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Abstract

This paper addresses the generalisation of stationary Hawkes processes in order to allow
for a time-evolving second-order analysis. Motivated by the concept of locally stationary
autoregressive processes, we apply however inherently different techniques to describe the
time-varying dynamics of self-exciting point processes. In particular we derive a stationary
approximation of the Laplace transform of a locally stationary Hawkes process. This allows
us to define a local intensity function and a local Bartlett spectrum which can be used to
compute approximations of first and second order moments of the process. We complete the
paper by some insightful simulation studies.
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1. Introduction

Introductory work on Hawkes processes, an important class of self-exciting point processes,
and in particular on the analysis of its spectrum, the Bartlett spectrum (i.e. the Fourier
transform of the autocovariance of the process) is to be found mainly in the following seminal
references: [1, 2, 3, 4]. A. Hawkes ([1]) was the first to provide for the definition of a point
process with a self-exciting behaviour. Intuitively similar to a Poisson process, the conditional
intensity function of a Hawkes process is however stochastic as it depends on its own past
events. Whereas Hawkes’ model was introduced to reproduce the ripple effects generated after
the occurrence of an earthquake, applications of this model have become since then really
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numerous in many and diverse fields such as seismology (see e.g., [5], for a recent review),
biology ([6] on genome analysis) or neuroscience ([7] on brain data analysis), to name but a
few. Recently, this model is also being widely used in finance where self-exciting processes led
to many applications such as microstructure dynamics ([8]), order arrival rate modelling and
high-frequency data ([9], [10], [11]), financial price modelling across scales ([12]), and many
others. For a really comprehensive list of applications of Hawkes processes (including very
recent applications on limit order book modelling as in [13]) we refer also to the recent PhD
thesis of A. Iuga ([14]).

In this paper, we contribute by generalising existing models of stationary Hawkes processes
(i.e. with time-invariant second order structure) to model and capture their time-varying
dynamics. To begin with, we recall some basic features of a stationary linear Hawkes process
with fertility p defined on the positive half-line. The conditional intensity function λ(t) of
such a process is driven by the fertility function taken at the time distances to previous points
of the process, i.e. λ(t) is given by

λ(t) = ν +

∫ t−

−∞
p(t− s) N(ds) = ν +

∑

ti<t

p(t− ti) . (1)

Here the first display is to be read as the stochastic Stieltjes integral of the “fertility” function
p with respect to the counting process N(t). As will be derived in more detail in Section 2.2
below, linear self-exciting processes can also be viewed as clusters of point processes. For a
classical Hawkes process on the real line, these point processes are Poisson processes, and
each event is one of two types: an immigrant process or an offspring process. The immigrants
follow a Poisson process and define the centers of so-called Poisson clusters. As immigrants
and offsprings can be referred to as “main shocks” and “after shocks” respectively, an inter-
esting interpretation arises which is useful not only in seismology but also in high-frequency
finance. We refer to [10] who exploit that Hawkes processes capture the dynamics in financial
point processes remarkably well, and hence, their cluster property can serve as a reasonable
description of the timing structure of events on financial markets.

In the more general case of spatial Hawkes processes with values in R
ℓ, the cluster dy-

namics and interpretation remains the same, except that the immigrants now constitute a
more general spatial point process whereas conditionally on a given point s of the Hawkes
process (“population”), independently of the previous history, the resulting offspring process
is Poisson as it is in the one-dimensional case, again with non-negative (and locally integrable)
fertility rate p(· − s). Spatial Hawkes processes provide natural models for e.g. a population
of reproducing individuals or the development of an epidemic.

For spatial Hawkes process in general we refer, e.g., to [15] whereas [4] consider (unmarked)
stationary spatial Hawkes processes and obtain the Bartlett spectrum, assuming the existence
of the Bartlett spectrum of the immigrant process.

In this paper we develop a new non-parametric model of a generalised (temporal, spatial,
or spatio-temporal) Hawkes process with a view on analysis of its Bartlett spectrum. Indeed,
the challenge and motivation for our new approach comes from the fact that these days, in
many of the afore-mentioned applications such as genomics or high-frequency data analysis
practitioners have to face (potentially very) long data stretches. Hence the assumption of a
stationary model is no more realistic and needs to be given up. In terms of spectral analysis
of Hawkes processes, this means that a time-frequency analysis is required which calls for the
development of a mathematical model: this model should allow for a rigorous definition of a
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generalised, i.e. time-varying, Bartlett spectrum. In this paper we adopt the point of view
of local stationarity as introduced by Dahlhaus (see, e.g., [16]) in order to accomplish this
task. Here the idea is that the observed Hawkes process is embedded into a doubly-indexed
sequence of processes which, as sample size T becomes larger and larger, can locally be better
and better approximated by a stationary Hawkes model. Similarities to the treatment of
locally stationary autoregressive processes exist, e.g. already formally by letting the fertility
function p(t−s) in equation (1) now depend explicitly on time taking the form p(t−s; t), akin
the time-dependency of the autoregressive coefficients of a locally stationary process (see our
formal development in Section 2.4). However as the dynamics of self-exciting point processes
are different from autoregression on the real line, the techniques employed here are inherently
different. In particular we derive a stationary approximation of the Laplace transform of the
underlying non-stationary Hawkes process by a local Laplace transform. This allows us to
define a local intensity function and and a local Bartlett spectrum of the locally stationary
Hawkes process. We show how those are used to compute in particular approximations of
first and second order moments of the process, including rates of convergence. However, our
derivations more generally allow for treatment of all its moments (under suitable and, since
the Laplace function characterizes the distribution of a point process uniquely, we can also
derive convergence in distribution of the non-stationary towards the locally approximating
stationary Hawkes process. We complete the paper by providing for some numerical studies
where we simulate some insightful examples of Hawkes processes with time-varying intensity
and Bartlett spectrum, respectively. We also indicate empirically how to estimate these
quantities from sampled data. The development of some asymptotic estimation theory using
the new framework presented in this paper is left for future work.

This paper is organised as follows. Section 2 introduces some notation used throughout the
paper and the formal definitions of non-stationary and locally stationary Hawkes processes,
as well as the assumptions related to these definitions. The main results are to be found
in Section 3, namely a local approximation of the Laplace functional of a locally stationary
Hawkes process by that of a stationary one. We also explain how to derive approximations of
cumulants and of the mean density. In Section 4, we focus on the one-dimensional case and
develop the notion of a local Bartlett spectrum, also discussing how to estimate this quantity
from data. This corresponds to a time frequency analysis for non-stationary point processes.
Section 5 provides some numerical experiments illustrating our approach. Finally, Section 6
contains the proofs of the main results. A postponed proof and a useful lemma have been
placed in Appendix Appendix A for convenience.

2. Main definitions and assumptions

2.1. Conventions and notation

Throughout the paper, ℓ is a positive integer and we work with point processes and
measures on the space R

ℓ endowed with the Borel σ-field. For any x ∈ R
ℓ, we denote by |x|

the Euclidean norm of x.
A point process is identified with a random measure with discrete support, N =

∑
k δTk

typically, where δt is the Dirac measure at point t and {Tk} the corresponding (countable)
random set of points. We use the notation µ(g) for a measure µ and a function g to express∫
g dµ when convenient. In particular, for a measurable set A, µ(A) = µ(1A) and for a point

process N , N(g) =
∑

k g(Tk). The shift operator of lag t is denoted by St. For a set A,
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St(A) = {x− t, x ∈ A} and for a function g, St(g) = g(· + t), so that St(1A) = 1St(A). One
can then compose a measure µ with St, yielding for a function g, µ ◦ St(g) = µ(g(·+ t).

We also need some notation for the functional norms which we deal with in this work.
Usual Lq-norms are denoted by |h|q,

|h|q =

(∫
|h|q
)1/q

,

for q ∈ [1,∞) and |h|∞ is the essential supremum on R
ℓ,

|h|∞ = ess sup
t∈Rℓ

|h(t)| .

We also use the following weighted L1 norm to control the decay of a function h : Rℓ → R

and a given positive exponent β,

|h|(β) :=
∣∣∣h× | · |β

∣∣∣
1
=

∫
|h(s)| |s|β ds .

Let now m be a positive integer and U be an open subset of Cm. Define O (U) be the set
of holomorphic functions from U to R. We will use the compact open topology presented in
[17, Section 1.4]. The convergence under this topology is equivalent to uniform convergence
over all compact subsets of U , and, more importantly, O (U) endowed with this topology is
complete. We denote, for all h ∈ O (U) and compact sets K ⊂ U ,

|h|O,K = sup
z∈K

|h(z)| .

Recall that a holomorphic function h on U is infinitely differentiable on U and that, for any
multi-index α = (α1, . . . , αm) ∈ N

m, the partial derivative operator ∂α = (∂/∂z1)
α1 . . . (∂/∂zm)αm

is continuous over O (U) for the compact open topology. Let us denote, for r > 0, the poly-
torus Tm

r (z) = {z′ ∈ C
m : |z′i − zi| = r} and the polydisc Pm

r (z) = {z′ ∈ C
m : |z′i − zi| < r}.

We have moreover from [17, Theorem 1.3.3] that the partial derivatives satisfies the Cauchy
inequality

|∂αh(z)| ≤
α!

rα
sup
Tm
r (z)

|h(z)| , (2)

where α! = α1! . . . αm! and rα = rα1 . . . rαm . We denote by Ō (U) the set of Rℓ × U → R

functions h such that, for all t ∈ R
ℓ, z 7→ h(t, z) belongs to O (U). The translation operator

Ss is extended to this setting by defining S̄s for any s ∈ R
ℓ as the operator

S̄s(h) : (t, z) 7→ h(t+ s, z) ,

that is, we translate h by the lag s only through its first parameter. When h ∈ Ō (U), for
any multi-index α = (α1, . . . , αm), we denote by ∂α

Oh the function obtained by differentiating
with respect to the second variable, that is, for all t ∈ R

ℓ and z = (z1, . . . , zm) ∈ U ,

∂α
Oh(t, z) =

(
∂

∂z1

)α1

. . .

(
∂

∂zm

)αm

h(t, z) .

An immediate consequence of the Cauchy inequality is that for h ∈ Ō (U), one can integrate
with respect to t and obtain a holomorphic function, providing some simple condition on the
integrability of the local supremum, see Lemma 15 for a precise statement.
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For any p ∈ [1,∞], we further denote by Ōp (U) the subset of functions h ∈ Ō (U) such
that function t 7→ supz∈K h(t, z) has finite Lp-norm on R

ℓ for all compact set K ⊂ U . We
denote

|h|Ō,K,p :=

∣∣∣∣sup
z∈K

|h(·, z)|

∣∣∣∣
p

.

We also denote by BŌ (r;K, p) the set of all functions g ∈ Ōp (U) such that |g|Ō,K,p < r.
Finally, for a given exponent β > 0 and a compact set K ⊂ U , we use the following norm for
h ∈ Ō (U),

|h|Ō,K,(β) =

∣∣∣∣sup
z∈K

|h(·, z)|

∣∣∣∣
(β)

.

The corresponding balls are denoted, for given r > 0,

BŌ (r;K, (β)) = {h ∈ Ō (U) : |h|Ō,K,(β) < r} .

2.2. Hawkes processes as cluster processes

Although intuitive, the definition of Hawkes processes through its conditional intensity
as in (1) is only adapted to time point processes. A more general approach for defining
Hawkes processes applying for points in the space R

ℓ is to see them as a special case of
cluster processes. Cluster processes are point processes constructed via conditioning on the
realization of a so-called center process, usually a Poisson point process, denoted PPP in the
sequel (see [3, Section 6.3] for example). We consider here point processes on the space R

ℓ.
Let Nc be a PPP with intensity measure µc. This is the starting point for the following

mechanism as it represents the immigrants which appear spontaneously (in fact, later on
they will represent those parents which are not generated by the iteration in the offspring
generation). At each center point t of Nc, a point process N(·|t) is generated (we will explain
below how these descendants of t are generated). The cluster process N is defined as the set
of all the immigrants (points of the PPP Nc) and of all the descendants (realizations of the
point process N(·|t)) generated at each center point t of Nc:

N(A) = Nc

(
N(A|·)

)
, for every bounded A in B(R) . (3)

Remark 1. Recall our notation : here, we have to do with an integration over center points t
using the measure Nc. In fact, N(·|t) is called the component process (see [3, Definition 6.3.I])
generated at position t and the process N is merely the superposition of all these components
when the center points t runs over the support of Nc.

Hawkes processes are cluster processes for which Nc is a PPP and N(·|t) are independent
branching processes in which each point t has offspring defined as a PPP with finite intensity
measure µ(·|t). We detail below the iterative scheme for generating all generations of the
components N(·|t). For the moment, let us precise that standard Hawkes processes are made
stationary by assuming that Nc is a homogeneous PPP on the whole space R

ℓ and t 7→ µ(·|t)
is shift invariant, µ(·|t) = µ ◦ St, where µ is fixed (i.e.µ = µ(·|0)). In this case, the condition
µ(R) < 1 insures that the obtained process has finite intensity (density) m = µc/(1 − µ(R))
(see [3, Example 6.3(c)]). The second order properties are also derived in this case (see
[4, 15] for additional insights). In the following section, we extend the Hawkes model to the
non-stationary case by authorizing Nc to be non-homogeneous and t 7→ µ(·|t) to be non-shift
invariant.
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2.3. Non-stationary Hawkes processes

In this section, we consider non-stationary Hawkes processes, namely t 7→ µc(t) and
t 7→ µ(·|t) may not be shift invariant. The usual cluster construction still applies in this case.
Namely, each component N(·|t) can be constructed as the superposition of point processes
defined iteratively. For each center point t,

N (0)(·|t) = δt

N (n+1)(·|t) =

∫
m(n)(·|s)N (n)(ds|t), for all n ≥ 0 ,

where {m(n)(·|s), s ∈ R
ℓ, n ≥ 0} are independent PPPs with respective intensity measure

µ(·|s). The resulting component at center point t is defined as

N(·|t) =
∑

n≥0

N (n)(·|t) . (4)

We observe that for any non-negative (test) function g defined on R, we have

E[N (0)(g|t)] = g(t)

and, for all n ≥ 0,

E

[
N (n+1)(g|t)

]
= E

[
E[N (n+1)(g|t) | N (n)(·|t)]

]
= E

[
N (n)

(
µ(g|·)

∣∣∣ t
)]

.

Hence, we obtain, for any n ≥ 1,

E

[
N (n)(g|t)

]
= µ⋆n(g|t) , (5)

where µ⋆n is defined iteratively as follows: for any g,
{

µ⋆0(g|t) = g(t)

µ⋆(n+1)(g|t) = µ
(
µ⋆n(g|·)

∣∣∣ t
)
, for any n ≥ 0 .

(6)

We also note that the intensity measure of a component generated at center point t reads

M1(·|t) = E[N(·|t)] =
∑

n≥0

µ⋆n(·|t) . (7)

It is easy to see that if µ(·|t) = µ ◦ St, then µ⋆n(·|t) = µ⋆n ◦ St, where µ⋆n now denotes the
standard convolution of measures. Then (7) with t = 0 corresponds to the formula given for
M1(A|0) in [3, Page 184].

From (7), we deduce that, for any non-negative function g,

M1(g|t) = g(t) +
∑

n≥1

µ⋆n(g|t)

and we conclude that

M1(g) = E[N(g)] =

∫
M1(g|t)µc(dt) . (8)

Note however that at this point, N so defined may not have locally finite intensity measure
(E[N(g)] may be infinite for g bounded with compact support). This can be guaranteed by
the following result.
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Theorem 1. Suppose that

ζ1 := sup
t∈R

µ
(
R
ℓ
∣∣t
)
< 1 . (9)

Then the component process N(·|t) defined by (4) has finite moment measure satisfying

M1(R
ℓ|t) = E[N(Rℓ|t)] ≤

1

1− ζ1
.

Proof. Observe that, for any non-negative function g, we have by (6) that, for all n ≥ 0 and
all t ∈ R

ℓ,

µ⋆(n+1)(g|t) ≤ ζ1 sup
(
µ⋆(n)(g|·)

)
,

where sup(g) denotes the sup of the function g over Rℓ. By induction, we get that

sup
(
µ⋆(n)(g|·)

)
≤ ζn1 sup(g) ,

and the proof is concluded by applying (7).

Consequently, applying (8), we conclude that under Condition (9), if µc is locally finite,
then N admits a locally finite intensity measure. Note also that Condition (9) corresponds
to the usual condition in the stationary case, see [3, Example 6.3(c)].

2.4. Density assumption

We now assume that the intensity measures µc and µ(·|t) admit densities with respect to
the Lebesgue measure on R

ℓ. We denote by λc the density of µc and by d(· − t; t) the density
of µ(·|t). In this notation the fact that t 7→ µ(·|t) is not shift invariant is apparent in the
fact that d(s − t; t) does not depend on s− t only but also on t. Note also that the function
d(s− t; t) can be equivalently rewritten as a function of s− t and s (using an obvious change

of variable), which we do by introducing the function p(·; ·) defined on R
ℓ2 by setting

p(s− t; s) = d(s− t; t), for all s, t ∈ R
ℓ .

When localizing the non-stationary behavior, it will turn out to be more convenient to use the
description with the density p, that we call the (non-stationary) fertility function, rather than
with d. The intuitive reason is the following: coarsely speaking, d(s − t; t) ds = p(s− t; s) ds
represents the probability that a point t has an offspring occurring around location s in an
elementary set ds. From this view, the location s corresponds to the position where the
probability mass is located and it is more convenient that the second argument corresponds
to this location rather than the location t of the generating point.

Definition 1 (Non-stationary Hawkes process). We say that the so defined non stationary
Hawkes process has immigrant intensity function λc and varying fertility function p(·; ·). By
Theorem 1 and (8), if

ζ1 = sup
t∈Rℓ

∫
p(s; t) ds < 1 and |λc|∞ < ∞ , (10)

then the point process admits a density function (the density of M1) which is uniformly
bounded by |λc|∞ /(1− ζ1).
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The following argument will also be useful to simplify the proofs, since we often look at
the behavior of N around a specific position t, which amounts to consider the behavior of
N ◦ S−t around the origin.

Remark 2. Let N be a non-stationary Hawkes process with center intensity λc and fertility
function p(·; ·). For any t ∈ R, the distribution of the shifted process N ◦ S−t defined by
N ◦ S−t(g) = N(g(· − t)) for a function g, is that of a non-stationary Hawkes process with
center intensity λc(·+ t) and fertility function p(·; ·+ t).

2.5. Locally stationary Hawkes processes

The non-stationary Hawkes processes under the density assumption, can still evolve quite
arbitrarily in the space, as the functional parameters λc and p(·; ·) can be quite general. The
stationary case corresponds to the case where λc is constant and p(·; ·) is constant over its
second argument. This can be interpreted as a particular set of parameters for λc and p(·; ·),
which we explicitly exhibit by introducing the following notation. In the stationary case, the
immigrant intensity λc and fertility function p(·; ·) only depend on the constant λ<S>

c and the
function p<S> : Rℓ → R+ by setting

λc(t) =: λ<S>
c , for all t ∈ R (11)

p(s; t) = p<S> (s), for all t ∈ R and s ≥ 0 . (12)

We now wish to define a model of point process that can be locally interpreted as a
stationary Hawkes process, in the same fashion as locally stationary autoregressive processes
in time series (see [16]). The model is a doubly indexed point process NT (A), A ∈ B(R)
such that for each T > 0, NT is a non-stationary Hawkes process defined as previously.
Here T correspond to the size of the observation window so that we only observe NT (A)
for Borel sets A ⊆ TD, where D is a fixed domain and TD = {Tx, x ∈ D}. The collection
(NT )T>0 of non-stationary Hawkes processes are defined using the same µc and t 7→ µ(·|t)
but scaled differently so that, if the observation window has the form TD, then it matches
the corresponding fixed domain D for these parameters. In this way, while the observations
evolve in TD the parameter of interest is defined independently of T on the domain D. We call
this model a locally stationary Hawkes process and denote the fixed parameters by λ<LS>

c and
p<LS>(·; ·). For ℓ = 1, as for the locally stationary time series, one typically takes D = [0, 1].

Definition 2 (Locally stationary Hawkes process). A locally stationary Hawkes process with
local immigrant intensity λ<LS>

c and local fertility function p<LS>(·; ·) is a collection (NT )T>0

of non-stationary Hawkes processes with respective immigrant intensity and fertility function
given by λcT (t) = λ<LS>

c (t/T ) and varying fertility function given by pT (·; t) = p<LS>(·; t/T ).

For a given real location t, the scaled location t/T is typically called an absolute location
in D and denoted by u or v.

As explained in Definition 1, the following assumption, which corresponds to (10), guar-
antees that, for all T > 0, the non-stationary Hawkes process NT admits a uniformly bounded
intensity function.

(LS-1) We have

ζ<LS>
1 := sup

u∈Rℓ

∫
p<LS>(t;u) dt < 1 and

∣∣λ<LS>
c

∣∣
∞

< ∞ . (13)
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Under this assumption, moreover, for each absolute location u ∈ R
ℓ, the function t 7→

p<LS>(t;u) satisfies the required condition for the fertility function of a stationary Hawkes pro-
cess. In the following, under (LS-1), for any absolute location u, we denote byN(·;u) a station-
ary Hawkes process with immigrant intensity λ<LS>

c (u) and fertility function t 7→ p<LS>(t;u).

3. Main results

3.1. Local approximation of the log Laplace functional

An important tool for statistical applications is to have a local approximation of NT as
T → ∞. Let us precise what we mean by “local” here. Let a fixed absolute location u ∈ R

ℓ

be given. Then NT shifted at the real location Tu, namely NT ◦ S−Tu approximately follows
the distribution of a stationary Hawkes process with intensity λ<S> := λ<LS>

c (u) and fertility
function p<S> := p<LS>(·;u). To this aim the following remark will be useful.

Remark 3. By Remark 2, the exact distribution of NT ◦ S−Tu can be obtained by replacing
λ<LS>
c (t/T ) with λ<LS>

c ((t + Tu)/T ) = λ<LS>
c (u + t/T ) and p<LS>(r; t/T ) with p<LS>(r; (t+

Tu)/T ) = p<LS>(r;u + t/T ). In other words, λ<LS>
c (v) is replaced by λ<LS>

c (u + v) and
p<LS>(s; v) by p<LS>(s;u+ v).

We examine local approximations of the distribution of the locally stationary Hawkes
process (NT )T>0 through the Laplace functional which is an efficient tool to describe the
distribution of point processes. We denote the Laplace functional of NT by

LT (g) = E [expNT (g)] = E

[
exp

∫
NT (g|t) NcT (dt)

]
,

where NcT and NT (·|t) are the corresponding center process and component process generated
by a center at location t, respectively. Our goal is to derive the asymptotic behavior of
LT (S

−Tug) as T → ∞ for any given absolute location u and any function g. Under appropriate
condition, it should converge to the Laplace functional applied on g of a stationary Hawkes
process with immigrant constant intensity given by λ<LS>

c (u) and with fertility function given
by p<LS>(·;u). It is in fact more interesting to investigate convergence of the log-Laplace
functional using the norm |·|O,K defined in Section 2.1 by authorizing g to depend on an
auxiliary variable z ∈ U . We will, by convenient abuse of notation, continue to write L(g) in
this setting, to denote the function z 7→ L(g(·, z)) defined on U . Therefore using the notation
S̄ introduced in Section 2.1, we now investigate the behavior, as T → ∞, for any given u ∈ R

ℓ,
of

LT (S̄
−Tug) : z 7→ E [expNT (g(· − Tu, z))] ,

seen as a function defined on z ∈ U . An example of application is to obtain approximations
of cumulants of arbitrary orders, since they can be obtained as

Cum(N(g1), . . . , N(gm)) = ∂1m |z=0m logL(z1g1 + · · · + zmgm) , (14)

where 1m and 0m denote the m-dimensional vectors filled with ones and zeros, respectively.
We develop this idea in Section 3.2.

The following assumptions use some of the norms introduced in Section 2.1.

(LS-2) We have |λ<LS>
c |∞ < ∞ and

ξ(β)c := sup
u 6=v

|λ<LS>
c (v)− λ<LS>

c (u)|

|v − u|β
< ∞ .

9



(LS-3) We have
∣∣ξ(β)

∣∣
1
< ∞, where

ξ(β)(r) := sup
u 6=v

|p<LS>(r; v) − p<LS>(r;u)|

|v − u|β
.

(LS-4) We have

ζ<LS>
∞ := sup

u∈R

∣∣p<LS>(.;u)
∣∣
∞

< ∞ , (15)

ζ<LS>
(β) = sup

u∈R

∣∣p<LS>(·;u)
∣∣
(β)

< ∞ . (16)

These assumptions can be interpreted as smoothness conditions on λ<LS>
c ( (LS-2)) and on

p<LS>(·; ·) with respect to its second argument ( (LS-3)) and some uniform decreasing condi-
tion on p<LS>(·; ·) with respect to its first argument ( (LS-4)).

We can now state the main result, where the appearing norms |·|O,K , |·|Ō,K,q, |·|Ō,K,(β)

and the sets BŌ (R;K, q) are all defined in Section 2.1. In this theorem, for any u ∈ R
ℓ,

we denote by L(·;u) the Laplace functional of the stationary Hawkes process with constant
intensity λ<LS>

c (u) and fertility function p<LS>(·;u).

Theorem 2. Let β ∈ (0, 1]. Assume (LS-1), (LS-2), (LS-3), (LS-4). Let g ∈ Ō1 (U)∩Ō∞ (U)
such that for all compact set K ⊂ U ,

|g|Ō,K,1 <

(
−
1

2
log ζ<LS>

1

)
(ζ<LS>

1 )1/2(ζ<LS>
∞ )−1(1− ζ<LS>

1 )1/2 , (17)

|g|Ō,K,∞ < −
1

2
log ζ<LS>

1 − (ζ<LS>
1 )−1/2(ζ<LS>

∞ )(1 − ζ<LS>
1 )−1/2 |g|Ō,K,1 . (18)

Then for each T > 0 and each u ∈ R
ℓ, z 7→ LT (g(·, z)) and z 7→ L(g(·, z);u) can be expressed

as
LT (g) = exp ◦KT (g) and L(g;u) = exp ◦K(g;u) ,

where KT (g) and K(g;u) are holomorphic functions on U . Moreover, for all T > 0, u ∈ R
ℓ

and all compact sets K ⊂ U ,

∣∣KT (S̄
−Tug)−K(g;u)

∣∣
O,K

≤ C1

(
|g|Ō,K,(β) +C2 |g|Ō,K,1

)
T−β , (19)

where

C1 =

∣∣ξ(β)
∣∣
1
|λ<LS>

c |∞(
(ζ<LS>

1 )1/2 − ζ<LS>
1

)2 +
ξ
(β)
c

(ζ<LS>
1 )1/2 − ζ<LS>

1

and C2 =
ζ<LS>
(β)

(ζ<LS>
1 )1/2 − ζ<LS>

1

(20)

Proof. This result requires preliminary results to be found in Sections 6.1 (about the deriva-
tion of the log-Laplace functional for non-stationary Hawkes processes) and 6.2 (about local
approximations for log-Laplace functional of the component processes NT (·|t)). The proof is
then completed in Section 6.3.

Remark 4. Since we assume g ∈ Ō1 (U) in Theorem 2, we know that |g|Ō,K,1 < ∞ in the
right-hand side of (19). However the assumptions on g do not guarantee that |g|Ō,K,(β) < ∞.
This condition needs to be verified in order to apply (19) meaningfully, this fact should be
checked first.
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This theorem shows that for T large, the Laplace functional of the non-stationary Hawkes
process NT translated at location Tu can be approximated by that of the stationary Hawkes
process N(·;u). It moreover provides in (19) a rate of convergence T−β of this approximation
in an adequate norm. Since the Laplace function characterizes the distribution of Point
process, it is not surprising that an immediate corollary of Theorem 2 is that NT translated
at location Tu converges in distribution to N(·;u) as T → ∞. Recall that the set of locally
finite nonnegative Borel measures on R

ℓ endowed with the usual weak convergence of locally
finite measures can be equipped with a metric to constitute a complete separable metric space,
see [3, Theorem A2.6.III].

Corollary 3. Let β ∈ (0, 1]. Assume (LS-1), (LS-2), (LS-3), (LS-4). Then, for any u ∈ R
ℓ,

as T → ∞, the point process NT ◦ S−Tu converges in distribution to N(·;u).

Proof. By [18, Proposition 11.1.VIII], it is sufficient to show that, for a given continuous and
compactly supported function h : Rℓ → R, the random variable NT (S

−Tuh) converges in
distribution to N(h;u). Let us define, for all (t, z) ∈ R

ℓ × C, g(t, z) = z g(t). Let U be the
open ball of C with center 0 and radius r > 0. Then for any q ∈ [1,∞] and any compact set
K ⊂ U , we have |g|Ō,K,q ≤ r |h|q, and similarly, |g|Ō,K,(β) ≤ r |h|(β). Since |h|q and |h|(β) are
finite, we conclude that g satisfies (17) and (18) for r small enough and that |g|Ō,K,(β) < ∞.

Thus Theorem 2 gives that for r > 0 small enough, we have that z 7→ E[exp(z NT (S
−Tuh))]

and z 7→ E[exp(z N(h;u))] are holomorphic on U and the former converges uniformly to the
latter. This is enough to insure the convergence in distribution of NT (S

−Tuh) to N(h;u).

Observe that in Corollary 3, we do not exploit the rate of convergence T−β established in
Theorem 2. Approximations on the cumulants will be more precise in that respect.

3.2. Local approximation of the cumulants

Recall that the cumulant of any order can be obtained from the log-Laplace functional
through Equation (14), which is valid whenever g1, . . . , gm satisfy E[|N(gj)|

m] < ∞. Using
Theorem 2, we obtain the following result for approximating the cumulants of NT translated
at location Tu with those of N(·;u).

Theorem 4. Let β ∈ (0, 1]. Assume (LS-1), (LS-2), (LS-3), (LS-4). Then, for any T
and any u ∈ R

ℓ and all bounded integrable functions h : R
ℓ → R, the random variables

NT (h) and N(h;u) admit finite exponential moments, that is, there exists a > 0 such that
E[exp (a |NT (h)|)] and E[exp (a |N(h;u)|)] are finite. Let moreover for any m ≥ 1, g1, . . . , gm
be real valued bounded integrable functions on R

ℓ. Then for any T and any u ∈ R
ℓ, we have

∣∣Cum
(
NT (S

−Tug1), . . . , NT (S
−Tugm)

)
− Cum(N(g1;u), . . . , N(gm;u))

∣∣

≤
2m−1C1 T

−β

(− log ζ<LS>
1 )

m−1





∑

j=1,...,m

(
|gj |(β) + C2 |gj |1

)








∑

j=1,...,m

(
|gj |∞ + C3 |gj|1

)




m−1

,

where C1 and C2 are defined in (20), and

C3 =
ζ<LS>
∞

(ζ<LS>
1 )1/2(1− ζ<LS>

1 )1/2
. (21)

Proof. The proof of this result is given in Section 6.4.
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3.3. Local mean density

Applying Theorem 4 with m = 1, we obtain that the intensity measure M1T of the non-
stationary point process NT can be approximated by the intensity measure M<LS>

1 (·;u) of the
stationary Hawkes process N(·;u), namely for any bounded and integrable function g defined
on R

ℓ, we have

∣∣M1T (S
−Tug)−M<LS>

1 (g;u)
∣∣ ≤ C

(
|g|(β) + |g|1

)
T−β ,

where C is a positive constant. This result can be stated in a handier way by using the
densities of M1T and M<LS>

1 (·;u). As seen in Definition 1, for all T > 0, M1T admits a
uniformly bounded density, hereafter denoted by m1T . Since N(·;u) is a stationary Hawkes
process, we know from [3, Eq. (6.3.26) in Example 6.3(c)] that M<LS>

1 (·;u) admits a constant
mean density

m<LS>
1 (u) =

λ<LS>
c (u)

1−
∫
p<LS>(·;u)

. (22)

We call m<LS>
1 (u) the local mean density at absolute location u. We have the following result.

Corollary 5. Let β ∈ (0, 1]. Assume (LS-1), (LS-2), (LS-3), (LS-4). Then, for any T , NT

admits a density function m1T satisfying

|m1T |∞ ≤
|λ<LS>

c |∞
ℓ− ζ<LS>

1

.

Moreover, we have, for all u ∈ R
ℓ, T > 0 and b > 0,

ess sup
t : |t−Tu|≤b

∣∣m1T (t)−m<LS>
1 (u)

∣∣ ≤ C1

(
C2 + bβ

)
T−β , (23)

where m<LS>
1 (u) is defined in (22), and C1 and C2 are defined in (20).

Proof. The existence and uniform boundedness of m1T is embedded in Definition 1. Let now
u ∈ R

ℓ, T > 0 and b > 0. Applying Theorem 4 with m = 1, we have for all bounded and
integrable functions g defined on R

ℓ,

∣∣∣∣
∫

g(t− Tu)m1,T (t) dt−
λc(u)

1−
∫
p<LS>(·;u)

∫
g

∣∣∣∣ ≤ C1

(
|g|(β) + C2 |g|1

)
T−β .

We define the function f on R
ℓ by

f(t) = m1T (t)−
λc(u)

1−
∫
p<LS>(·;u)

,

so that the previous display reads

∣∣∣∣
∫

g(t− Tu)f(t)dt

∣∣∣∣ ≤ C1

(
|g|(β) + C2 |g|1

)
T−β . (24)

Let a be any positive number strictly smaller than the left-hand side of (23), that is, a <
ess sup|t−Tu|≤b |f(t)|. Then there exists a Borel set A ⊂ {t : |t − Tu| ≤ b} with positive
Lebesgue measure,

∫ 1A > 0, such that |f(t)| ≥ a for all t ∈ A. Let g be the function defined

12



so that g(t − Tu) is equal to the sign of f(t) if t ∈ A and to zero everywhere else. Then we
get that

a

∫ 1A ≤

∫

A
|f | =

∣∣∣∣
∫

g(t− Tu)f(t)dt

∣∣∣∣

On the other hand we have |g|1 =
∫ 1A and

|g|(β) =

∫
|g(s)| |s|β dt ≤

∫

A
|t− Tu|β dt ≤ bβ

∫ 1A ,

where we used that A ⊂ {t : |t− Tu| ≤ b}. Inserting these bounds in (24) gives that

a

∫ 1A ≤ C1

(
bβ
∫ 1A + C2

∫ 1A) T−β .

Simplifying by
∫ 1A > 0 and letting a tend to ess sup|t−Tu|≤b |f(t)|, we get the result.

4. Time-frequency analysis of point processes

One of the benefits of locally stationary time series is that they provide a non-parametric
statistical framework for time frequency analysis of time series, see [19] for a recent contribu-
tion. We show here how such ideas can be applied to locally stationary processes. Throughout
this section, we take ℓ = 1 for sake of convenience and D = [0, 1]. Most of the definitions and
results easily extend to ℓ ≥ 2.

4.1. Local Bartlett spectrum

Following [3, Proposition 8.2.I], the Bartlett spectrum Γ of a second order stationary
point process N on R is defined as the (unique) non-negative measure on R such that, for
any bounded and compactly supported function f on R,

Var
(
N(f)

)
= Γ(|f̂ |2) =

∫ ∣∣∣f̂(ω)
∣∣∣
2
Γ(dω) ,

where f̂ denotes the Fourier transform of f ,

f̂(ω) =

∫
f(t) e−itω dt .

For stationary Hawkes processes with immigrant intensity λc and fertility function p, the
Bartlett spectrum admits a density given by

Γ(dω) =
λc

2π(1−
∫
p)

|1− p̂(ω)|−2 dω ,

see [3, Example 8.2(e)]. Under (LS-1), applying this result to the stationary Hawkes process
N(·;u), we have, for any bounded and compactly supported function f ,

Var
(
N(f ;u)

)
= Γ<LS>

(
|f̂ |2;u

)
, (25)

where

Γ<LS>(dω;u) =
λ<LS>
c (u)

2π(1−
∫
p<LS>(·;u))

∣∣1− p̂<LS>(ω;u)
∣∣−2

dω , (26)
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with

p̂<LS>(ω;u) =

∫
p<LS>(t;u) e−itω dt .

We call Γ<LS>(·;u) the local Bartlett spectrum at absolute location u. We have the following
result, which says that, although NT is not stationary, for T large enough, its variance in the
neighborhood of Tu can be approximated by using the local Bartlett spectrum at absolute
location u.

Corollary 6. Let β ∈ (0, 1]. Assume (LS-1), (LS-2), (LS-3), (LS-4). Then, for all u ∈ R,
T > 0, and all bounded functions f supported inside [−b, b] for some b > 0, we have

∣∣∣Var
(
NT (S

−Tuf)
)
− Γ<LS>(|f̂ |2;u)

∣∣∣ ≤ 8C1 (b
β + C2)

− log ζ<LS>
1

|f |1 (|f |∞ + C3 |f |1) T
−β , (27)

where Γ<LS>(·;u) is defined in (26), C1 and C2 are defined in (20), and C3 is defined in (21).

Proof. Let u ∈ R, T > 0 and f be a bounded and compactly supported function. Applying
Theorem 4 with g1 = g2 = f and (25), we get that

∣∣∣Var
(
NT (S

−Tuf)
)
− Γ<LS>(|f̂ |2;u)

∣∣∣ ≤ 8C1 T
−β

− log ζ<LS>
1

(
|f |(β) + C2 |f |1

)
(|f |∞ + C3 |f |1) .

To conclude the proof we observe that if f is supported inside [−b, b], then |f |(β) ≤ bβ |f |1.

4.2. Kernel estimation of the local Bartlett spectrum

Let f be a test function and m a moment function (such as m(x) = x, m(x) = x2, . . . ).
Let b1 be a given time bandwidth and u0 a fixed time in [0; 1] (namely, u0 = t0/T with
t0 ∈ [0;T ]). We build an estimator of E[m(N(f ;u0))] based on the empirical observations of
NT and defined by

Ê[m ◦NT (f);w] :=
1

T

∫
m ◦NT (f(· − t))w(t/T ) dt,

where w denotes a weight function: w = Wb1,u0
: u 7→ b−1

1 W ((u − u0)/b1) for some fixed
kernel function W . In practice, f should be compactly supported, so that this integral can be
computed from a finite set of observations in [0, T ]. Let K be a real valued kernel compactly
supported and its Fourier transform K̂ such that

∫
|K̂(ω)|2 dω = 1. Let b2 be a given

frequency bandwidth and ω0 a fixed frequency. We wish to estimate the quantity

γb2(ω0;u0) :=

∫
1

b2
|K̂((ω − ω0)/b2)|

2 Γ<LS>(dω;u0), (28)

which in turn is an approximation of the density of Γ<LS>(·;u0) at ω0 when it exists. We

denote by f = Kb2,ω0
the kernel having Fourier transform ω 7→ b

−1/2
2 K̂((ω − ω0)/b2). Con-

sequently, by inverse Fourier transform, we get that Kb2,ω0
(t) = b

1/2
2 eiω0tK(b2t). Finally, we

take m(x) = x2 and m(x) = x successively to define

γ̂b2,b1(ω0;u0) = Ê
(
|NT (Kb2,ω0

)|2;Wb1,u0

)
−
∣∣∣Ê (NT (Kb2,ω0

);Wb1,u0
)
∣∣∣
2
. (29)

The quantity γ̂b2,b1(ω0;u0) is a natural estimator of Var
(
NT (S

−Tu0Kb2,ω0
)
)
. Thus, by (25), (28)

and Corollary 6, γ̂b2,b1(ω0;u0) is a sensible estimator of γb2(ω0;u0).
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5. Numerical experiments

5.1. Simulation of locally stationary Hawkes processes

Following Definition 2, we consider a locally stationary Hawkes process (NT )T>0 with
local immigrant intensity λ<LS>

c and local fertility function p<LS>(·; ·). Provided that s 7→
p<LS>(s;u) is supported on the positive half line for all u, the conditional intensity of a
stationary Hawkes process recalled in (1) can be extended to the non-stationary Hawkes
processes NT , namely

λT (t) := λ<LS>
c (t/T ) +

∑

ti<t

p<LS>(t− ti; t/T ) ,

where (ti)i∈Z denote the points of NT . It follows that, for a given T > 0, the non-stationary
Hawkes process NT can be simulated over the interval [0, T ] by using Ogata’s modified thin-
ning algorithm (see [20]). This algorithm is a recursive algorithm which only requires that,
having simulated the process up to time t, one is able to provide an upper bound

M(t) ≥ sup
s∈[t;T ]

(
λ<LS>
c (s/T ) +

∑

ti<t

p<LS>(s− ti; s/T )

)
.

Choosing λ<LS>
c and p<LS>(·; ·) adequately, one can for instance use the bound

M(t) = sup
u∈R

(
λ<LS>
c (u)

)
+
∑

ti<t

sup
u∈R

sup
s>t

(
p<LS>(s− ti;u)

)
.

A classical drawback of Ogata’s algorithm is that, in order to initiate the simulation, say
at time t = 0, one needs in principle to have the points ti < 0 at hand, which is of course
not the case. In a stationary context, one can use a burn-in period and shift the time origin
to start the process in a close to steady state. In a non-stationary context, one is in fact
allowed to assume the process to be empty on the negative half line, which would correspond
to have λ<LS>

c (u) = 0 for all u < 0. This setting makes Ogata’s algorithm perfect to simulate
NT over [0, T ]. However, to avoid border effects at the beginning of the sample, we used a
burn-in period to initiate the process in a close to steady state, which corresponds to setting
λ<LS>
c (u) = λ<LS>

c (0) and p<LS>(·;u) = p<LS>(·; 0) for all u < 0.

5.2. Examples

We consider a specific class of examples by taking a constant immigrant intensity λc and
by focusing on a local fertility function with the shape of a Gamma distribution. Namely, for
positive parameters δ, ζ, η ≥ 1 and θ, let us denote by pG the fertility function defined for all
s ∈ R by

pG(s; δ, ζ, η, θ) = ζ(s− δ)η−1 θ
ηe−θ(s−δ)

G(η)
1s>δ

with G(x) =
∫∞
0 sx−1e−s ds denoting the usual Gamma function. Note that δ is a time-shift

parameter which induces a periodic phenomenon in the self-exciting generating process: each
event may generate a new event only after a delay δ. For this specific fertility function, we can
easily compute the quantities appearing in our assumptions (e.g.

∫
pG = ζ and pG(s; δ, ζ, η, θ)

is maximal for s = η−1
θ + δ) and we can exactly compute the corresponding mean density

mG1(δ, ζ, η, θ) and Bartlett spectrum ΓG(dω; δ, ζ, η, θ):
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• mG1(δ, ζ, η, θ) =
λc

1− ζ
and

• ΓG(dω; δ, ζ, η, θ) =
mG1(δ, ζ, η, θ)

2π|1− p̂G(ω; δ, ζ, η, θ)|2
dω, with

p̂G(ω; δ, ζ, η, θ) = ζe−iωδ

(
1 +

iω

θ

)−η

.

Now, letting the parameters depend on the real time u provides the definition of a local
fertility function,

p<LS>(s;u) = pG(s; δ(u), ζ(u), η(u), θ(u)) .

The local mean density m<LS>
1 (u) and the local Bartlett spectrum Γ<LS>(·;u) can be defined

accordingly from mG1 and ΓG, respectively. In our examples, the shape parameter η remains
constant and the other parameters are Lipschitz functions of u, assumed to be constant outside
the interval (0, 1). Such a choice for the fertility function satisfies (LS-1), (LS-3) and (LS-4)
with β = 1 provided that

ζ<LS>
1 = sup

u∈[0,1]
ζ(u) < 1 , inf

u∈[0,1]
θ(u) > 0 ,

and, if δ is not constant, one has moreover to assume that η ≥ 2. We focus our numerical
study on two examples:

• Example 1 [Exponential case without delay]:

λc ≡ 0.5, δ ≡ 0, η ≡ 1, ζ(u) = (cos(2πu) + 2)/4 and θ(u) = cos(2πu) + 3/2
for u ∈ [0, 1].

• Example 2 [Gamma case with varying delay]:

λc ≡ 0.5, η ≡ 2, ζ ≡ 0.5, θ ≡ 1 and
δ(u) = (6− 10u)× 1[0;1/2](u) + (10u − 4)× 1(1/2;1](u) for u ∈ [0, 1].

Note that Example 1 has a time varying local mean density m<LS>
1 (since ζ varies) and

Example 1 has a constant local mean density m<LS>
1 . Both examples, however, exhibit time

varying local Bartlett spectra Γ<LS>.
Figure 1 displays the theoretical local intensity m<LS>

1 (as a function of the absolute time
u ∈ [0, 1]) and the theoretical local Bartlett spectrum Γ<LS> (as a function of the absolute
time u ∈ [0, 1] and the frequency ω ∈ [0, 1]) for Example 1 and Figure 2 displays the theoretical
local Bartlett spectrum Γ<LS> (as a function of the absolute time u ∈ [0, 1] and the frequency
ω ∈ [0, 2]) for Example 2. Because in the second example, the delay δ is varying linearly
between 6 and 1 for u going from 0 to 1/2 and then back to 6 for u ∈ [1/2, 1], we see the
spectral content evolving accordingly with a peak frequency evolving as the reciprocal of
the delay (increasing for u going from 0 to 1/2 and then decreasing for u ∈ [1/2, 1]). We
can simulate one trajectory of NT for each example over the interval [0;T ] by using Ogata’s
algorithm as described in Section 5.1.

Figure 3 and Figure 4 display the associated conditional intensities λT (t) for t ∈ [0, T ]
for these two simulated point processes with T = 10000. The fact that the mean density is
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varying in Example 1 is visible on Figure 3 as the conditional intensity sharply decreases in
the middle of the sample. On the contrary, the conditional intensity is fluctuating around the
same average in Figure 4 which matches the fact that the mean intensity is constant in this
example.

Based on these two samples of NT , we finally compute the estimator γ̂b2,b1(ω;u) defined
by (29), over an appropriate grid for (ω;u). We set b2 = 0.05 and b1 = 0.1 in these experiments
and we used [−1/2, 1/2]-supported triangular shapes for kernels K and W . The obtained
estimates of the local intensity and local Bartlett spectra for Example 1 and Example 2 are
respectively given in Figure 5 and in Figure 6.

We observe that the estimated local Bartlett spectra show the main features of the true
underlying spectra, which illustrates the approximation result derived in Corollary 6.

Figure 1: Theoretical local intensity (top) and Bartlett spectrum (bottom) for Example 1 .
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Figure 2: Theoretical local Bartlett spectrum for Example 2 .

Figure 3: Conditional intensity function of a simulated Hawkes process with respect to Example 1, with
T = 10000.

Figure 4: Conditional intensity function of a simulated Hawkes process with respect to Example 2, with
T = 10000.
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Figure 5: Estimation of the local intensity (top) and of the local Bartlett spectrum (bottom) for Example
1 .

Figure 6: Estimation of the local and Bartlett spectrum for Example 2.
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6. Proofs

6.1. Laplace functional of non-stationary Hawkes processes

In this section we suppose that N is a non-stationary Hawkes process as defined in Sec-
tion 2.3 with immigrant intensity function λc and varying fertility function p(·; ·) satisfy-
ing (10).

We define
L(g|t) = E [expN(g|t)] , (30)

conditioning on Nc, and using that Nc is a PPP with intensity λc, we get that, for well chosen
functions g,

L(g) = E

[
exp

∫
logL(g|t) Nc(dt)

]
= exp

∫
(L(g|t)− 1) λc(t) dt . (31)

By (4) and monotone convergence we have, for all non-negative functions g,

L(g|t) = lim
n→∞

Ln(g|t) , (32)

where

Ln(g|t) = E

[
exp

n∑

k=0

N (k)(g|t)

]
.

Moreover, by dominated convergence, Equation (32) remains valid for complex valued func-
tions g, provided that L(|g| | t) < ∞. Let us define, for functions g and h and t ∈ R

ℓ,

[Φg(h)](t) = g(t) +

∫ (
eh(s) − 1

)
p(s− t; s) ds . (33)

The integral in (33) is always defined if h is non-negative but may not be finite. If h is complex-
valued, Φg(h) is well defined whenever Φg(|h|) < ∞. We denote the n-th composition of the
operator Φg by

Φn
g = Φg ◦ · · · ◦ Φg︸ ︷︷ ︸

n terms

.

We have the following relationship between Φg(t) and Ln(g|t).

Proposition 7. We have, for all non-negative functions g and all t ∈ R
ℓ,

Ln(g|t) = exp
([
Φn
g (g)

]
(t)
)
.

The same formula holds if g is complex valued, provided that Ln(|g| | t) < ∞.

Proof. See Section Appendix A.

We now consider a function g depending on a second variable z ∈ U . We thus extend the
definition of the operator Φg to functions h defined on R

ℓ × U as

[Φg(h)](t, z) = g(t, z) +

∫
(eh(s,z) − 1) p(s− t; s)ds t ∈ R, z ∈ U , (34)

with some adequate conditions on p(·; ·), g and h to guarantee that the integral is well defined.
In particular, in order to obtain a control of the derivatives of L(g(·, z)|t) with respect to z,
we work within the space Ō (U) by adding some control on adequate norms of the functions
(see Section 2.1 where the main notation is introduced). Proposition 7 and (32) immediately
provide a way to express L(g|t).
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Corollary 8. Let g ∈ Ō (U). Suppose that there exists a compact set K ⊂ U and r∞ > 0
such that the sequence

(
Φn
g (|g|)

)
n≥1

takes its values in BŌ (r∞;K,∞). Then, we have, for

(Lebesgue) almost every t ∈ R
ℓ and all z ∈ K,

L(g(·, z)|t) = lim
n→∞

exp
(
[Φn

g (g)](t, z)
)
.

The following lemma will be useful.

Lemma 9. Let p ∈ [1,∞]. Suppose that h, h′ ∈ Ōp (U) ∩ Ō∞ (U). Then eh − eh
′

also belong
to Ōp (U) and, for any compact set K, if |h|Ō,K,∞ ∨ |h′|Ō,K,∞ ≤ r∞, we have

∣∣∣eh − eh
′

∣∣∣
Ō,K,p

≤ er∞
∣∣h− h′

∣∣
Ō,K,p

. (35)

Let now β > 0 and suppose that h, h′ ∈ Ō∞ (U). Then, for any compact set K, if |h|Ō,K,∞ ∨
|h′|Ō,K,∞ ≤ r∞ and |h− h′|Ō,K,(β) < ∞, we have

∣∣∣eh − eh
′

∣∣∣
Ō,K,(β)

≤ er∞
∣∣h− h′

∣∣
Ō,K,(β)

. (36)

Proof. This follows directly from the inequality |ex − ey| ≤ ey(y − x) valid for all y ≥ x.

Mimicking the notation introduced in (LS-1) and (LS-4), we consider the following as-
sumption.

(NS-1) We have ζ1 < 1 and ζ∞ < ∞ where ζq = supt∈Rℓ |p(·; t)|q.

Recall that the first condition in (NS-1) already appeared in (10) of Definition 1. By Lemma 9,
we have that if h ∈ Ō1 (U) ∩ Ō∞ (U) then eh − 1 ∈ Ō1 (U). Consequently, if ζ∞ < ∞, then
we get that, for all t ∈ R

ℓ and compact sets K ⊂ U ,

∫
sup
z∈K

∣∣∣eh(s,z) − 1
∣∣∣ p(s− t; s)ds ≤ ζ∞

∣∣∣eh − 1
∣∣∣
Ō,K,1

< ∞ ,

and, applying Lemma 15 for any t with µ defined as the measure having density s 7→ p(s−t; s),
it follows that, if g ∈ Ō (U), then Φg(h) ∈ Ō (U). Applying this line of reasoning, we get the
following result.

Proposition 10. Suppose that (NS-1) holds. Let g ∈ Ō1 (U) ∩ Ō∞ (U). Then, for all
h ∈ Ō1 (U) ∩ Ō∞ (U), the function (t, z) 7→ [Φg(h)](t, z) in (34) is well defined on R

ℓ × U
and belong to Ō1 (U) ∩ Ō∞ (U). Moreover, for all h, h′ ∈ Ō1 (U) ∩ Ō∞ (U) and compact sets
K ⊂ U ,

(a) |Φg(h)|Ō,K,∞ ≤ |g|Ō,K,∞ + ζ∞
∣∣eh − 1

∣∣
Ō,K,1

,

(b) |Φg(h)|Ō,K,1 ≤ |g|Ō,K,1 + ζ1
∣∣eh − 1

∣∣
Ō,K,1

,

(c) |Φg(h) −Φg(h
′)|Ō,K,1 ≤ ζ1

∣∣∣eh − eh
′

∣∣∣
Ō,K,1

,

We now derive a stability and contraction property on the operator Φg for the norms
|·|Ō,K,1 and |·|Ō,K,∞.
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Proposition 11. Suppose that (NS-1) holds. Let

r∞ ∈ (0,− log ζ1) and r1 ∈
(
0, r∞e−r∞ζ−1

∞

)
. (37)

Then we have

R1 := r1 (1− ζ1e
r∞) ∈ (0, r1) , (38)

R∞ := r∞ − er∞ζ∞r1 ∈ (0, r∞) . (39)

Let K ⊂ U be a compact set and g ∈ BŌ (R1;K, 1) ∩ BŌ (R∞;K,∞). Then BŌ (r1;K, 1) ∩
BŌ (r∞;K,∞) is stable for the operator Φg, which is strictly contracting on this set for the
norm |·|Ō,K,1. More precisely, we have

sup
|Φg(h) − Φg(h

′)|Ō,K,1

|h− h′|Ō,K,1

≤ ζ1e
r∞ < 1 ,

where the sup is taken over all h, h′ in BŌ (r1;K, 1)∩BŌ (r∞;K,∞) such that |h− h′|Ō,K,1 >
0.

Proof. Recall that (NS-1) implies ζ1 < 1. Obviously, (37) then implies 0 < ζ1e
r∞ < 1 and

then (38) and (39). Let now K ⊂ U be a compact set, g ∈ BŌ (R1;K, 1) ∩ BŌ (R∞;K,∞)
and h ∈ BŌ (r1;K, 1) ∩BŌ (r∞;K,∞). By Proposition 10 with Lemma 9, we get that

|Φg(h)|Ō,K,1 ≤ |g|Ō,K,1 + ζ1 e
r∞ |h|Ō,K,1

≤ R1 + ζ1 e
r∞ r1 = r1 .

And, similarly,

|Φg(h)|Ō,K,∞ ≤ |g|Ō,K,∞ + ζ∞ er∞ |h|Ō,K,1

≤ R∞ + ζ∞ er∞ r1 = r∞ .

Then, Φg(h) ∈ BŌ (r1;K, 1) ∩ BŌ (r∞;K,∞). Finally, using again Proposition 10 with
Lemma 9, for all h, h′ in BŌ (r1;K, 1) ∩BŌ (r∞;K,∞),

∣∣Φg(h)− Φg(h
′)
∣∣
Ō,K,1

≤ ζ1 e
r∞
∣∣h− h′

∣∣
Ō,K,1

,

which concludes the proof.

The stability obtained in Proposition 11 allows one to apply Corollary 8 which says that
L(g(·, z)|t) can be expressed as the limit of exp

(
[Φn

g (g)](t, z)
)
as n → ∞ for all z and almost

every t. On the other hand, the space Ō1 (U) endowed with the convergence in the norm
|·|Ō,K,1 for all compact sets K ⊂ U can be made complete by taking equivalent classes
for the equivalence relationship hRh′ if h(t, z) = h′(t, z) for all z ∈ U and almost every
t ∈ R

ℓ. Then the standard fixed point theorem shows that (Φn
g (g))n≥1 converges in Ō1 (U)

to the unique fixed point of Φg, and applying Lemma 9, (exp(Φn
g (g)))n≥1 in fact converges to

(t, z) 7→ L(g(·, z)|t) in Ō1 (U). This is summarized in the following corollary.

Corollary 12. Suppose that (NS-1) holds. Let g ∈ Ō1 (U)∩Ō∞ (U). The following assertions
hold.
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(i) Let K ⊂ U be a compact set. If there exist r1 and r∞ satisfying (37) such that g ∈
BŌ (R1;K, 1)∩BŌ (R∞;K,∞), with R1, R∞ defined by (38) and (39), then the sequence
(Φn

g (g))n≥1 takes its values in BŌ (r1;K, 1) ∩BŌ (r∞;K,∞).

(ii) Suppose that for all compact sets K ⊂ U , there exist r1 and r∞ satisfying (37) such
that g ∈ BŌ (R1;K, 1) ∩ BŌ (R∞;K,∞), with R1, R∞ defined by (38) and (39). Then
logL(g|·) satisfies that, for almost every t ∈ R

ℓ, z 7→ L(g(·, z)|t) is holomorphic on U
and, for all compact sets K ⊂ U ,

lim
n→∞

∫
sup
z∈K

∣∣L(g(·, z)|t) − exp
(
[Φn

g (g)](t, z)
)∣∣ dt = 0 .

Note in particular that applying (31), Lemma 9 and Lemma 15, this corollary implies that
if λc is uniformly bounded on R

ℓ, then z 7→ L(g(·, z)) is holomorphic on U .

6.2. Locally stationary approximation for component point processes

We now consider a locally stationary Hawkes process (NT )T>0 with local immigrant inten-
sity λ<LS>

c and local fertility function p<LS>(·; ·), see Definition 2. Note that, for any T > 0,
Assumptions (LS-1) and (LS-4) imply (NS-1) for p(s; t) = p<LS>(s; t/T ). Hence we can apply
the results derived in Section 6.1 to the non-stationary Hawkes processes NT . Also, for any
fixed u ∈ R

ℓ, the same assumptions imply (NS-1) for p(s; t) = p<LS>(s;u) (this p(s; t) does not
depend on t) and hence we can also apply the results derived in Section 6.1 to the stationary
Hawkes processes N(·;u).

Let us denote by NT (·|t) and N(·|t;u) the component processes at point t of NT and
N(·;u) and let LT (g|t) and L(g|t;u) denote their Laplace functional, defined as in (30). As
in Section 3.1, we will in fact take g depending on two variables (t, z) ∈ R

ℓ×U and make the
convenient abuse of notation to keep denoting NT (g|t), N(g|t;u), LT (g|t) and L(g|t;u) the
corresponding functions defined on U , that is, for instance, [NT (g|t)](z) = NT (g(·, z)|t). And
so, continuing the same example, NT (g|·) is a function defined on R

ℓ × U . The goal of this
section is to approximate, for any given u ∈ R

ℓ, LT (S̄
−Tug|t) with L(g|t;u) as T → ∞.

In the locally stationary setting, we use the notation ζ<LS>
q introduced in (LS-1) with

q = 1 and (LS-4) with q = ∞ so that the conditions on r1 and r∞ in (37) read

r∞ ∈ (0,− log ζ<LS>
1 ) and r1 ∈

(
0, r∞e−r∞(ζ<LS>

∞ )−1
)
. (40)

and the definition R1 and R∞ in (38) and (39) are replaced by

R1 := r1
(
1− ζ<LS>

1 er∞
)
∈ (0, r1) , (41)

R∞ := r∞ − er∞ζ<LS>
∞ r1 ∈ (0, r∞) . (42)

Based on these definitions, we say that g ∈ Ō1 (U) ∩ Ō∞ (U) satisfies Property (P) if the
following holds.

(P) For any compact set K ⊂ U , there exist r1(K) and r∞(K) satisfying (40) such that
g ∈ BŌ (R1(K);K, 1) ∩ BŌ (R∞(K);K,∞), with R1(K), R∞(K) defined as in (41)
and (42).

We have the following result.
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Theorem 13. Suppose that (LS-1), (LS-3) and (LS-4) hold. Let β ∈ (0, 1] and g ∈ Ō1 (U) ∩
Ō∞ (U) satisfying Property (P). Then for all u ∈ R

ℓ and T > 0, and for almost every t ∈ R
ℓ,

z 7→ L(g(·, z)|t;u) and z 7→ LT (g(·, z)|t) are holomorphic on U . Moreover, for all compact
sets K ⊂ U ,

∫
sup
z∈K

∣∣LT (S
−Tug(·, z)|t) − L(g(·, z)|t;u)

∣∣ dt ≤ A(K)T−β
(
|g|Ō,K,(β) +B(K)

)
, (43)

where

A(K) =

∣∣ξ(β)
∣∣
1
e2 r∞(K)

(
1− ζ<LS>

1 er∞(K)
)2 and B(K) = r1(K)er∞(K)ζ<LS>

(β) .

Moreover, we have

∫
sup
z∈K

|L(g(·, z)|t;u) − 1| |t|β dt ≤
er∞(K)

1− ζ<LS>
1 er∞(K)

(
|g|Ō,K,(β) +B(K)

)
. (44)

The proof of Theorem 13 requires some preliminaries. By Remark 3 and since g 7→
L(g|t;u) is translation invariant (for all s, L(Ssg|t;u) = L(g|t;u)), we can take u = 0 without
meaningful loss of generality. For convenience, we denote by p<S> (t) the local fertility function
p<LS>(t; 0) at u = 0.

Following the definition of Φg in (34), we set, for any g ∈ Ō (U),

[ΦT,g(h)](t, z) = g(t, z) +

∫ (
eh(s,z) − 1

)
p<LS>(s− t; s/T ) ds . (45)

[Φ<S>
g (h)](t, z) = g(t, z) +

∫ (
eh(s,z) − 1

)
p<S> (s− t) ds . (46)

The following lemma will be useful.

Lemma 14. Let β ∈ (0, 1]. Suppose that (LS-1) and (LS-4) hold and define r1 and r∞ as
in (37). Let g ∈ BŌ (R1;K, 1) ∩ BŌ (R∞;K,∞) with R1 and R∞ defined by (38) and (39)
respectively. Let r(β) be a constant satisfying

r(β) > (1− er∞ζ<LS>
1 )−1r1e

r∞ζ<LS>
(β) . (47)

Then we have
R(β) := r(β)(1− er∞ζ<LS>

1 )− r1e
r∞ζ<LS>

(β) ∈ (0, r(β)) . (48)

Moreover, for all compact sets K ⊂ U , if g ∈ BŌ (R1;K, 1)∩BŌ (R∞;K,∞)∩BŌ

(
R(β);K, (β)

)
,

then BŌ (r1;K, 1) ∩BŌ (r∞;K,∞) ∩BŌ

(
r(β);K, (β)

)
is stable for the operator Φ<S>

g .

Proof. Let K ⊂ U be a compact set. Suppose that g ∈ BŌ (R1;K, 1) ∩ BŌ (R∞;K,∞) ∩
BŌ

(
R(β);K, (β)

)
. We already know from Proposition 10 that thenBŌ (r1;K, 1)∩BŌ (r∞;K,∞)

is stable for the operator Φg. Let now h ∈ BŌ (r1;K, 1) ∩BŌ (r∞;K,∞) ∩BŌ

(
r(β);K, (β)

)
.

Then we have

∣∣Φ<S>
g (h)

∣∣
Ō,K,(β)

≤ |g|Ō,K,(β) +

∫
sup
z∈K

∣∣∣∣
∫ (

eh(s,z) − 1
)
p<S> (s− t) ds

∣∣∣∣ |t|
β dt

≤ |g|Ō,K,(β) +

∫
sup
z∈K

∣∣∣eh(s,z) − 1
∣∣∣
(∫

p<S> (s− t) |t|βdt

)
ds .
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Observe that, using that |r − s|β ≤ |r|β + |s|β for β ∈ (0, 1], we have, for all s ∈ R
ℓ,

∫
p<S> (s− t) |t|βdt =

∫
p<S> (r) |r − s|βdt ≤

∣∣p<S>
∣∣
(β)

+
∣∣p<S>

∣∣
1
|s|β .

Inserting this bound in the previous display and using Lemma 9, we get that

∣∣Φ<S>
g (h)

∣∣
Ō,K,(β)

≤ |g|Ō,K,(β) + er∞
∣∣p<S>

∣∣
(β)

|h|Ō,K,1 + er∞
∣∣p<S>

∣∣
1
|h|Ō,K,(β)

≤ R(β) + er∞ζ<LS>
(β) r1 + er∞ ζ<LS>

1 r(β) = r(β) ,

where the equality follows from (48).

We can now prove Theorem 13 in the case u = 0.

Proof of Theorem 13. We deduce from the preliminaries that Proposition 11 and Corollary 12
apply for each T > 0 and each u ∈ R

d. Thus for almost every t ∈ R
ℓ, z 7→ L(g(·, z)|t;u) and

z 7→ LT (g(·, z)|t) are holomorphic on U and it only remains to prove the bound (43) for a
given compact set K ⊂ U , again picking the case u = 0 without loss of generality, in which
case we denote L<S> (g|t) = L(g|t; 0). We suppose that

|g|Ō,K,(β) < ∞ . (49)

(Otherwise the right-hand side of (43) is infinite and there is nothing to prove.) Then by
assumption on g and Proposition 11,

B := BŌ (r1(K);K, 1) ∩BŌ (r∞(K);K,∞)

is stable both for ΦT,g and Φ<S>
g and moreover these operators are Lipschitz for the |·|Ō,K,1-

norm with Lipschitz constant
ρ := ζ<LS>

1 er∞ < 1 .

Let us now write, for any n ≥ 1 and all h ∈ B,

∣∣Φn
T,g(h)− Φ<S>n

g (h)
∣∣
Ō,K,1

≤

n−1∑

k=0

∣∣∣Φn−k
T,g ◦ Φ<S>k

g (h)− Φn−k−1
T,g ◦Φ<S>k+1

g (h)
∣∣∣
Ō,K,1

.

Using the Lipschitz property of ΦT,g in B, we get, for all h ∈ B,

∣∣Φn
T,g(h)− Φ<S>n

g (h)
∣∣
Ō,K,1

≤
n−1∑

k=0

ρn−k−1
∣∣∣ΦT,g ◦Φ

<S>k
g (h)− Φ<S>k+1

g (h)
∣∣∣
Ō,K,1

. (50)

Using (LS-3), we have, for all h ∈ B,

∣∣ΦT,g(h)− Φ<S>
g (h)

∣∣
Ō,K,1

=

∫
sup
z∈K

∣∣∣∣
∫

(eh(s,z) − 1)
[
p<LS>(s− t; s/T )− p<LS>(s− t; 0)

]
ds

∣∣∣∣ dt

≤ T−β

∫
sup
z∈K

∣∣∣∣
∫
(eh(s,z) − 1) ξ(β)(s− t)|s|β ds

∣∣∣∣ dt

≤ T−β
∣∣∣ξ(β)

∣∣∣
1

∣∣∣eh − 1
∣∣∣
Ō,K,(β)

.
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Using Lemma 9 and inserting this in (50), we get, for all h ∈ B,

∣∣Φn
T,g(h)− Φ<S>n

g (h)
∣∣
Ō,K,1

≤ T−β
∣∣∣ξ(β)

∣∣∣
1
er∞

n−1∑

k=0

ρn−k−1
∣∣∣Φ<S>k

g (h)
∣∣∣
Ō,K,(β)

. (51)

By Condition (49) and since ρ = ζ<LS>
1 er∞ < 1, we have

(
1− ζ<LS>

1 er∞
)−1

r1e
r∞ζ<LS>

(β) ≤
(
1− ζ<LS>

1 er∞
)−1

(
|g|Ō,K,(β) + r1e

r∞ζ<LS>
(β)

)
< ∞ ,

and thus, for all

r(β) >
(
1− ζ<LS>

1 er∞
)−1

(
|g|Ō,K,(β) + r1e

r∞ζ<LS>
(β)

)
, (52)

the R(β) defined by (48) is such that |g|Ō,K,(β) < R(β). Then Lemma 14 gives that the set

BŌ (r1;K, 1) ∩ BŌ (r∞;K,∞) ∩ BŌ

(
r(β);K, (β)

)
is stable for the operator Φ<S>

g . We thus
have, for all h ∈ BŌ (r1;K, 1) ∩BŌ (r∞;K,∞) ∩BŌ

(
r(β);K, (β)

)
and k ≥ 0,

∣∣∣Φ<S>k
g (h)

∣∣∣
Ō,K,(β)

≤ r(β) (53)

We thus get from (51) that, for all h ∈ BŌ (r1;K, 1) ∩BŌ (r∞;K,∞) ∩BŌ

(
r(β);K, (β)

)
, we

have ∣∣Φn
T,g(h) − Φ<S>n

g (h)
∣∣
Ō,K,1

≤ T−β
∣∣∣ξ(β)

∣∣∣
1
er∞ r(β)(1− ρ)−1 .

To conclude, we apply this to h = g (since by construction g ∈ BŌ (R1;K, 1)∩BŌ (R∞;K,∞)∩
BŌ

(
R(β);K, (β)

)
⊂ BŌ (r1;K, 1)∩BŌ (r∞;K,∞)∩BŌ

(
r(β);K, (β)

)
and let r(β) tend to the

right-hand side of (52) and obtain that, for all n ≥ 1,

∣∣Φn
T,g(g)− Φ<S>n

g (g)
∣∣
Ō,K,1

≤ T−β

∣∣ξ(β)
∣∣
1
er∞

(
|g|Ō,K,(β) + r1e

r∞ζ<LS>
(β)

)

(1− ζ<LS>
1 er∞)

2 .

With Lemma 9, it yields that, for all n ≥ 1,

∣∣exp
(
Φn
T,g(g)

)
− exp

(
Φ<S>n
g (g)

)∣∣
Ō,K,1

≤ T−β

∣∣ξ(β)
∣∣
1
e2 r∞

(
|g|Ō,K,(β) + r1e

r∞ζ<LS>
(β)

)

(1− ζ<LS>
1 er∞)

2 .

Applying Corollary 12, we thus obtain (43) for all compact sets K ⊂ U .
The bound (44) is a by product of the above proof. Namely, observe that by Corollary 8

and Fatou’s lemma, we have
∫

sup
z∈K

∣∣L<S> (g(·, z)|t) − 1
∣∣ |t|β dt =

∫
sup
z∈K

lim
n→∞

∣∣exp
(
[Φ<S>n

g (g)](t, z)
)
− 1
∣∣ |t|β dt

≤ lim inf
n→∞

∣∣expΦ<S>n
g (g) − 1

∣∣
Ō,K,(β)

.

Now recall that we already used that BŌ (r1;K, 1)∩BŌ (r∞;K,∞)∩BŌ

(
r(β);K, (β)

)
is stable

for the operator Φ<S>
g , so with Lemma 9 and the previous bound we get

∫
sup
z∈K

∣∣L<S> (g(·, z)|t) − 1
∣∣ |t|β dt ≤ er∞ r(β) .

Letting r(β) tend to the right-hand side of (52) as above we get (44) in the case u = 0, which
concludes the proof.
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6.3. Local Laplace functional

We use the same notation as in Sections 6.1 and 6.2. Let us first explain how to use the
previous results (mainly Proposition 11 and Theorem 13) for deriving the Laplace functional
LT (S

−Tug) of NT and the Laplace functional L(·;u) of the stationary Hawkes process N(·;u).
We again set u = 0 in the following without loss of meaningful generality and denote L<S> =
L(·; 0), L<S> (g|·) = L(g|·; 0), λ<S>

c = λ<LS>
c (0) and p<S> = p<LS>(·; 0).

We suppose that the assumptions of Theorem 13 hold for some given function g. Let Φ∞
T,g

and Φ<S>∞
g denote the two fixed point limits given by Proposition 11, which, for all compact

sets K ⊂ U , are elements of the stable set BŌ (r1(K);K, 1) ∩ BŌ (r∞(K);K,∞). Note that

Proposition 10 shows that exp
(
Φ∞
T,g

)
− 1 is essentially bounded on R

ℓ ×K for all compact

set K ⊂ U . Hence, from Corollary 8 and applying (31), we get that if |λ<LS>
c |∞ < ∞, for all

T > 0,

LT (g) = exp

∫ (
exp

(
Φ∞
T,g(t, ·)

)
− 1
)
λ<LS>
c (t/T ) dt ,

and

L<S> (g) = exp

(
λ<S>
c

∫ (
exp

(
Φ<S>∞
g (t, ·)

)
− 1
)
dt

)
,

and by Lemma 15, these two functions are holomorphic on U . We thus define KT (g) and
K(g;u) by

KT (g) =

∫ (
exp

(
Φ∞
T,g(t, ·)

)
− 1
)
λ<LS>
c (t/T ) dt

and

K<S> (g) = K(g; 0) = λ<S>
c

∫ (
exp

(
Φ<S>∞
g (t, ·)

)
− 1
)
dt

Now we observe that, for any compact set K ⊂ U ,

∣∣KT (g)−K<S> (g)
∣∣
O,K

≤ sup
z∈K

∣∣∣∣
∫ (

exp
(
Φ∞
T,g(t, z)

)
− exp

(
Φ<S>∞
g (t, z)

))
λ<LS>
c (t/T ) dt

∣∣∣∣

+ sup
z∈K

∣∣∣∣
∫ (

exp
(
Φ<S>∞
g (t, z)

)
− 1
) (

λ<LS>
c (t/T )− λc(0)

)
dt

∣∣∣∣ =: (I) + (II) .

We can bound (I) as

(I) ≤
∣∣λ<LS>

c

∣∣
∞

∣∣exp
(
Φ∞
T,g

)
− exp

(
Φ<S>∞
g

)∣∣
Ō,K,1

=
∣∣λ<LS>

c

∣∣
∞

∫
sup
z∈K

∣∣LT (g(·, z)|t) − L<S> (g(·, z)|t)
∣∣ dt .

Using (LS-2), the term (II) is easily bounded as

(II) ≤ ξ(β)c T−β sup
z∈K

∫ ∣∣exp
(
Φ<S>∞
g (t, z)

)
− 1
∣∣ |t|βdt

= ξ(β)c T−β sup
z∈K

∫ ∣∣L<S> (g(·, z)|t) − 1
∣∣ |t|βdt

≤ ξ(β)c T−β

∫
sup
z∈K

∣∣L<S> (g(·, z)|t) − 1
∣∣ |t|βdt .
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We can now bound (I) and (II) by relying on Theorem 13, so that

(I) + (II) ≤ T−β

{
∣∣λ<LS>

c

∣∣
∞

A(K) + ξ(β)c

er∞(K)

1− ζ<LS>
1 er∞(K)

} (
|g|Ō,K,(β) +B(K)

)
, (54)

provided that the assumptions of Theorem 13 hold. Hence, the proof of Theorem 2 now boils
down to the following.

Proof of Theorem 2. As explained above, we just need to prove that the assumptions of The-
orem 13 holds. The only non-trivial one is to prove that g satisfies Property (P). Let K ⊂ U
be compact. We set

r∞(K) = −
1

2
log ζ<LS>

1 ,

which by (LS-1) satisfies the left-hand side condition of (40). Then the right-hand side con-
dition on r1(K) reads

0 < r1(K) < r∞(K)(ζ<LS>
1 )1/2(ζ<LS>

∞ )−1 , (55)

and R1(K) and R∞(K) defined by (41) and (42) are given by

R1(K) = r1(K)
(
1− (ζ<LS>

1 )1/2
)

and R∞(K) = r∞(K)− (ζ<LS>
1 )−1/2ζ<LS>

∞ r1(K) .

Condition (17) and the choice of r∞(K) above implies

a :=
|g|Ō,K,1(

1− (ζ<LS>
1 )1/2

) < r∞(K)(ζ<LS>
1 )1/2(ζ<LS>

∞ )−1 =: b ,

Now, any r1(K) strictly being between these two boundaries satisfies (55) and the corre-
sponding R1(K) satisfies |g|Ō,K,1 < R1(K). Moreover as r1(K) tends to the lower boundary
a from above, we have

R∞(K) ↑ r∞(K)− (ζ<LS>
1 )−1/2ζ<LS>

∞

|g|Ō,K,1

1− (ζ<LS>
1 )1/2

.

From (18), we obtain that |g|Ō,K,∞ < R∞(K) for r1(K) chosen close enough to a. Hence
we have shown that g satisfies Property (P) and the proof is concluded. The constants C1

and C2 in (20) correspond to the {. . . } term in (54) and B(K) with the above definitions of
r∞(K) and r1(K).

6.4. Local cumulants

Proof of Theorem 4. We apply Theorem 2 first with g(t, z) = z h(t), defined on (t, z) ∈ R
ℓ×C

and then with

g(t, z) =

m∑

j=1

zj gj(t) (56)

defined on (t, z) ∈ R
ℓ × C

m. The fact that NT (h) and N(h;u) admit finite exponential
moments for a bounded integrable function g : Rℓ → R is a direct application of Theorem 2
for the first choice of g.
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We now apply the theorem with g defined as in (56). We assume such that |gj|(β) < ∞

for all j = 1, . . . ,m (otherwise the right-hand side of the inequality is infinite and there is
nothing to prove). Take U the polydisc Pm

r (0) of Cm with center 0 and radius r > 0. In this
case we have, for any compact set K ⊂ U and any q ∈ [1,∞],

|g|Ō,K,q < r

m∑

j=1

|gj |q .

Hence (17) and (18) hold for r small enough so that the two following inequalities hold.

r
m∑

j=1

|gj |1 ≤

(
−
1

2
log ζ<LS>

1

)
(ζ<LS>

1 )1/2(ζ<LS>
∞ )−1(1− ζ<LS>

1 )1/2 ,

r

m∑

j=1

|gj |∞ ≤ −
1

2
log ζ<LS>

1 − (ζ<LS>
1 )−1/2(ζ<LS>

∞ )(1− ζ<LS>
1 )−1/2r

m∑

j=1

|gj |1 .

The largest r satisfying these two conditions is easily found to be

r :=
(− log ζ<LS>

1 /2)∑m
j=1 |gj|∞ + (ζ<LS>

1 )−1/2ζ<LS>
∞ (1− ζ<LS>

1 )−1/2
∑m

j=1 |gj |1
.

Moreover we also have

|g|Ō,K,(β) < r

m∑

j=1

|gj |(β) .

Hence Theorem 2 with (14), the above bounds on |g|Ō,K,1 and |g|Ō,K,(β), and the Cauchy
inequality (2), imply

∣∣Cum
(
NT (S

−Tug1), . . . , NT (S
−Tugm)

)
− Cum(N(g1;u), . . . , N(gm;u))

∣∣

≤ r1−m
0 C1

∑

j=1,...,m

(
|gj |(β) + C2 |gj |1

)
T−β ,

for any r0 ∈ (0, r). Letting r0 tend to r, this bound is still valid with r1−m
0 replaced by

(∑m
j=1 |gj |∞ + (ζ<LS>

1 )−1/2ζ<LS>
∞ (1− ζ<LS>

1 )−1/2
∑m

j=1 |gj |1
(− log ζ<LS>

1 /2)

)m−1

.

This concludes the proof.
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Appendix A. A postponed proof and a useful lemma

Proof of Proposition 7. By denoting by Fj the σ-algebra generated by the family (N (k))0≤k≤j ,
we have

Ln(g|t) = E

[
exp

n∑

k=0

N (k)(g|t)

]
= E

[
exp

n−1∑

k=0

N (k)(g|t) + E

[
expN (n)(g|t) | Fn−1

]]
.

Since conditionally on Fn−1, N
(n)(·|t) is a sum of independent PPP’s with intensities s 7→

p(s− r; s) with r describing all points of N (n−1)(·|t), we have for any h : Rℓ → R+,

E

[
expN (n)(h|t) | Fn−1

]
= exp

(∫
(eh(s) − 1)p(s − r; s) ds N (n−1)(dr|t)

)
.

Applying this with the definition of Φg and iterating, we get

E

[
exp

n−1∑

k=0

N (k)(g|t) + E

[
expN (n)(h|t) | Fn−1

]]

= E

[
exp

(
n−2∑

k=0

N (k)(g|t) +N (n−1)([Φg(h)] | t)

)]

= E

[
exp

(
n−3∑

k=0

N (k)(g|t) +N (n−2)([Φg ◦Φg(h)] | t)

)]

...

= E

[
exp

(
N (0)([Φn

g (h)] | t)
)]

= exp
(
[Φn

g (h)](t)
)
.

Applying the obtained formula with h = g, we obtain the claimed result.

The following lemma is a straightforward application of the Cauchy inequality (2).

Lemma 15. Let µ be a non-negative measure on R
ℓ and h ∈ Ō (U). Suppose that for all

z ∈ U , there exists a neighborhood V ⊂ U of z such that

µ

(
sup
z∈V

h(·, z)

)
< ∞ .

Then z 7→ µ(h(·, z)) belongs to O (U) and for any multi-index α, we have, for all z ∈ U ,

∂αµ(h(·, z)) = µ (∂α
Oh(·, z)) .
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