corollary of Theorems 4.1 and 4.2, we obtain error bounds for the
empirical characteristic function when dealing with observations X1, · · · , Xn of
the stationary shot-noise process given by (1).

Corollary 4.1. Let X1, · · · , Xn be a sample of the stationary shot-noise process
given by (1) satisfying (SN-1)-(SN-2). Let K,L,m > 0 and s > 1/2 and let k
be an integer such that 0 ≤ k < 1 + n/2. Then there exists a constant B only
depending on k, λ, α, K, L, s and m such that for all and n ≥ 1,

sup
θ∈Θ(K,L,s,m)

Eθ

[
sup

u∈[−h−1,h−1]

∣∣∣ϕ̂(k)
n (u)− ϕ(k)(u)

∣∣∣] ≤ B 1 +
√

log(1 + h−1)
n1/2 .

This result can be compared to [8][Theorem 2.2]. Note however that although
our sample has infinitely divisible marginal distributions, it is not independent
and the Lévy measure is not integrable.
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5 Proofs
5.1 Preliminary results on the exponential shot noise
We establish some geometric ergodicity results on the exponential shot noise
that will be needed in other proofs.

Definition 5.1 (Geometric drift condition). A Markov Kernel P satisfies a
geometric drift condition (called D(V, µ, b)) if there exists a measurable function
V : R→ [1,∞[ and constants (µ, b) ∈ (0, 1)× R+ such that

PV ≤ µV + b .

Definition 5.2 (Doeblin set). A set C is called a (m, ε)-Doeblin set if there
exists m ∈ N∗ , ε > 0 and a probability measure ν on R such that, for any x in
C and A in B(R)

Pm(x,A) ≥ εν(A) .

The following proposition is borrowed from [21] and relates explicitly the
geometrical drift condition to the convergence in V -norm (denoted by | · |V ) to
the stationary distribution.

Proposition 5.1. Let P be a Markov kernel satisfying the drift condition
D(V, µ, b). Assume moreover that for some d > 2b(1 − µ) − 1 , m ∈ N∗ and
ε ∈ (0, 1), the level set {V ≤ d} is an (m, ε)-Doeblin set. Then P admits a
unique invariant measure π and P is V -geometrically ergodic, that is, for any
0 < u < ε/ (bm + µmd− 1 + ε)+ ∨ 1 , n ∈ N and x ∈ R,

‖Pn(x, ·)− π‖V ≤ c(u)[π(V ) + V (x)]ρbn/mc(u) (25)

where

• bm = b
minV

1−µm
1−µ

• c(u) = u−1(1− u) + µm + bm

• ρ(u) = (1− ε+ u(bm + µmd+ ε− 1)) ∨
(

1− u (1+d)(1−µm−2bm
2(1−u)+u(1+d)

)
In order to apply such a result to the sample (X1, · · · , Xn) of the exponential

shot-noise defined by (1), observe that it is the sample of a Markov chain which
satisfies the autoregression equation Xi+1 = e−αXi+Wi+1 , where the sequence
of innovations (Wi)i∈Z is made up of i.i.d. random variables distributed as

W0
∆=
Nλ([0,1])∑
k=1

Yke−αUk . (26)

where

• Nλ([0, 1]) is a Poisson r.v. with mean λ,
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• (Yi)i≥1 are i.i.d. r.v.’s with probability density function θ,

• (Ui)i≥1 are i.i.d. and uniformly distributed on [0, 1],

• all these variables are independent.

In the following, we denote by Qθ the Markov kernel associated to the Markov
chain (Xi)i≥0 under (SN-1)-(SN-2).

Proposition 5.2 (Uniform Geometric drift condition). Let K,L,m > 0 and
s > 1/2 and let θ ∈ Θ(K,L, s,m). Then the Markov kernel Qθ satisfies the drift
condition D(V, µ, b), where

V : x→ 1 + |x| , µ = e−α , b = 1 + λK1/(4+m) − e−α . (27)

Proof. We have for all θ ∈ Θ(K,L, s,m) and x ∈ R,

QθV (x) = Eθ
[
1 +

∣∣e−αx+W0
∣∣]

≤ e−αV (x) + 1− e−α + λK1/(4+m) = µV (x) + b .

Remark 5.1. A similar result holds for the functions Vi : x → 1 + |x|i where
i ∈ {1, · · · , b4 +mc}.

Proposition 5.3 (Doeblin set). Let l > 1, K,L,m > 0 and s > 1/2 and define
V as in (27). There exists ε > 0 only depending on l, α, λ, K,L,m > 0 and s
such that, for all θ ∈ Θ(K,L, s,m), the Markov kernel Qθ admits {V ≤ l} as
an (1, ε)-Doeblin set.

Proof. Let θ ∈ Θ(K,L, s,m). Denote by θ̌ the density of random variable
Y1e−αU1 with U1 and Y1 two independent random variables respectively dis-
tributed uniformly on [0, 1] and with density θ. It is easy to show that, for all
v ∈ R,

θ̌(v) = 1
αv

∫ veα

v

θ(y)dy . (28)

The distribution of W0 is thus given by the infinite mixture

e−λδ0(dξ) +
∞∑
k=1

λk

k! e−λθ̌∗k(ξ)dξ ∆= e−λδ0(dξ) + (1− e−λ)f̃θ(ξ)dξ , (29)

where δ0 is the Dirac point mass at 0 and θ̌∗k denote the k-th self-convolution
of θ̌. It follows that, for all Borel set A,

Qθ(x,A) = e−λ1A(e−αx) +
∫
A

(1− e−λ)f̃θ(ξ + e−αx) dξ .

15



In order to show that {V ≤ l} is a (ε, 1)-Doeblin-set for the kernels Qθ, it is
sufficient to exhibit a probability measure ν such that, for all |x| ≤ l− 1 and all
Borel set A ∫

A

f̃θ(ξ + e−αx)dξ ≥ (1− e−λ)−1ε ν (A) .

Hence if for each θ ∈ Θ(K,L, s,m) we find c(θ) < d(θ) such that

ε′ = inf
θ∈Θ(K,L,s,m)

inf
c(θ)≤ξ≤d(θ)

inf
|x|≤l−1

[d(θ)− c(θ)] f̃θ(ξ + e−αx) > 0 ,

the result follows by taking ν with density [d(θ) − c(θ)]−11[c(θ),d(θ)] and ε =
(1 − e−λ)ε′. By definition of f̃θ above, it is now sufficient to show that there
exist c(θ) < d(θ) and k(θ) ≥ 1 such that

inf
θ∈Θ(K,L,s,m)

inf
c(θ)≤ξ≤d(θ)

inf
|x|≤l−1

[d(θ)− c(θ)] θ̌∗k(θ)(ξ + e−αx) > 0 .

Observe that for c ≤ ξ ≤ d and |x| ≤ l−1 we have ξ+e−αx ∈ [c−e−α(l−1), d+
e−α(l − 1)]. So for any interval [c′, d′] of length d′ − c′ > 2e−α(l − 1), we may
set c = c′ + e−α(l − 1) < d = d′ − e−α(l − 1) so that c ≤ ξ ≤ d and |x| ≤ l − 1
imply ξ + e−αx ∈ [c′, d′]. Hence the proof boils down to showing that for each
θ ∈ Θ(K,L, s,m), there exist c′(θ) < d′(θ) with d′(θ)− c′(θ) > 2e−α(l− 1) and
k(θ) ≥ 1 such that

inf
θ∈Θ(K,L,s,m)

inf
c′(θ)≤ξ≤d′(θ)

[d′(θ)− c′(θ)− 2e−α(l − 1)] θ̌∗k(θ)(ξ) > 0 . (30)

By Lemma A.3, there exists a > 0, ∆ > 0, δ > 1 and ε0 > 0 and such that ε0
and ∆ = b − a only depend on m, K, L and s (although a may depend on θ),
and

inf
a<x<(a+∆)/δ

θ̌(x) > ε0 .

Finally, Lemma A.4 and the previous bound yield (30), which concludes the
proof.

5.2 Proof of Theorem 4.2
As explained in Section 5.1, (Xi)i≥0 is a stationary V -geometrically ergodic
Markov chain with Markov kernel denoted by Qθ. By [6], the β-coefficient
of the stationary Markov chain (Xi)i≥0 can be expressed for all n ≥ 1 and
θ ∈ Θ(K,L, s,m) as

βθn =
∫
R
‖Qnθ (x, ·)− πθ‖TV πθ(dx) ,

where πθ is the invariant marginal distribution and | · |TV denotes the total
variation norm, i.e. the V -norm with V = 1. Combining Propositions 5.2, 5.3
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and 5.1, we can find constants C > 0 and ρ ∈ (0, 1) only depending on λ, α,
K,L, s and m such that

‖Qnθ (x, ·)− πθ‖TV ≤ ‖Qnθ (x, ·)− πθ‖V ≤ C (2 + Eθ [|X1|] + |x|) ρn ,

where V (x) = 1 + |x|. The last two displays yield

βθn ≤ 2C (1 + Eθ [|X1|])ρn

≤ 2C (1 + λK1/(4+m))ρn , (31)

which concludes the proof.

5.3 Proof of Theorem 4.1
In [7], the authors establish a Donsker invariance principle for the process
{Zn(f), f ∈ F} where Zn

∆= n−1/2∑n
i=1 (δXi − P ) is the normalized centered

empirical process associated to a stationary sequence of β-mixing random vari-
ables (X1, · · · , Xn) with marginal distribution P and F is a class of functions
satisfying an entropy condition. To be more precise, suppose that the sequence
(Xi)i≥1 is β-mixing with

∑
n∈N βn <∞. The mixing rate function β is defined

by β(t) = βbtc if t ≥ 1 and β(t) = 0 otherwise while its càdlàg inverse β−1 is
defined by:

β−1(u) ∆= inf
t≥0
{β(t) ≤ u}

Further, for any complex-valued function f , denote by Qf the quantile function
of the r.v. |f(X0)| and introduce the norm:

‖f‖2,β
∆=
(∫ 1

0
β−1(u)Qf (u)2du

)1/2

.

The space L2,β is defined as the class of functions f such that ‖f‖2,β < ∞. In
the herementionned paper, the authors proved that (L2,β , ‖ · ‖2,β) is a normed
subspace of L2. A useful and trivial result from the definition of the norm
L2,β(P ) provides the following relation:

|f | ≤ |g| ⇒ ‖f‖2,β ≤ ‖g‖2,β .

For any real r > 1, another useful (less trivial) result in [7] states that under
the condition ∑

n≥0 βn n
r/(r−1) <∞,

we have L2r ⊂ L2,β with the additional inequality

‖f‖2,β ≤ ‖f‖2r
√

1 + r
∑
n≥0

βn nr/(r−1) , (32)

where here ‖f‖2r = E
[
|f(X0)|2r

]1/2r denote the usual L2r-norm.
Now, we can state a result directly adapted from [7][Theorem 3] that will

serve our goal to prove Theorem 2.1.
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Theorem 5.1. Suppose that the sequence (Xi)i≥1 is exponentially β-mixing
and that there exists C ≥ 1 and ρ ∈ (0, 1) such that βn ≤ Cρn for all n ≥ 1.
Let σ > 0 and let F ⊂ L2,β be a class of functions such that for every f in F ,
‖f‖2,β ≤ σ. Define

φ(σ) =
∫ σ

0

√
1 + log

(
N[ ] (u,F , ‖ · ‖2,β)

)
du ,

where N[ ](u,F , ‖ · ‖2,β) denotes the bracketing number, that is, the minimal
number of u-brackets with respect to the norm ‖ · ‖2,β that has to be used for
covering F . Suppose that the two following assumptions hold.

(DMR1) F has an envelope function F such that ‖F‖2r < ∞ for some
r > 1.

(DMR2) φ(1) <∞ .

Then there exist a constant A > 0 only depending on C and ρ such that, for
all integer n, we have

E

[
sup
f∈F
|Zn(f)|

]
≤ Aφ(σ)

(
1 + ‖F‖2r

σ
√

1− r−1

)
. (33)

Having this result at hand, we now remark that (22), for a fixed integer k,
can be rewritten as

E

[
sup

u∈[−h−1,h−1]

∣∣∣ϕ̂(k)
n (u)− ϕ(k)(u)

∣∣∣] = n−1/2E

[
sup
f∈Fk

h

|Zn(f)|
]
, (34)

where
Fkh

∆= {fu : x→ (ix)keiux, u ∈
[
−h−1, h−1]}. (35)

The proof of Theorem 4.1 based on an application of the previous theorem is as
follows.

Proof. We apply Theorem 5.1 for a fixed integer k, F = Fkh , F = Fk and
r = (4 +m)/4 where Fk : x→ |x|k.

Assumption (DMR1): Let k be a fixed integer. On the one hand, the func-
tion Fk is an envelope function of the class Fkh and on the other hand, for any real
r > 1, from (32), we have

‖Fk‖2,β ≤ E
[
|X1|2kr

]1/2r√1 + r
∑
n≥0

βn nr/(r−1) ∆= σr,k <∞ . (36)
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Assumption (DMR2): For k a fixed integer, the class Fkh is Lipschitz in the
index parameter: indeed, we have for every s, t in

[
−h−1, h−1] and every real x∣∣(ix)keisx − (ix)keitx∣∣ ≤ |s− t| |x|k+1 (37)

A direct application of [22][Theorem 2.7.11] for the classes Fkh gives for any ε > 0:

N[ ]
(
2ε||Fk+1||2,β ,Fkh , || · ||2,β

)
≤ N

(
ε,
[
−h−1, h−1] , | · |)

≤ 1 + 2h−1

ε
(38)

where N and N[ ] are respectively called the covering numbers and bracketing number
(these numbers respectively represent the minimum number of balls and brackets of
a given size necessary to cover a space with respect to a given norm). From (38), it
follows that for any σ > 0, we have

φ(σ) =
∫ σ

0

√
1 + log

(
N[ ]
(
u,Fkh , ‖ · ‖2,β

))
du

≤
∫ σ

0

√
1 + log

(
1 + 4||Fk+1||2,βh−1

u

)
du (39)

≤
∫ σ

0

(
1 +

2||Fk+1||1/22,βh
−1/2

u1/2

)
du

= σ + 4
√
σ ‖Fk+1‖1/22,βh

−1/2 <∞ (40)

because we supposed Fk+1 ∈ L2r and βn ≤ Cρn which, from (32), implies that
‖Fk+1‖2,β <∞.

Conclusion of the proof The application of Theorem 5.1 gives

Eθ

[
sup

u∈[−h−1,h−1]

∣∣ϕ̂(k)
n (u)− ϕ(k)(u)

∣∣] ≤ Ãφ(σr,k)
n1/2

where Ã = A(1 + 1/
√

1− r−1) since, from (36), we have ‖Fk‖2r/σr,k ≤ 1.
Set cr,β̄

∆=
√

1 + r
∑

n≥0 βn n
r/(r−1). From (39) and (36), we can write

φ(σ) ≤
∫ σ

0

√
1 + log

(
1 +

4||Fk+1||2rcr,β̄h−1

u

)
du ,

For σ = σr,k, we get after the change of variable v =
4||Fk+1||2,rcr,β̄σr,kh

−1

u

φ(σr,k) ≤ max (‖Fk‖2r, ‖Fk+1‖2r) cr,β̄

(
1 + h−1

∫ ∞
h−1

√
log(1 + v)dv

v2

)
.

By Lemma A.6, we get for a universal constant B > 0 that

φ(σr,k) ≤ Bmax (‖Fk‖2r‖Fk+1‖2r) cr,β̄
(

1 +
√

log (1 + h−1)
)
.

In the particular context of Corollary 4.1, we use the fact that ‖Fk‖2r can be
bounded by max(1,K4k/(4+m)) and cr,β̄ by a constant only depending on the param-
eters K,L, s,m
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5.4 Proof of the main results
The proof of Theorem 2.1 is similar to that of Theorem 2.2 but is simplified by
the fact that the bandwidth hn is non-random. Hence we omit it and provide
the proofs of Lemma 2.1 and Theorem 2.2.

Proof of Lemma 2.1. The bound of the mean squared error of the empirical
variance is standard. So we only provide the main arguments which yield the
uniform bound over all θ such that Eθ

[
|Y0|4

]
≤ K.

The cumulants of the shot-noise process can be easily derived (see for in-
stance [5][Section 6.2.]). For an integer m ≥ 1 and a sequence of positive
numbers s1 ≤ · · · ≤ sm, we have

Cum(Xs1 , . . . , Xsm) = λEθ [Y m0 ]
∫ s1

−∞
e−α(s1+···+sm−mt)dt

= λ

αm
Eθ [Y m0 ] e−α

∑m

k=2
(sk−s1) .

Since we supposed that Eθ
[
|Y0|4

]
≤ K, there exists some C > 0 only depending

on K such that, for any integer m ≤ 4,

Cum(Xs1 , . . . , Xsm) ≤ λC

α
e−α

∑m

k=2
(sk−s1) .

Expressing the mean squared error Eθ
[(
σ̂2
n − σ2

θ

)2] with such cumulants of
order at most four then yields the conclusion of the lemma.

Proof of Theorem 2.2. Using that x 7→ 1/(1 + x) has a derivative beetween −1
and 0 over x ≥ 0, we get from (19) that∣∣∣δ̂n − δ∣∣∣ ≤ 3α2

λ2

∣∣σ̂2
n − σ2

θ

∣∣
Thus Lemma 2.1 and the Markov inequality imply that, for any ε > 0,

lim
n→∞

sup
θ∈Θ(K,L,s,1)

Pθ
(
|δ̂n − δ| > ε

)
= 0 . (41)

In the following, we set

δ2
∆= δ + 3α

8λ
(
1 +K2/5

) = 3α
8λ

(
4

1 + Eθ [Y 2
0 ] + 1

1 +K2/5

)
≤ 15α

8λ (1 + Eθ [Y 2
0 ]) , (42)

and hn,2
∆= (δ2 log(n))−1/2. That is, hn,2 corresponds to hn with δ̂n replaced by

this (asymptotically bigger) δ2. It follows from these definitions that

δ̂n < δ2 ⇒ h−1
n < h−1

n,2 . (43)
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Furthermore, we denote by θ0
n the random function defined by :

θ̂0
n(x) ∆= max

(
0, 1

2π

∫ h−1
n

−h−1
n

e−ixuϕY0(u)du
)
. (44)

Since θ ∈ Θ(K,L, s, 1) and s > 1/2, we have that F [θ] is integrable and thus

θ(x) = max
(

0, 1
2π

∫
R

e−ixuϕY0(u)du
)
, (45)

where we used that θ ≥ 0. We decompose the error in infinite norm as

‖θ − θ̂n‖∞ ≤ ‖θ − θ̂0
n‖∞ + ‖θ̂0

n − θ̂n‖∞
∆= An,1 +An,2 (46)

It follows from (46) that, for any M ′ > 0,

Pθ
(
‖θ − θ̂n‖∞ > M ′

)
≤ Pθ (An,1 > M ′/2) + Pθ (An,2 > M ′/2)

≤ Pθ (An,1 > M ′/2) + Pθ
(
An,2 > M ′/2, δ̂n ≤ δ2

)
+ Pθ

(
δ̂n > δ2

)
. (47)

To control the last term, we observe that from (41) and the definition (42) of
δ2, we have

lim sup
n

sup
θ∈Θ(K,L,s,1)

Pθ
(
δ̂n > δ2

)
= 0 . (48)

Let us now bound the term involving An,1 in (47). From (44) and (45), we
get

‖θ − θ̂0
n‖∞ ≤

1
π

∫ ∞
h−1
n

|ϕY0(u)|du

= 1
π

∫ ∞
th−1
n

∣∣u−susϕY0(u)
∣∣du

≤ 1
π

(∫ ∞
h−1
n

|u|−2s du
)1/2(∫ ∞

h−1
n

|usϕY0(u)|2 du
)1/2

≤ L1/2

π

h
s−1/2
n

2s− 1 .

where we used the Cauchy-Schwartz inequality and the assumption that θ ∈
Θ(K,L, s, 1). Hence we obtain that, for all θ ∈ Θ(K,L, s, 1)

Pθ
(
An,1 > M hs−1/2

n /2
)
≤ Pθ

(
ĥs−1/2
n >

(2s− 1)Mπ

2L1/2 hs−1/2
n

)
≤ Pθ

(
1 < 2L1/2

(2s− 1)Mπ

)
.

21



Since M > 2L1/2/(2s− 1)π, we get

lim sup
n

sup
θ∈Θ(K,L,s,1)

Pθ
(
An,1 > M hs−1/2

n /2
)

= 0 . (49)

We conclude with a bound of the term involving An,2 in (47). By (12), we have

An,2 ≤
α

λπ

∫ h−1
n

−h−1
n

∣∣∣∣ϕ′X0
(u)

ϕX0(u) −
ϕ̂′n(u)
ϕ̂n(u)1|ϕ̂n(u)|≥κn

∣∣∣∣du
≤ α

λπ
h−1
n sup
|u|≤h−1

n

∣∣∣∣ϕ′X0
(u)

ϕX0(u) −
ϕ̂′n(u)
ϕ̂n(u)1|ϕ̂n(u)|≥κn

∣∣∣∣
≤ α

λπ
h−1
n

(
sup
|u|≤h−1

n

∣∣∣∣ϕ′X0
(u)

ϕX0(u) −
ϕ̂′n(u)
ϕ̂n(u)

∣∣∣∣1|ϕ̂n(u)|>κn + sup
|u|≤h−1

n

|Ψ(u)|1|ϕ̂n(u)|≤κn

)
∆= An,3 +An,4

where we introduced the function Ψ defined by

Ψ(u) ∆=
ϕ′X0

(u)
ϕX0(u) = ϕY0(u)− 1

u
(50)

By the mean-value theorem, we thus have
sup
u∈R
|Ψ(u)| ≤ sup

u∈R

∣∣ϕ′Y0
(u)
∣∣ ≤ Eθ [|Y0|] ≤ K1/5 .

Writing the term ϕ′X0
ϕX0
− ϕ̂′n

ϕ̂n
as
(
ϕ′X0
ϕX0
− ϕ′X0

ϕ̂n

)
+
(
ϕ′X0
ϕ̂n
− ϕ̂′n

ϕ̂n

)
, the term An,3 can

be bounded as follows.

h−1
n sup
|u|≤h−1

n

∣∣∣∣ϕ′X0
(u)

ϕX0(u) −
ϕ̂′n(u)
ϕ̂n(u)

∣∣∣∣ 1|ϕ̂n(u)|>κn

≤ h−1
n κ−1

n sup
|u|≤h−1

n

|Ψ(u)| |ϕ̂n(u)− ϕX0(u)|+ h−1
n κ−1

n sup
|u|≤h−1

n

∣∣ϕ̂′n(u)− ϕ′X0
(u)
∣∣

Using this result and (43), we have for any M ′ > 0

Pθ
(
An,3 > M ′, δ̂n ≤ δ2

)
≤ Pθ

(
h−1
n κ−1

n K1/5 sup
|u|≤h−1

n

∣∣ϕ̂′n(u)− ϕ′X0
(u)
∣∣ > M ′/2, δ̂n ≤ δ2

)

+ Pθ

(
h−1
n κ−1

n sup
|u|≤h−1

n

|ϕ̂n(u)− ϕX0(u)| > M ′/2, δ̂n ≤ δ2

)
.

Combining with Markov’s inequality and (43), we get

Pθ
(
An,3 > M ′, δ̂n ≤ δ2

)
≤

2h−1
n,2κ

−1
n K1/5Eθ

[
sup|u|≤h−1

n,2

∣∣ϕ̂′n(u)− ϕ′X0
(u)
∣∣]

M ′

+
2h−1

n,2κ
−1
n Eθ

[
sup|u|≤h−1

n,2
|ϕ̂n(u)− ϕX0(u)|

]
M ′

.
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The two terms on the right hand side can be bounded using Corollary 4.1 with
r = 5/4. It gives

Eθ

 sup
|u|≤h−1

n,2

∣∣ϕ̂′n(u)− ϕ′X0
(u)
∣∣ ≤ B K4/5

(
1 +

√
log(1 + h−1

n,2)
)

n1/2

and

Eθ

 sup
|u|≤h−1

n,2

|ϕ̂n(u)− ϕX0(u)|

 ≤ B
(

1 +
√

log(1 + h−1
n,2)
)

n1/2 .

In the following, for two positive quantities P and Q, possibly depending on θ
and n we use the notation

P . Q⇐⇒ for all n ≥ 3, sup
θ∈Θ(K,L,s,m)

P

Q
<∞ . (51)

(P is less thanQ up to a multiplicative constant uniform over θ ∈ Θ(K,L, s,m)).
We thus have that

Pθ
(
An,3 > M hs−1/2

n , δ̂n ≤ δ2
)
.

1 +
√

log(1 + h−1
n,2)

M κn h
s−1/2
n,2 n1/2h

1/2
n,2

.
1 +

√
log(1 + h−1

n,2)
n1/64hsn,2

.
log(n)s/2

√
log (log (n))

n1/64 (52)

where we used the fact that hn,2 = (δ2 log(n))−1/2 ≥ (15α log(n)/(8λ))−1/2

by (42).
We now bound An,4. Remark that

Pθ
(
{∃u ∈

[
−h−1

n , h−1
n

]
, |ϕ̂n(u)| ≤ κn} ∩ {δ̂n ≤ δ2}

)
≤ Pθ

(
inf

|u|≤h−1
n,2

|ϕ̂n(u)| ≤ κn

)
,

where we used (43). Since with Lemma (A.5) and cθ
∆= λ Eθ[Y 2

0 ]
4α

inf
|u|≤h−1

n,2

|ϕ̂n(u)| ≥ inf
|u|≤h−1

n,2

|ϕ̂X0(u)| − sup
|u|≤h−1

n,2

|ϕ̂n(u)− ϕX0(u)|

≥ e−cθh
−2
n,2 − sup

|u|≤h−1
n,2

|ϕ̂n(u)− ϕX0(u)| ,

we thus get by definition of An,4,

Pθ
(
An,4 > 0, δ̂n ≤ δ2

)
≤ Pθ

 sup
|u|≤h−1

n,2

|ϕ̂n(u)− ϕX0(u)| ≥ e−cθh
−2
n,2 − κn

 .
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From the definition of the sequences (hn,2) and (κn), we have

e−cθh
−2
n,2 − κn = n−cθδ2 − n−31/64 .

By (42), we have cθδ2 ≤ 15/32 and thus the two previous displays yield

Pθ
(
An,4 > 0, δ̂n ≤ δ2

)
≤ Pθ

 sup
|u|≤h−1

n,2

|ϕ̂n(u)− ϕX0(u)| ≥ 1
2n15/32

 .

Applying Corollary 4.1 with the Markov inequality, and using the notation .
introduced in (51), we thus get that

Pθ
(
An,4 > 0, δ̂n ≤ δ2

)
. n15/32−1/2

(
1 +

√
log(1 + h−1

n,2)
)

. n−1/32
√

log log(n) , (53)

where we used that hn,2 = (δ2 log(n))−1/2 ≥ (15α log(n)/(8λ))−1/2 by (42).
From (52) and (53), since An,2 ≤ An,3 +An,4, we finally get that

lim
M→∞

lim sup
n

sup
θ∈Θ(K,L,s,m)

Pθ
(
An,2 > M hs−1/2

n /2, δ̂n ≤ δ2
)

= 0 . (54)

Equations (48), (47), (49) and (54) imply (20) and the proof is concluded.

A Useful lemmas
The following classical embedding will be useful.

Lemma A.1 (Sobolev embedding). Let K,L,m > 0 and s > 1/2. Let θ ∈
Θ(K,L, s,m) defined in (15). Then, for any γ ∈ (0, (s − 1/2) ∧ 1), there is a
constant C > 0 depending on L, s and γ such that, for every real numbers x, y,

|θ(x)− θ(y)| ≤ C |x− y|γ , (55)

where

C = 3
2πL

1/2
(∫

R

|ξ|2γ

(1 + |ξ|2)s dξ
)1/2

. (56)

The following result is used in the proof of Proposition 5.3.

Lemma A.2. Let K,L,m > 0 and s > 1/2. Let γ ∈ (0, (s − 1/2) ∧ 1) and
θ ∈ Θ(K,L, s,m). Then, there exists 0 < a ≤ TK such that

inf
a≤x≤a+∆

θ(x) ≥ 1
16(2K)−1/(4+m) ,

where TK = (2K)−1/(γ(4+m)), ∆ = (2K)−1/(γ(4+m))(16C)−1/γ with C defined
by (56).
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Proof. We first show that, for every T > 0, we have

sup
|x|≤T

θ(x) ≥ (2T )−1
(

1− T−(4+m)K
)
,

Denote by Y a random variable with p.d.f θ belonging to the class Θ(K,L, s,m).
On the one side, we have

P (|Y | ≤ T ) ≤ 2T sup
|x|≤T

θ(x)

and on the other side

P (|Y | ≤ T ) = 1− P (|Y | > T ) ≥ 1− E
[
|Y |4+m]T−(4+m) ≥

(
1− T−(4+m)K

)
,

where the first inequality is obtained via an application of the Markov inequality.
Setting TK = (2K)1/(4+m), we thus have

sup
|x|≤TK

θ(x) ≥ (4TK)−1 .

Moreover, since θ is continuous, we can without loss of generality suppose
that there exists a positive number a in the interval (0, TK ] such that

θ(a) ≥ (8TK)−1 .

From Lemma A.1, there exists a positive number ∆ = (16TKC)−1/γ , indepen-
dent of the choice of θ such that

inf
x∈[a,a+∆]

θ(x) ≥ (16TK)−1.

Lemma A.3. Let K,L,m, α > 0 and s > 1/2. Let γ ∈ (0, (s − 1/2) ∧ 1) and
θ ∈ Θ(K,L, s,m). Define TK = (2K)−1/(4+m), ∆ = (2K)−1/(γ(4+m))(16C)−1/γ

with C defined by (56) and let δ be a positive number satisfying

1 < δ < min
(

eα, TK + ∆
TK

)
.

For any strictly positive v, define the function θ̌ by θ̌(v) = 1
αv

∫ veα

v
θ(x)dx .

Then, there exists 0 < a ≤ TK such that

inf
a≤v≤(a+∆)/δ

θ̌(v) ≥ (2K)−1/(4+m)(δ − 1)
16α .

Proof. From Lemma A.2, we have

inf
a≤x≤a+∆

θ(x) ≥ 1
16(2K)−1/(4+m) ,
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for some a ∈ (0, TK ]. Let δ ∈ (1, eα ∧ TK+∆
TK

) . Since (a + ∆)/a is a decreasing
function in a for a fixed ∆ and 0 ≤ a ≤ TK , we have that

(a+ ∆)/a ≥ TK + ∆
TK

so that δ < (a+ ∆)/a . For any v ∈ [a, (a+ ∆)/δ], we have

θ̌(v) = 1
αv

∫ veα

v

θ(x)dx ≥ 1
αv

∫ vδ

v

θ(x)dx

≥ vδ − v
αv

inf
x∈[v,vδ]

θ(x)

≥ εK(δ − 1)
α

.

which concludes the proof.

The following elementary lemma generalizes the previous result for convolu-
tions of lower bounded functions.

Lemma A.4. Let θ, θ̃ two positive functions such that there exist positive num-
bers a, b, c, d, ε and ε̃ satisfying

θ(x) ≥ ε1[a,b](x) and θ̃(x) ≥ ε̃1[c,d](x)

Then, for any δ satisfying 0 < δ < (b− a) ∧ (d− c), we have(
θ ? θ̃

)
(x) ≥ min(1, δ) εε̃ 1[a+c+δ,b+d−δ](x) . (57)

As a consequence, for any integer n in N∗, we have

θ?n(x) ≥
(

min
(

1, b− a2n

))n−1
εn1[na+(b−a)/2,nb−(b−a)/2](x) . (58)

A lower bound of the decay of the absolute value of the shot-noise charac-
teristic function is given by the following lemma.

Lemma A.5. Assume that the process X given by (1) under (SN-1)-(SN-2)
with some positive constant α and λ. Let K,L,m and s be positive constants.
Then for all θ ∈ Θ(K,L, s,m) and u ∈ R, we have

|ϕX0(u)| ≥ exp
(
−λ K

2/(4+m)

4α u2
)

(59)

Proof. From (9) and (11), we have for all u ∈ R

ϕX0(u) = exp
(
λ

α

∫
R

(∫ ux

0

eiv − 1
v

dv
)
θ(x)dx

)
(60)
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If follows that

|ϕX0(u)| = exp
(
λ

α

∫
R

(∫ ux

0

cos(v)− 1
v

dv
)
θ(x)dx

)
≥ exp

(
−λ
α

∫
R

(∫ ux

0

v

2dv
)
θ(x)dx

)
= exp

(
−λ
α

∫
R

(ux)2

4 θ(x)dx
)

= exp
(
−
λEθ

[
Y 2

0
]

4α u2

)

≥ exp
(
−λK

2/(4+m)

4α u2
)

where we used that cos(v)− 1 ≥ −v2/2 for any real v in the second line.

Lemma A.6. There exists a constant B > 0 such that, for all u > 0, we have

u

∫ ∞
u

√
log (1 + v)dv

v2 ≤ B
√

log (1 + u)

Proof. For all u > 0, we have

u

∫ ∞
u

√
log (1 + v)dv

v2 =
∫ ∞

1

√
log (1 + uy)dy

y2 ≤
√
u

∫ ∞
1

dy
y3/2 = 2

√
u .

As u→ 0,
√

log (1 + u) is equivalent to
√
u.

As u → ∞, the Karamata’s Theorem (see [17][Theorem 0.6]) applied to the
function u →

√
log(1 + u)u−2, which is regularly varying with index −2, gives

that
u

∫ ∞
u

√
log (1 + v)dv

v2 ∼
u→∞

√
log (1 + u) ,

which concludes the proof.

27



References
[1] Chadi Barakat, Patrick Thiran, Gianluca Iannaccone, Christophe Diot, and

Philippe Owezarski. Modeling internet backbone traffic at the flow level.
Signal Processing, IEEE Transactions on, 51(8):2111–2124, 2003.

[2] Lennart Bondesson. Shot-noise distributions. In Generalized Gamma Con-
volutions and Related Classes of Distributions and Densities, pages 152–
159. Springer, 1992.

[3] Peter J Brockwell and Eckhard Schlemm. Parametric estimation of the
driving lévy process of multivariate carma processes from discrete observa-
tions. Journal of Multivariate Analysis, 115:217–251, 2013.

[4] Pierluigi Claps, A Giordano, and F Laio. Advances in shot noise modeling
of daily streamflows. Advances in water resources, 28(9):992–1000, 2005.

[5] Daryl J Daley and David Vere-Jones. An introduction to the theory of point
processes, volume 2. Springer, 1988.

[6] Yurii Aleksandrovich Davydov. Mixing conditions for markov chains.
Teoriya Veroyatnostei i ee Primeneniya, 18(2):321–338, 1973.

[7] Paul Doukhan, Pascal Massart, and Emmanuel Rio. Invariance principles
for absolutely regular empirical processes. In Annales de l’IHP Probabilités
et statistiques, volume 31, pages 393–427. Elsevier, 1995.

[8] Shota Gugushvili. Nonparametric estimation of the characteristic triplet
of a discretely observed lévy process. Journal of Nonparametric Statistics,
21(3):321–343, 2009.

[9] Bruce M Hill et al. A simple general approach to inference about the tail
of a distribution. The annals of statistics, 3(5):1163–1174, 1975.

[10] Nicolas Hohn and Anthony N Burkitt. Shot noise in the leaky integrate-
and-fire neuron. Physical Review E, 63(3):031902, 2001.

[11] Arun V Holden. Models of the stochastic activity of neurones. Springer-
Verlag, 1976.

[12] Aleksander M Iksanov and Zbigniew J Jurek. Shot noise distributions and
selfdecomposability. 2003.

[13] Geurt Jongbloed, Frank H Van Der Meulen, Aad W Van Der Vaart,
et al. Nonparametric inference for lévy-driven ornstein-uhlenbeck processes.
Bernoulli, 11(5):759–791, 2005.

[14] Glenn F Knoll and Glenn F Knoll. Radiation detection and measurement,
volume 3. Wiley New York, 1989.

28



[15] Hiroki Masuda et al. On multidimensional ornstein-uhlenbeck processes
driven by a general lévy process. Bernoulli, 10(1):97–120, 2004.

[16] Michael H Neumann and Markus Reiß. Nonparametric estimation for lévy
processes from low-frequency observations. Bernoulli, 15(1):223–248, 2009.

[17] Sidney I Resnick. Extreme values, regular variation, and point processes.
Springer, 2007.

[18] Ken-Iti Sato. Lévy processes and infinitely divisible distributions. Cam-
bridge university press, 1999.

[19] Raul E Sequeira and John A Gubner. Intensity estimation from shot-noise
data. Signal Processing, IEEE Transactions on, 43(6):1527–1531, 1995.

[20] Raúl E Sequeira and John A Gubner. Blind intensity estimation from
shot-noise data. Signal Processing, IEEE Transactions on, 45(2):421–433,
1997.

[21] Pekka Tuominen and Richard L Tweedie. Subgeometric rates of conver-
gence of f-ergodic markov chains. Advances in Applied Probability, pages
775–798, 1994.

[22] Aad W Van Der Vaart and Jon A Wellner. Weak Convergence and Empir-
ical Processes. Springer, 1996.

[23] VA Volkonskii and Yu A Rozanov. Some limit theorems for random func-
tions. i. Theory of Probability & Its Applications, 4(2):178–197, 1959.

[24] Yuanhui Xiao and Robert Lund. Inference for shot noise. Statistical infer-
ence for stochastic processes, 9(1):77–96, 2006.

29


	Introduction
	Main result
	Inversion formula
	Nonparametric estimation

	Experimental results
	Error bounds for the empirical characteristic function and its derivatives
	Proofs
	Preliminary results on the exponential shot noise
	Proof of Theorem 4.2
	Proof of Theorem 4.1
	Proof of the main results

	Useful lemmas

