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THE STEIN-DIRICHLET-MALLIAVIN METHOD

L. DECREUSEFOND

Abstract. The Stein’s method is a popular method used to derive upper-
bounds of distances between probability distributions. It can be viewed, in
certain of its formulations, as an avatar of the semi-group or of the smart-path
method used commonly in Gaussian analysis. We show how this procedure
can be enriched by Malliavin calculus leading to a functional approach valid
in infinite dimensional spaces.

1. Introduction

Distances between probability or probability metrics is a very old topic since it
is rich of a wide range of applications. As mathematical objects, it is natural to
define a metric topology on spaces of probability measures. As modeling objects,
it is natural to compare probability measures which appear in the mathematical
representations of random phenomena. This topic has at least three facets: The
diverse definitions of probability metrics which are tailored for each applications;
the computations and comparisons of these different distances for the widest pos-
sible range of situations and at last, the applications which go from mathematical
considerations like functional inequalities to more practical results of rate of conver-
gence of stochastic algorithms. The Figure 1 shows a partial view of the different
aspects of this subject.
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Figure 1. Mindmap

A few words are in order to explain the blue and red colors. For the computa-
tions of distances between measures µ and ν, we need to impose some relationships
between these two measures. Absolute continuity is one very frequent type of re-
lationships between two measures. The Radon-Nykodim theorem gives a precious
tool to estimate divergence-like and Wasserstein distances (see for instance [15] for
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2 L. DECREUSEFOND

such an application). One may also reverse the point of view: Given a positive
function F , compare the µ and ν = F dµ to obtain some precious functional in-
equalities on F (see [1]). These results thus belong to the same spirit and are
colored in blue. Another natural way to put a structure between two measures is
to have a map which transforms a known measure into another one and to compare
this transformed measure to a reference probability. This is exactly the framework
in which the Stein’s method performs well if we consider Kantorovitch-Rubinstein
type distances (defined below). Typical applications of these form of distances are
to give the convergence rates of celebrated theorem like CLT or Berry-Esseen The-
orem or of random algorithms [25]. The links between these different points justify
that they are all colored in red.

This paper is a rather informal introduction to the Stein-Dirichlet-Malliavin
method (SDM for short henceforth). This is an extension of the classical Stein’s
method, enriched by the structure given by Dirichlet forms and Malliavin calcu-
lus. We hope that this new point of view will lead to more systematic proofs of
convergence, extending their applicability. The price to pay is to master some new
concepts from Malliavin calculus like the gradient and its associated adjoint. That
is why we tried to maintain the technicalities at the lowest possible level, insisting
more on the ideas at play.

We first show the different kinds of probability metrics that exist in the litera-
ture. We do not pretend to be exhaustive but aim to point out to the wide diversity
of possible definitions. In Section 2, we establish the principles of the SDM method
and show how it can be applied to the Poisson-Gaussian convergence. We then ex-
plain how to construct the necessary structures to extend this procedure to infinite
dimensional spaces. In Section 4, Edgeworth expansions are obtained by iterating
the previous procedure as often as desired.

2. Taxonomy of probability metrics

In what follows, all the probability measures are defined on Polish spaces denoted
either by E or F, whose borelian σ-fields is B(E), respectively B(F). There are
several notions of metrics between probability measures. An interesting survey of
the main variants and their mutual relationships can be found in [17]. Each of one
is often adapted to a particular purpose. They can roughly and partly be classified
in three types. The first one is the so-called Prokhorov distance.

DistPro(P,Q) = inf
{

ǫ > 0,P(A) ≤ Q(Aǫ) + ǫ for all A ∈ B(E)
}

,

where Aǫ is the ǫ-neighborhood of A defined by Aǫ = {y ∈ E, ∃x ∈ A, d(x, y) ≤ ǫ}.
This distance is crucial as its associated topology is precisely the topology of the
convergence in distribution, i.e. we have the following theorem which can be found
in [13].

Theorem 1. A sequence (Pn, n ≥ 1) of probability measures converges weakly to

P if and only if DistPro(Pn,P) tends to 0 as n goes to ∞.

Unfortunately, this distance is hardly computable and that justifies the search for
alternative and more tractable definitions. A vast category of probability metrics
is represented by the f -divergence defined as follows.

Definition 1. Let f be a convex function such that f(1) = 0. Then, for two

probability measures P and Q on a Polish space E,

Df (Q |P) =







∫

E

f

(

dQ

dP

)

dP if Q ≪ P,

∞ otherwise.
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For instance, if we choose f = t ln t, we obtain the Kullblack-Leibler distance.
The Hellinger distance corresponds to the case where f(t) = (

√
t − 1)2. Total

variation between absolutely continuous measures boils down to take f(t) = |t− 1|.
Another class of distances between measures can be obtained via optimal trans-

portation theory. For general results about this theory, we refer to the books
[24, 25, 29, 28].

Definition 2. Let (E, P) and (F, Q) two Polish spaces equipped with a probability

measure and c a semi-continuous function from E× F to R+ ∪ {∞}. The optimal-

transportation problem or Monge-Kantorovitch problem MKP(P,Q) is to find

min
γ∈Σ(P,Q)

∫

E×F

c(x, y) dγ(x, y)

where Σ(P,Q) denoted the space of probability measures on E×F with first marginal

P and second marginal Q.

Said otherwise in a more probabilistic way, it amounts to find the coupling be-
tween P and Q which minimizes the cost, i.e. to construct on the same probability
space, two random variables X and Y of respective distribution P and Q which
minimizes E [c(X,Y )] among all the possible constructions. The usual cost func-
tions are of the type c(x, y) = dist(x, y)p where dist is a distance and p a positive
real number. For the Euclidean distance and p = 2, we can construct the so-called
Wasserstein distance by considering

W (P,Q) =

√

min
γ∈Σ(P,Q)

∫

Rd×Rd

|x− y | 2 dγ(x, y).

All the distances viewed so far are not unrelated as many functional inequalities
do exist between all of them. Just to mention two examples, the Pinsker inequal-
ity states that the total variation distance is controlled by the Kullblack-Leibler
distance.

D|t−1|(P,Q) ≤
√

1

2
Dt ln t(P,Q).

On the other hand, the so-called HWI identity (see [28]) relates the relative entropy
(H), the Wasserstein distance (W) and the Fischer information (I) as follows.

Theorem 2. Let P and Q two probability measures on Rn such that P = exp(−V ) dx
with ∇2V ≥ KIdn. Then,

Dt ln t(P,Q) ≤W (P,Q)
√

D∇| ln t|2(P,Q)− K

2
W (P,Q)2.

These examples are here only to give a glimpse of the vast subject of the re-
lationship between all these notions of distances. However, this is not the true
subject of the present paper. The theorem which justifies the sequel is known as
Kantorovitch-Rubinstein theorem (see [13, 14]) and says the following.

Theorem 3. For P and Q two probability measures on a Polish space E, consider

the Monge-Kantorovitch problem for a cost function c which is a distance on E.

Then, we have the following representation

min
γ∈Σ(P,Q)

∫

E×F

c(x, y) dγ(x, y) = sup
F∈Lipc(1)

(EP [F ]−EQ [F ]) ,

where F ∈ Lipc(1) means that F is c-Lipschitz continuous: |F (x)−F (y)| ≤ c(x, y)
for all x, y ∈ E. The resulting distance between P and Q, will be called henceforth

the Kantorovitch-Rubinstein distance as in [28].
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This formulation of a distance motivates alternative definitions by changing the
set of test functions. For instance, for F = {1(−∞;x], x ∈ R},

sup
F∈F

|EP [F ]−EQ [F ]|

is the total-variation distance. It turns out that Stein’s method is particularly well
suited to estimate such kind of distances as we shall see now.

3. Stein’s method

Historically, the Stein’s method for Gaussian distribution dates back to the sem-
inal paper of Stein [27]. It was soon extended to the Poisson distribution in the
paper of Chen [7]. It is then impossible to track all the extensions of this approach,
made mainly by A. Barbour and his collaborators, to several other distributions
like compound Poisson [5], Poisson point processes[30], stationary measure of birth-
death process, even Brownian motion [2]. For a whole account of all this period,
one may refer to the books [3, 4] and references therein. The main breakthrough
came with the paper of Nourdin and Peccati [21], in which it is shown that combin-
ing Malliavin calculus and Stein’s approach, one can obtain a rather simple proof
of the striking fourth moment theorem, established earlier in [22]. This was the
starting point of a bunch of articles with with a wide area of applications: rate of
convergence in the central limit theorem, Berry-Esseen theorem, iterated-logarithm
theorem, limit theorems on manifolds, etc.

3.1. Dirichlet-Malliavin structure. The procedure of the Stein’s method can
be abstracted within the setting of Dirichlet structures (for details, we refer to
[6, 16, 20]). The subsequent explanations are at a very formal level since the hard
part for this machinery to work is to find the convenient functional spaces for each
case of applications.

The first idea underlying the Stein’s method is to characterize the target measure
by an algebraic equation: Find a functional operator L on F such that EQ [LF ] = 0
for any F in F if and only if Q = P. It turns out that this functional operator
L can be viewed as the (infinitesimal) generator of a Markovian semi-group, which
we denote by P = (Pt, t ≥ 0) whose stationary measure is P: The image measure
of P by Pt is still P for any t ≥ 0. Under some technical hypothesis, there exists
a strong ergodic Markov process X = (X(t), t ≥ 0) of invariant measure P and of
generator L. It must be noted that the knowledge of one of L, P or X is equivalent
to the knowledge of the other two. Formally speaking, for any x ∈ E,

Ptf(x) = etLf(x), Lf(x) =
dPtf(x)

dt

∣

∣

∣

∣

t=0

, Ptf(x) = E [f(X(t)) |X(0) = x] .

One can also associate to X , the so-called Dirichlet form defined formally by

E(F,G) = EP [LF G] ,

for any F and G sufficiently regular. As before, if we are given such a bilinear form
E , one can retrieve L by the following relationship: For any F , LF is the unique
element H such that for any G, E(F, G) = EP [HG]. This means that whichever
of L, X , P or E we are given, the others are uniquely determined (the reader is
referred to the particularly illuminating Diagram 2, page 36 of [20]).

Within this framework, it is easy to see that the Stein-Dirichlet representation
formula holds: For any bounded F ,

(1) EQ [F ]−EP [F ] = EQ

[
∫ ∞

0

LPtF dt

]

.
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This formula is also known as the semi-group method or the smart-path formula in
the Stein’s method literature. This means that we can write

distF(P,Q) = sup
F∈F

|EP [F ]−EQ [F ]| = sup
F∈F

∣

∣

∣

∣

EQ

[
∫ ∞

0

LPtF dt

]∣

∣

∣

∣

.

Instead of using coupling arguments to estimate this right-hand-side as usually done
in the Stein’s method, we use another functional operator which is the gradient in
the sense of Malliavin. It is usually denoted byD and satisfies the identity L = D∗D
where D∗ is the adjoint of D. This a square root of the symmetric operator L, but
not all square-roots are interesting as we also need a nice commutation relationship
between D and P . A few examples are the best way to illustrate what we mean.

3.2. One dimensional examples. If P denote the standard Gaussian measure
on R, then X is the Ornstein-Uhlenbeck process defined by

dX(t) =
√
2 dB(t) −X(t) dt, X(0) = x,

where B is a standard one-dimensional Brownian motion. A straightforward appli-
cation of the Itô formula gives the following expression of X :

X(t) = e−tx+
√
2

∫ t

0

e−(t−s) dB(s).

It is then easy to see that X(t) ∼ N (e−tx, 1 − e−2t), which, in turn, entails the
Mehler representation formula:

PtF (x) =

∫

R

F (e−tx+
√

1− e−2ty) dP(y).

It follows by differentiation and integration by parts that for F ∈ C2
b ,

LF (x) = xF ′(x)− F ′′(x), for all x ∈ R.

The Malliavin gradient is the usual derivative operator and standard computations
show that

∫

R

DF (x)G(x) dP(x) =

∫

R

F (x)(xG(x) −DG(x)) dP(x),

hence thatD∗G(x) = xG(x)−DG(x) and L = D∗D. Moreover, we haveDPtF (x) =
e−tPtDF (x) which is the commutation relationship alluded above.

If P represents the Poisson measure on N of parameter λ, the process X can be
viewed as the number of occupied servers in an M/M/∞ queue (see [11]), L is the
corresponding generator:

LF (x) = λ(F (x + 1)− F (x)) + x(F (x − 1)− F (x)), for all x ∈ N,

with the convention that 0.F (−1) = 0. The gradient is defined by

DF (x) = F (x+ 1)− F (x),

and we have DPtF = e−tPtDF (see [11, Theorem 11.16] or [12]). For the scalar
product in L2(P), we have

(2)

∫

N

DF (x)G(x) dP(x) =

∫

N

F (x)(
x

λ
G(x − 1)−G(x)) dP(x).

Hence,

D∗F (x) =
x

λ
G(x− 1)−G(x) and L = D∗D.

We now show how these constructions do articulate to give a new approach to the
Stein’s method.
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It is well known that for Zλ a Poisson random variable of parameter λ,

Ẑλ =
Zλ − λ√

λ

λ→∞−−−−→ N (0, 1) in distribution.

We are going to use the Stein-Dirichlet-Malliavin method to evaluate the rate of
convergence. We are in a situation where the target measure in defined R whereas
the initial randomness comes from a probability measure on N. The map T defined
by

T : E = N −→ F = R

n 7−→ n− λ√
λ
,

maps one space to the other and we are to evaluate the distance between T ∗Qλ,
the image measure of Qλ, the Poisson(λ) probability, by the map T and P the
standard normal distribution onR. This is a particular case of the general situation
illustrated in Figure 2.

Initial space Target space

(E,Q) (F,P)

(F, T ∗Q)

T

distF(T ∗Q, P) ?

Figure 2. Comparison between a measure P and T ∗Q.

In view of (1), we have to estimate

sup
F∈F

∫ ∞

0

∫

R

x.(PtF )
′(x) − (PtF )

′′(x) dT ∗Qλ(x) dt,

where is the Ornstein-Uhlenbeck semi-group given by the Mehler formula above
and F is a functional space to be conveniently chosen. According to the definition
of T , the quantity to maximize is equal to

E

[
∫ ∞

0

Ẑλ.(PtF )
′(Ẑλ)− (PtF )

′′(Ẑλ) dt

]

.

Applying (2) to G = 1 and F ◦ T , we get

√
λ E

[

F (Ẑλ +
1√
λ
)− F (Ẑλ)

]

= E
[

Ẑλ F (Ẑλ)
]

.

Hence,

(3) E
[

Ẑλ.(PtF )
′(Ẑλ)

]

=
√
λE

[

(PtF )
′(Ẑλ +

1√
λ
)− (PtF )

′(Ẑλ)

]

.
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For any t > 0, the regularizing properties of Pt entails that PtF is thrice differen-
tiable. Hence,
(4)

(PtF )
′(Ẑλ+

1√
λ
)−(PtF )

′(Ẑλ) =
1√
λ
(PtF )

′′(Ẑλ)+
1

λ

∫ 1

0

(1−r)(PtF )
(3)(Ẑλ+

r√
λ
) dr.

And then, a miracle occurs: The term involving the second order derivative vanishes
and we are lead to maximize

(5)
1√
λ

E

[
∫ ∞

0

∫ 1

0

(1− r)(PtF )
(3)(Ẑλ +

r√
λ
) dr dt

]

for F over F . There is now a delicate point. If F is in C1
b , we already mentioned

that
(PtF )

′(x) = e−tPt(F
′)(x).

Furthermore, by integration by parts with respect to the Gaussian measure, it is
easy to see that

(PtF )
(k)(x) =

(

e−t

√
1− e−2t

)k ∫

R

F (e−tx+
√

1− e−2ty) yk dP(y),

whenever F is bounded, for any k ≥ 1. At first glance, it seems easy to bound (5)
by using the previous formula for k = 3. Unfortunately, the term exp(−kt)(1 −
exp(−2t))−k/2 is integrable over [0,+∞) only for k = 1. Hence, we must choose
F = {F ∈ C2

b , ‖F‖C2
b
≤ 1} and then we have

∣

∣

∣
(PtF )

(3)(x)
∣

∣

∣
=

∣

∣

∣

∣

e−3t

√
1− e−2t

∫

R

F (2)(e−tx+
√

1− e−2ty) y dP(y)

∣

∣

∣

∣

≤ e−3t

√
1− e−2t

‖F (2)‖∞
∫

R

|y| dP(y).

Plugging this inequality into (5), we get

(6) sup
‖F‖

C2
b
≤1

∣

∣

∣

∣

E
[

F (Ẑλ)
]

−
∫

F dP

∣

∣

∣

∣

≤ 1√
λ

∫ 1

0

(1− r) dr

∫ ∞

0

e−3t

√
1− e−2t

dt

∫

R

|y| dP(y) =

√
π

4
√
2

1√
λ
·

Hence we have established the rate of convergence for the Kantorovitch-Rubinstein
distance associated to F = {F ∈ C2

b , ‖F‖C2
b
≤ 1}. In dimension 1, for Gaussian

approximation, we could have used LF (x) = xF (x) − F ′(x) as a characterizing
operator and thus used only 1-Lipschitz functions with a slightly different constant
in front of the λ−1 factor, namely

sup
F∈Lip(1)

∣

∣

∣

∣

E
[

F (Ẑλ)
]

−
∫

F dP

∣

∣

∣

∣

≤ 1√
2π

1

λ
·

Note that this upper-bound is better than the bound obtained by the classical
Stein’s method where (2π)−1/2 is replaced by 1. However, this line of thought is
not applicable to higher dimensions.

More generally, the recipe of the Stein-Dirichlet-Malliavin method is the follow-
ing.

• Characterize the target measure as the stationary distribution of an ergodic
Markov process,

• Construct the two Dirichlet-Malliavin structure on both initial and target
spaces,

• Perform an integration by parts on the initial space (see (3)),
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• Replace the gradient on the initial space by a function of the gradient on
the target space (this is done here by the Taylor formula (4)), at the price
of additional terms to be controlled,

• Finish the computations in the target space using the commuting relation-
ship : DPt = e−tPtD.

3.3. Higher dimensions. This procedure can be generalized to any dimension
provided that we have Dirichlet-Malliavin structures on both the initial and the
target spaces. For the Gaussian measure in dimension d, the generator is given by

(7) LF (x) = x.DF (x) −∆F (x), for all x ∈ Rd,

where D is the usual gradient in Rd and ∆ is the Laplacian operator. The Mehler
formula stays formally the same with an integral over Rd instead of R and X is
the Rd-valued process composed of d independent copies of the one dimensional
Ornstein-Uhlenbeck process. The Malliavin gradient is still the usual gradient and
the commutation relationship between D and Pt is easily seen to hold again. We
can then retrieve the results of [23].

Real difficulties arise when we try to generalize this approach to infinite dimen-
sional spaces like the Wiener space. It is tempting to define L formally as in (7),
replacing the Laplacian by the trace of D ◦D. Unfortunately, for this trace term to
exist, we need to restrict the space F of test functions and to choose conveniently
the space F. There are actually two papers which address this problem. In both
of them [8, 26], despite apparent dissimilarities, we end by considering F a Hilbert
space with a Gaussian measure.

Let us show how it works on an example. For Nλ a Poisson process on R+ of
intensity λ, it is known that

N̂λ(t) =
Nλ(t)− λt√

λ

λ→∞−−−−→ B(t) in distribution,

where B is a standard Brownian motion and the convergence is understood to
hold in D, the Skorohod space of rcll functions. To compare the two distributions
implies to find a common Hilbert space which supports both the distribution of
B and N̂λ. In principle, any Sobolev-like space should do. In [8], we chose the
so-called Besov-Liouville space Iβ,2 for β < 1/2 defined by

Iβ,2 = {f, ∃ḟ ∈ L2([0, 1]) such that f(x) =
1

Γ(β)

∫ x

0

(x− y)β−1ḟ(y) dy}.

It is a Hilbert space when equipped with the scalar-product 〈f, g〉β,2 = 〈ḟ , ġ〉L2 .
The Wiener measure on this space, denoted by µβ , is defined by

Eµβ
[exp(i〈η, ω〉β, 2)] = exp(−1

2
〈Vβη, η〉β, 2).

where

Iβ0+f(x) =
1

Γ(β)

∫ x

0

(x− y)β−1ḟ(y) dy, Iβ1−f(x) =
1

Γ(β)

∫ 1

x

(y − x)β−1ḟ(y) dy

and Vβ = Iβ0+ ◦ I1−β
0+ ◦ I1−β

1− ◦ I−β
0+ .

The Ornstein-Uhlenbeck semi-group on (Iβ,2, µβ) is defined for any F ∈ L2(Iβ,2, µβ)
by

P β
t F (u) :=

∫

Iβ,2

F (e−tu+
√

1− e−2t v) dµβ(v).

The gradient is the Fréchet gradient on Iβ,2 and all the other properties still holds
formally as in finite dimension.
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As initial space, we consider E = N, the space of locally finite configurations on
R+ equipped with the vague topology. The measure Qλ is such that the canonical
process, denoted by Nλ, is a Poisson process of intensity λ, for details we refer
to [8]. On the initial space, we actually only need to know the gradient and an
integration by parts formula. Here, we take

DxF (Nλ) = F (Nλ + δx)− F (Nλ),

where Nλ + δx is the configuration Nλ with an additional atom at location x. The
well-known Campbell-Mecke formula ([18, 19]) is equivalent to say that

EQλ

[

F

∫ 1

0

Gτ ( dNλ(τ)− λ dτ))

]

= λ EQλ

[
∫ 1

0

DτF Gτ dτ

]

,

for G a deterministic process. The map T is defined by

T : N −→ Iβ,2

N 7−→ (t 7→ N(t)− λt√
λ

)·

Proceeding exactly along the same lines as before, one can show that there exists
cβ > 0 such that

(8) sup
‖F‖

C2
b
(Iβ,2;R)

≤1

∣

∣EQλ
[F ]−Eµβ

[F ]
∣

∣ ≤ cβ√
λ
,

where C2
b (I

β,2; R) is the set of twice Fréchet differentiable functionals on Iβ,2, with
bounded differentials. This is the generalization we could expect of (6).

Other examples of the application of this procedure, involving other functional
spaces, can be found in the papers [8, 12]. A similar approach with Malliavin
calculus replaced by a coupling argument appears in [10].

4. Edgeworth expansion

The Stein’s method as developed here can be iterated to obtain Edgeworth ex-
pansions. We now want to precise the expansion obtained in (6). For, we go one
step further in the Taylor formula (4):

ψ(Ẑλ + 1/
√
λ)− ψ(Ẑλ) =

1√
λ
ψ′(Ẑλ) +

1

2λ
ψ′′(Ẑλ) +

1

6λ3/2
ψ(3)(Ẑ + θ/

√
λ).

Hence,

(9) E
[

ẐλDPtF (Ẑλ)−D(2)PtF (Ẑλ)
]

=
1

2
√
λ
E
[

D(3)PtF (Ẑλ)
]

+
1

6λ
E
[

D(4)PtF (Ẑ + θ/
√
λ)
]

.

If F is thrice differentiable with bounded derivatives then PtF is four times differen-

tiable, hence the last term of (9) is bounded by λ−1 e−4t
√
1−e−2t

‖F (3)‖∞/6. Moreover,

applying (6) to DPtF shows that

E
[

D(3)PtF (Ẑλ)
]

= EP

[

D(3)PtF
]

+O(λ−1/2).

Combining the last two results, we obtain that for F thrice differentiable

E
[

F (Ẑλ)
]

−EP [F ] =
1

2
√
λ
EP

[
∫ ∞

0

D(2)PtF dt

]

+O(λ−1).
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This line of thought can be pursued at any order provided that F is assumed to
have sufficient regularity and we get an Edgeworth expansion up to any power of
λ−1/2. Using the properties of Hermite polynomials, this leads to the expansion:

E
[

F (Ẑλ)
]

−EP [F ] =
1

6
√
λ
EP [FH3] +O(λ−1),

where Hn is the n-th Hermite polynomials. In [9], we generalized this approach to
the Poisson process-Brownian motion convergence established in (8).

5. Conclusion

We showed how the Stein’s method can be abstracted in the framework of Dirich-
let forms and Malliavin calculus. This gives raise to a new method of proof which
can be applied to infinite dimensional spaces and iterated to get Edgeworth expan-
sions. One open question is to apply this approach to other limiting processes like
stable or max-stable processes, Brownian bridges, etc.
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