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Abstract—Extensive research in recent years has shown the the PUs under the condition that theerference temperature
benefits of cognitive radio technologies to improve the flexibility constraint [3] is always satisfied at each PU, i.e. the total
and efficiency of spectrum utilization. This new communicabn o ceived power of the SUs at each PU should be kept under
paradigm, however, requires a well-designed spectrum altzation threshold i der t tect the PU's traffic. Th
mechanism. In this paper, we propose an auction framework some_z resho "? oraer to protec : € S trathc. _e
for cognitive radio networks to allow unlicensed secondarysers considered scenario can represent various network sosnari
(SUs) to share the available spectrum of licensed primary #ss e.g. the PUs are the access points of a mesh network and the
(PUs) fairly and efficiently, subject to the interference tenpera- SUs are the mobile devices.
ture constraint at each PU. To study the competition among S§) In our work, we develop an auction framework to allow SUs

we formulate a non-cooperative multiple-PU multiple-SU agtion .
game and study the structure of the resulting equilibrium by to share the available spectrum of PUs. Under the proposed

solving a non-continuous two-dimensional optimization poblem. auction framework, each PU acts as a resource provider by (1)
A distributed algorithm is developped in which each SU updaés announcing a price and a reserve bid (2) allocating thevedei

its strategy based on local information to converge to the power as a function of the bids submitted by SUs. Each
equilibrium. We then extend the proposed auction framework SU acts as a customer by (1) submitting a two-dimensional

to the more challenging scenario with free spectrum bands. & .~ . "=~ . . .
develop an algorithm based on the no-regret learning to redt bid indicating which PU to bid for resource and how much

a correlated equilibrium of the auction game. The proposed t0 bid (2) paying the chosen PU an amount of payment
algorithm, which can be implemented distributedly based orocal  proportional to the allocated resource and the announdeel pr

observation, is especially suited in decentralized adapte learn-  To study the competition among SUs, we formulate a non-
ing environments as cognitive radio networks. Finally, though  ¢4perative auction game and study the structure of thdtresu
numerical experiments, we demonstrate the effectivenesd the . o - .
proposed auction framework in achieving high efficiency and 'n_g Nas_h equ'l'b_r'u_m (_NE) by solving a_ nqn-contmuou_s_two—
fairmess in spectrum allocation. dimensional optimization problem. A distributed algoniths
developped in which each SU updates its strategy based on
local information to converge to the NE. Our analysis caneer

Cognitive radio [1] has emerged in recent years as @s a decision and control framework for the SUs to exploit the
promising paradigm to enable more efficient and spectrumderutilized spectrum resource.
utilization. Apart from the conventional command and cohtr We then extend the proposed auction framework to the
model, three more flexible spectrum management models gigre challenging scenario with free spectrum bands. In this
presented in [2], namely, exclusive use (or operator shgrincontext, a SU should strike a balance between accessing a fre
commons and shared use of primary licensed spectrum. In 8jctrum band with more interference if the competitors tak
last model, unlicensed secondary users (SUs) are allowedfg same strategy, and paying more for communication gains
access the spectrum of licensed primary users (PUs) in @nstaying with a licensed band. We show that fileg-pong
opportunistic way. In such a model, a well-designed spettrieffect may occur under the best-response update, i.e., a SU
allocation mechanism is crucial to achieve efficient speotr keeps switching between the free band and a licensed band.
usage and harmonious coexistence of PUs and SUs. On gBeeliminate the ping-pong effect, we develop an algorithm
hand, the radio resource allocation mechanism should €Nnsgised on the no-regret |earning [4] to reach a correlated equ
that the spectrum resource (unused by PUs) is allocat@stium (CE) [5] of the auction game. The proposed algorithm
efficiently and fairly among SUs. On the other hand, thghich can be implemented distributedly and requires only
communication of PUs should not be disturbed by the SUsjgcal observation, is especially suited in decentralizéapéive

In this paper, we tackle the challenging research problem|ghrning environments as cognitive radio networks.
designing efficient spectrum allocation mechanism for @ogn Due to their perceived fairness and allocation efficiendy [6
tive radio networks. We consider a generic network scenag@ctions are among the best-known market-based mechanisms
in which multiple PUs and SUs coexist. To use the spectru@ allocate spectrum [7], [8], [9], [10], [11], [12]. In most
resource efficiently, the SUs share the available spectimmoposed auctions, the spectrum resource is treated as good

_ _ _ _ in traditional auctions studied by economists, i.e., ooerlsed

- This work is supported by the project TEROPP (technologtasTER- band (or a collection of multiple bands) is awarded to one
minal in OPPortunistic radio applications) funded by therféh National
Research Agency (ANR). SU. However, spectrum auction differs from conventional
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auctions in that it has to address radio interference. 8pact  SU4's valuation of the spectrum is defined by a utility func-
auction is essentially a problem of interference-consedi tion U;(v;), where~; is the received signal-to-interference-
resource allocation. Only a few papers have discussed spglus-noise ratio (SINR) at SU i's receivé);. U;(y; ) character-
trum auctions under interference constraint, among whidh [ izes the application payoff (e.g. satisfaction level) of &tbm
and [12] studied conflict-free spectrum allocation with thigSINR ;. We assumel;(~;) is continuously differentiable,
spectrum efficiency. [10] developed an auction-based gpect strictly increasing and concave 4 with U;(0) = 0. For each
sharing framework to allow a single spectrum manager &U i, the received SINR using PW's band is given by
share its spectrum with a group of users, subject to the Dihi
interference temperature constraint at the measuremaestt po Vi = —— )
requirement proposed by FCC in [3]. Based on the same model 10 Bn + 32 Py
as [10], our work is among the relative few that investigateherep; denotes SU’s transmission power,;; denotes the
the interference-constraint radio resource allocatiombl@m channel gain from SU’s transmitterS; to SU i’s receiver
under the auction framework. Compared with previous worl;, ny denotes the background noise power spectral density.
we make the following key contributions: In the considered scenario, to ensure that the transmission
« Existing auction mechanisms mainly focus on singlef PUs are not significantly degraded by the SUs, an inter-

PU scenario with very limited analytical and numericalerence temperature constraint is imposed such that thé tot

studies on multiple-PU case. Our work, however, condudceived power of SUs at Pk must satisfy

an in-depth analysis on the spectrum auction for multiple M

PUs tq allocate thglr spectrum to multiple SUs eff|C|en_tIy Zpigm <P, Ynen,

and fairly. As a distinctive feature of the proposed auction Pl

framework, the SUs’ strate bid) is two-dimensional . . :

and non-continuous, Ieadin%yt(() a)competition scenar\ﬁ')heregi". is the channel gain fronfi; to PUn, P, is the

with more complex interactions among players and réc_)lerable interference threshold at RU

quiring an original study of the resulting equilibrium.

« We investigate the spectrum auction with free spectrum
bands and develop a distributed adaptive algorithm basgd

on no-regret learning to converge to a CE of the auctionye apply auction mechanisms to tackle the spectrum allo-
game. To the best of our knowledge, our work is the firglation problem. By definition, an auction is a decentralized
to adapt the auction framework to address the spectryfyrket mechanism for allocating resources and can be formu-
sharing problem in heterogeneous environments with batfied as a non-cooperative game, where players are bidders,
licensed and free bands. strategies are bids, both allocations and payments arédasc
The rest of this paper is structured as follows. Section ¢ bids. A well-known auction is the Vickrey-Clarke-Groves
presents our system model and auction framework followgdCG) auction [6], which is shown to have social optimal
by the formulation of the non-cooperative auction gameéutcome. However, the VCG auction requires global informa-
Section Il solves the auction game and analyzes the striien to perform centralized computations. To overcome this
tural properties of the resulting NE. Section IV extends ouinitation, two one-dimensional share auction mechanjsms
auction framework to the more challenging scenario witle frenamely the SINR auction and the power auction are proposed
spectrum bands. Simulation results are presented in 8€¢tio in [10] to study the spectrum allocation problem in singlé-P

1)

Spectrum auction framework

Section VI concludes the paper. networks. In the following, we extend the work of [10] to the
multiple-PU scenario by proposing the two-dimensional SIN

This section introduces the notation and the system model
of our work, followed by the presentation of the proposefgorithm 1 Two-dimensional spectrum auction algorithm
spectrum auction framework and the formulation of the auncti Price announcing: Each PUn announces a reserve bigl
game under the framework. and a pricer, > O'
n .

» ) Bidding: Based ong, andr,, each SUi submits a bid

A. Cognitive radio network model (ai,b;) wherea; € N andb; > 0.

We consider a cognitive radio network consisting of a set Spectrum allocation: Each SUi is allocated a transmission
of primary users referred to as PUs and a set of secondaryowerp, from PU a; as follows:
transmitter-receiver pairs referred to as secondary users P, b;
SUs. We useV = {1,2,--- ,N} and M = {1,2,---, M} pi:giaiZEMw—avbg*ﬁa[ 2)
to denote the PU set and the SU set, respectively. We US@ayment collection:Eacfjl SLji ;:)ays PUa; a payment’; =
S; and D; to denote the transmitter and the receiver of SU T igia, in the SINR auction and’; = 7,,p;gia, in the
1 € M. Each PUn € \V operates on a spectrum bandvith ! X ’ )
bandwidthB,, that is non-overlapped with the spectrum bands
of other PUs, i.en; (ny = ®,Vni,ny € N2

power auction.

ln our study, we assume that SUs are honest, and indeed make th
1The extension of our analysis to the more competitive si@neere the payments. We do not consider the issugafment enforcemenivhich may
PUs’ bands are overlapped with each other is left for futuogkw require a separate mechanism and is beyond the scope of ike pa



Under the above auction framework, the received SINR &dced by each SU in the spectrum auction game, given the

SUiis price of PUst = {m,,n € N'} and strategies of otheks ;:
L Pai g - s = (a7, b;) = argmax S;(si,s-.), (4)
hji which, according to the following lemma, can be written as
noBa, Zb-j + 0 | + Z Fa, ﬁbi s; = (a},b}) = argmaxargmax S;(s;, S_;).
jeM,aj=a; jEM,a;=a;,j#i 77 a; €N b; >0
In contrast to [10] where SUs are charged the same pric€mma 1. max Si(si,5_;) = max max S;(si,5_i).
per unit SINR, we apply the economic conceptpoice dis- (@i bi) a; €N ;>0
criminationin the proposed SINR auction by imposipg, as Proof: On one hand, it follows from (4) that
a user-dependent pricing factor on $UThe design rationale Si((al,b?),s_;) > maxmax S;((as,b;) S_,)_4
is that for two SUs choosing the same PU, the SU causing SN T = aeN x0T

more interference at the PU should be charged more per union the other hand, we have

SINR than the SU causing less interference. As we will show max max S;((a;,b;),s—;) > max S;((al,b;),5-;)
via numerical experiments, this feature is especiallyeslin €N b:20 bi20 . e

multi-PU case by resulting a more balanced equilibrium. For 2 Sil(ai, b)), 5-0).

the power auction, noticing that the received power of SU Combining the above results completes our proof. =
at PUa; is p;giq,, the auction scheme actually inplements a

pricing policy under which a price,, per unit received power A. SINR auction

is imposed by PUh to the SUs connecting to it. We start with the SINR auction game. Unlike the single-
PU auction studied in [10], where each SU maximizes its

C. Non-cooperative spectrum auction game formulation ~ Surplus function over its bid only, the SU optimization pierh

Under the proposed auction framework, we model tr{g the muItlpIe—.PU case is a joint two-dimensional proble_m
: . N over the submitted bid and the PU to whom the SU bids
interaction among SUs as a nhon-cooperative spectrum auctjg, spectrum. To solve the SUs' optimization problem, a
game, denoted a8 ys4 andGypa for the SINR and power : '

. . straightforward way to find(a},b;) is to search over all
auction, respectively.Let s; = (a;, b;) denote the strategy of 9 y (a7, 07)

SUi ands_; denote the strategy of the SUs excegiven the possible PU settings and perform optimization over bid for
price vectorr = (m,,n € N), each SUi chooses its strategy

every setting, which is computationally intensive and nsake
L . : : the resulting NE intractable. In our analysis, we overcome
s; to maximize hissurplus functiordefined as follows:

this technical difficulty by decomposing the two-dimensibn
Si(si,5-i) = Ui(7i(si,5-4)) — Ci(si,5-i). optimization problem based on the structural propertiethef
The resulting non-cooperative SINR (power) auction gang&lrplus function, detailed in Lemma 2.

can then be defined formally as: Lemma 2. For each SUi, givenr and s_;, it holds that

Gnsa(Grpa): (s b N B30 Sisi,5-1), Vi€ M. a; = argmax S;(7;,) = argmax Ui(7i,) = TnGinVin:
v R = neN neN

The solution of the auction game is characterized by a Na\%ere'y?* = min{U/ " (7 gin), Pohii/(noBngin)}, ¥ € N
Equilibrium (NE), a strategy profile* = (s*, s* ;) from which " ’ ’ ’

no player has incentive to deviate unilaterally [13], i.e., . g h ¢ h
ok " , . . Proof: Let ~;,, denote the SINR of SWwhen connecting
Si(si,s%3) 2 Silsi,87,), Vi€ M, Va; € N, Wby 2 0. to PU n, recall (3), we can show that:
As a distinguished feature from the single-PU auction, the 1) ~in is upper-bounded by, ki / (no B
auction framework proposed in our work is two-dimensional 2) Fzgr vin < Pohii/( oy
and involves both PU selection and bid adjustment, which -0 0in“hetweenys,, andb;.

leads to a competition scenario with more complex inteoasti From Lemma 1, the optimization problem of SUs thus

among players. C_Zonsequer_ﬂly, characterizing _structumb-p_ equivalent to the following one:
erties of the auction game in our context requires an origina

study of the game equilibria that cannot draw on existind-wel max  max 51, %in).
known results, as will be shown in later analysis.

noBngin), there is an one-to-one

in<
Tin=5n0Bngin

Moreover, when choosing PW, S; can be written as a
function of v;,, as

_ _ _ . Si(Vin) = Ui(Vin) — TnGinYin,
In this section, we solve the auction game by deriving thgnhose derivative is
NE of the game and study the structure properties of the NE. 05;
To this end, we focus on the following optimization problem Min

Following the concavity ofU;, U/ is monotonously de-
3In this work, we do not consider the PUs as players. A signifiextension creasing in Yi Hence S: is a quasi—concave function
of our work presented in this paper is to model the spectruniiau as a wme N .
Stackelberg gamén which the PUs are the leaders that choose their strate@f 7in, thus has a unique global maximizey;, =
(price) first, and the SUs are the followers that respond byosimg their
strategies (bids) accordingly, knowing the leaders’ egiats [13]. We leave  “For the sake of simplicity, in case of non-ambiguity, we note
this extension of exploring the Stackelberg game for futuoek. Si((a},b}),s_;) as a function ofs;, i.e. S;(s;) or S;(a}, b}).
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Ill. SOLVING THE AUCTION GAME: NE ANALYSIS

= Uil('}’in) — TnYin-




min {U{_l(wngin),Pnhii/(nangin)}. The maximum ofS; the equilibrium of the power auction game, we make the

under PUn is given by S;(vz,). It then follows that following approximation in the subsequent analysis:
al = argmax S;(v;,) = argmax U;(V5,) — TnGinVin, b; > b;,Vi € M, or equivalentl bi ~Y b:.(5
neN ( ) neN (tin) Z ’ a yz ’ Z ’ ©)

. _ a;=a;,j7#1 sj=a;,j#i  S;=ai

whereyy, = min{U; ™" (mngin), Pnhii/ (0 Bugin)}- ®  The approximation (5) is accurate in large systems where the
Specifically, whenr, is significantly large, more precisely, yig variation of any individual player has neglectable iafioe

mngin = Uj(Pahii/n0Bngin), ¥ € N, Vi € M, Lemma 2. g5 the system state. More specifically, under (5), the impact

can be simplified to Corollary 1. of b; on the interference at the receivBr, denoted ag;, can

Corollary 1. If m,gin > Ul(Pyuhii/noBngin),¥n € N,Yi € be neglected, in other word$, can be regarded independent

M, it holds thata} = argmin,,c xr T, gin- w.r.t. b;. The utility function of SUi can then be written as:
. . Traigiaiji
Proof: Recall that U;(y;) is concave in ~, Si = Ui(vi) — —
(22

TnGin > U{(Pnh“/nangm) leads to Ui/il(ﬂ'ngin) <

wherel; = ngB,, + > i ai—a Diljis
P,hii/(noBngin). It then follows from Lemma 2 that 0B + 2 jentizias—a Pilts

To solve the power auction game, we transform the original

Vi = U (Tngin) and gameGnpa into another gamé’y », in which the strategy

a; = argmaxS;(U " (Tngin)) of SU i is (a4, 7;) instead of(a;,b;) in Gypa. Under the
neN 1 1 approximation (5),y; can be regarded as a linear function

= arfg\?x Ui(Ui™ (ngin)) = TnginU; ™" (Tngin)- of b;. As I; is independent w.r.th;, any unilateral change in

Let & = mngin, regards; = U; (U~} (z)) — 2U. " (z) as a b; can be transformed into related changeyinwithout any

function of x, after some mathematical operations, we havénfluence omy—;. Thus the original gamé&'n p4 is equivalent

dS; " to the transformed gam@’y 4, formally expressed as
or —U; 7 (@), Gnpa: Ir(lax : Si(8i,8-7), © € M.
S;=(ai,Yi

which, following the concavity of;, is non-positive.S;(x)

. . S We now concentrate on the new gai@ . Performin
is thus non-increasing im. Hence gait p 4 9

. 1 ) the same analysis as Lemma 1 and Corollary 1 by noticing
a; = argénj\}cmx Si(U; (tngin)) = aglgenj\l/m TnGin, that I; > noB,,, we have the following result that decouples
which concludes our proof. m the PU selection and the adjustmentyofin G’y p 4.

If we denoter,g:, as the effective price for SW when | emma 3. If TnginoBn hii > Ul(Pohii/nogin),¥n €
choosing PUn, Corollary 1 states that SWalways chooses \r v; ¢ A, it holds thata? = argmin,, ¢ s T gin L /-
the PU with the minimum effective price. ) . )

As the key results of this subsection, we have demonstratedompared with the SINR auction game where the effective
that in the SINR auction game, the choice of PU onljfice imposed by P to SUi is m.g:n, in the power auction
depends on the effective price set by PUs. Consequently, figme, the corresponding effective price becomgg.. /i /hii-
optimization problem of each S can be decomposed intolemma 3 states that SWalways chooses the PU with the
two sub-problems, which can be performed sequentially: Minimum effective price. Armed with Lemma 3, we can then

1) i chooses PU based on the effective price of PUs angstablish the existence of NE @/NPA under_ the condition

stay with PUa: that the prices set by PUs are sufficiently high.

2) i performs bid optimization by adjusting its bid submitTheorem 2. Under the approximatiorf5) and the condition
ted to PUq;, which is degenerated into single-PU casén Lemma 3,G'y », admits a NE.
The following theorem on the NE of the SINR auction game
is then immediate whose proof follows straightforwardigrir
that of Theorem 1 and Proposition 6 in [10].

Proof: For any SUi, under the strategy of othegs ; =
(a—;,v—4), it follows from Lemma 3 that chooses PU; =
ming,en mnginli/hii, i.€., for anyal # af, it holds that

Theorem 1. For the SINR auction with3, > 0,Vn € N, Tar hiar i (@) wa;hméli(a;)
there exists a threshold price vectaf, = {r}, ,.n € N'} » S T
such that if the price vector > 3,,> a NE exists to which It then follows that for anyy; > 0
the best response update converges. The NE is uniquig if Tarhias I (a})
is singleton for every SW. On the other hand, if there exists Si(a;,vi) = Ui(vi) — hizm >
someng € N such thatr,, <7, . there is no NE. ! z/lh. )
Ui(yi) — ———— 121 i = Si(ag, ),

B. Power auction which implies that given the opporﬁants’ strategy, choo$ihg

In this subsection, we turn to the power auction game. Ag is always the dominating strategy for any.
the payment functior@’; in the power auction has a different On the other hand, performing the same analysis as
structure to that in the SINR auction (i€; is a function ofp; Lemma 1, we can show that i@y, 4,
instead ofy;), the decomposition in the previous analysis on max S (s, 5_;)
the SINR auction is no more applicable here. To characterize ~ (aivi)
The optimization problem for SW thus becomes
max S;(s;,s—;) = max S;(a}, Vi),
(ai,vi Vi

= max max S;($;, $—;).
Vi a;

5Throughout the paper, the inequality between two vectordefined as
the inequality in all components of the vectors.



in which the utility function of SUi is S;(af,v:), which A; = N is the strategy set of S& the utility function of

is concave iny;. Furthermore, it follows froml; > noB,, SUi is defined asS;(a;,a_;) £ S;(a,b*) whereb*(a) =

and p; < P,/gis; When SUi chooses PUn that v, < {bf(a),i € M} denotes the NE of the bidding game under

maxpen hii Pn/(gia;n0oBr). Thus the strategy spacg = the PU settinga. Each player (SU) selects its strategy (PU)

(vi,i € M) is a nonempty, convex, and compact set. It them € N to maximize its utilityS;.

follows from Theorem 1 in [14] tha€’y » , admits a NE. =
Due to the complexity of the power auction game in which

each SU has to solve a two-dimentional, non-continuous aR

non-decomposable optimization problem, we do not have a max Si(ai,a—;) = max Si(a,b*(a)).

formal proof of the uniqueness of the NE and the convergenggticing that in the bidding game under PU settingt holds

under the best response update. However, our experimgpit ;(a, b*(a)) = max,, S;(a:, b;), we thus have
results show that the convergence is achieved in the vast '

majority of cases (cf. Section V-C).

To analyze the PU selection game, we write the optimization
{]oblem of each SU as

max §i(ai,a_i) = maxmax S;(a;,b;),
a; a; b;

which, according to Lemma 1, is the same optimization
C. The two-level game model problem as for the global auction game analyzed previously.

To get more insight on the structure of the auction gam'é'ence’ we can map the NE of the PU selection game and the

we introduce and analyze in this subsection the following—th(’)rrespOnOlIng b|c_id|ng game _to the NE of the global auction
] L : me, as stated in the following theorem.

level game model: the lower level bidding game under fixedr

PU setting (Definition 1) and the higher level PU selectiomheorem 3. Any (pure) NE of the auction game can be

game (Definition 2). mapped to a (pure) NE of the PU selection gaateand

the corresponding NE of the bid garbé(a*) under the PU

settinga*, i.e., any pure NE of the power auction game can

Ik%e expressed as' = (a, b} (a*),i € M).

177

Definition 1. Given a fixed PU settingp = {a;,i € M},
the bidding game, denoted a&%,(a) and GX,(a)
for the SINR and power auction respectively, is a tup
(M, A {S;,i € M}), where the SU seM is the player set, By decomposing the global auction game into the PU
A = [0,+00)M is the strategy set;S;} is the utility function selection game and the bidding game, we introduce a twd-leve
set with S; being the surplus function. Each player (SU) architecture into the spectrum auction problem, in which th
selects its strategy (bid); > 0 to maximize its utilitysS;. higher level PU selection game is a finite strategy game. This
igrarchicalization can help us analyze the spectrum @uicti

The above defined bidding game can be analyzed in tn . . .
more complex scenarios, as explored in the next section.

same way as the single-PU bidding game presented in [iB]

with the following result on the NE.
] ] IV. SPECTRUM AUCTION WITH FREE SPECTRUM BANDS
Lemma 4. For the SINR auction (for the power auction under

the approximation (5)) with3, > 0,Vn € A/, there exists a Until now, we have analyzed the spectrum auction game in

threshold price vector:? (a) (wffj(a)) such that there exists which the unlicensed SUs purchase spectrum ressource from

a NE to which the best response update converges if the prl@%ﬁsed PUs.hIn”th|s _sect|0n, we eXt.fr?? our aUCtt'O” frgmﬁle:jwol
vectorm > 75t (a) (r > 77’ (a)), there is no NE otherwise. 0 '€ MOre chatienging scenario with free Spectrum bamus.
such context, the SUs have the choice between accessing the

Proof: The proof for the SINR auction follows immedi-licensed spectrum bands owned by PUs which is charged as a
ately from Theorem 1 and Proposition 6 in [10]. For the powéainction of the enjoyed SINR or received power at PUs, and
auction, we show that under the condition in the lemma, thgvitching to the unlicensed spectrum bands which are free
best response function has the same structure as that in dheharge but become more crowded when more SUs operate
SINR auction in [10] whose convergence to NE is provein these spectrum bands. Consequently, the SUs shoulé strik
(Theorem 1 in [10]). To this end, recall that under (5), tha balance between accessing the free spectrum bands with

utility function can be written as probably more interference and paying for communication
S, = Us(vs) — mgioli 5 gains by staying with the Iic_ensed bands. In the subseq_uent
hii study, we assume that there is one free spectrum band deailab
where I; is independent ob;. For each SUi, we can solve for all SUs. The extension to multiple free band case is
the best respondg = B(b_;) as follows: straightforward.
bi = 400 if m< If;on{(%) We start with the SINR auction. In the new scenario
w= WUl i b g _Puh 3<17T < i 177(0) (6) with a free band, we define the spectrum band Set=
Ligio Ligio "1\ noBa, gia; Ligio 1 {1,---,N, N + 1} where bandl to N are the licensed bands

bi=0 if m> 4-0(0) processed by PU to NV, bandN + 1 denotes the free band
Noticing the structural similarity between (6) and (22) 9], with bandwidth By ;. Compared with the previous analysis
we can establish the existence of NE and the convergencenithout free spectrum band, each $blas an additional choice
the NE under the best response update (6). B of switching to bandV + 1 and the corresponding utility is

Definition 2. The PU selection game, denoted@§Y , and Si(N +1) = Ui(v), )
GLY 4 for the SINR and power auction respectively, is a tuphere~; is the SINR of SUi. It is obvious to see that all SUs
(M, A = {A;},{S;,i € M}), where M is the player set, operating atBx ;1 transmits at its maximum power, denoted



asp***,j € M, to maximize their utility. Hence to the special case wherg(r;,r_;) is a product of each
Pt individual player’'s probability for different actions,ei, the
3 . . .
noBN11 + Z#WFNH p;_nazhji' play of the different players is independent.

From Corollary 1, each SU faces the choice of accessin ) ]
the licensed band with minimum effective price and the frg%' Overview of no-regret learning
band N + 1. As in Definition 1 and 2, we can define the The no-regret learning algorithm [4] is also termed regret-
corresponding PU selection game and bidding game in thm@tching algorithm. The stationary solution of the no-e¢gr
new conteXi The PU selection game is a finite strategy ganiearning algorithm exhibits no regret and the probabilify o
and hence has at least one pure or mixed NE. By performiglgoosing a strategy is proportional to the “regret” for not
the same analysis as that in Section IlI-C, we can establisthaving chosen other strategies. For any two strategiesr;
mapping between a NE of the auction game and a NE of tagany timeT’, the regret of playet for not playingr; is
PU selection game in the new context. RT (r;, 7)) £ max (DT (r;,r}),0), (8)

We then address the problem of how to reach a NE of the Ri$here
selection game, which is also a NE of the global auction game.
We first notice that the myopic best response update in the PU
zelgctlon game is not guarantged to converge to a NE. In faCt’D-T(ri,r’-) has the interpretation of average payoff that

uring the course of PU selection, the SUs may notice that thl%1 ler' W(;U|C| have obtained. if it had pla every time
utility of accessing a licensed spectrum is higher thanistay players ' played y

in the free spectrum, and thus switch to the licensed spectrbn the past instead of;. 1 (r4,;) is thus a measure of the

accordingly. Since the SUs do this simultaneously, the fr%':\é/erage regret. The probability that pIayec_hoosesQ IS a
; . inear function of the regret. For every peridd define the

spectrum becomes under-loaded and the SUs will switch back” . , . .
) . . . relative frequency of players’ strategyplayed till 7' periods

to the free spectrum in the next iteration. This phenomenor}, . X

. . o .~ _Qrtime as follow:

in which a player keeps switching between two strategies, 1S L1

known as ping-pong effect. 2r(r) = ZN(T,r),

To eliminate the ping-pong effect, we develop an algorithmshere N (7', r) denotes the number of periods befdrethat
based on the no-regret learning to converge to a correlathd players’ strategy is. As an important propertyzr is
equilibrium (CE) of the PU selection game, which is showguaranteed to converge almost surely (with probability one
to be a CE of the global auction game, too. Before presentiftga set of CE in no-regret learning algorithm.

the proposed algorithm, we first provide a brief introduetio

Vi =

D (i) £ 2 S (SH i) = SL(rr ). (@)

t<T

on CE and no-regret learning. C. Proposed algorithm based on no-regret learning
. o In this subsection, we develop an algorithm (Algorithm 2)
A. Overview of correlated equilibrium based on no-regret learning and prove its convergence to a CE

The concept of CE was proposed by Nobel Prize winne¥ the SINR auction game.
Robert J. Aumann [5], in 1974. It is more general than NE
The idea is that a strategy profile is chosen randomly acegrd;Algorithm 2 No-regret learning algorithm: SINR auction
to a certain distribution. Given the recommended stratiéggy, Initialization: For each SU, let p denote a random number
is to the players’ best interests to conform with this sggte  between0 and 1 and a; = min,cn Tngin (if a; is not
The distribution is called CE, formally defined as follows. & singleton, randomly choose one), gt_,. = p and

Definition 3. Let G = (N, (Ss,i € N),(Si,i € A)) be pgi:NH = 1—p,,. LetT} be a sufficient iteration duration.
a finite strategy game, whew’ is the player sety; is the for t =kTo, k=1,2,3,--- do .

) : - : , Select spectrum,; with probability p!(a;) and use best-
strategy set of playet and S; is the utility function ofi, a response update to converae to tzhe NE of the biddin
probability distributionp is a correlated equilibrium of5 if P P 9 9

" _ - game.
and only ifvi € V, r; € ¥, it holds that When the NE is achieved after sufficient time, update the

Do plrir)[Si(ri,r—i) = Silri,r—i)] <0, Vri € %, average regreR!.
Toi€¥—i Let a! denote the spectrum which SW selects for
or equivalently, iterationt, let 1 be a large constant, calculgié™ as:
> p(ralr)[Si(rfri) = Si(rir—i)] <0, Vrf € 5. {p§+l(ai) = 1Rl Vai €N, a; #d
T_i€X_; t+1 _ t+1 — 4t
. T a;)) =1-— T (n), a;=at
The second formula means that when the recommendation to \"? (a:) Z"GN’””? p () ’ !

playeri is to choose actiom;, then choosing actiom; # r; end for

cannot lead to a higher expected payoffito

The CE set is nonempty, closed and convex in every finitd'€orem 4. There exists a threshold price vectd?* such that

strategy game. Moreover, every NE is a CE and corresporiti§'e price vectorr > ', the proposed algorithm converges
surely to a CE of the SINR auction game.

SFor the free band, there is no bidding game, or alterneytivele can . S
define a dumb bidding game for the free band, at the NE of whicth SU Proof: It follows from the structure of the bidding game

choosing the free band submitsas bid and the utility is given by (7) that a threshold price vectort” exists such that if the



price vectorr > =", the convergence to the NE of the
bidding game is guaranteed under the given spectrum setti
It then follows from the convergence property of the no-e¢gr
learning that the proposed algorithm converges surely t&a (
of the PU selection game, denotedmsi.e., o

> plasida)[Sil(@ ), (ami b))

a;EN,jEM,ji

Si((ai, b)), (a—;,b*,))] <0, Va,eN,
where b and b)* is the strategy of SUi at the NE of
the bidding game under the spectrum sett{ag, a—;) and
(a},a—;), respectively. It follows from the NE definition of

the bidding game that mechanisms are compared. In the first set of simulations,
Si((al, b)), (a—i,b;")) = max Us(7y;) — T Gia, Yi- we consider an illustrative scenario to compare the SINR,
v power auctions with the NAIVE scheme. In the second set of
simulations, we focus on the power auction in realistic roekwv
configurations with and without free spectrum band.

Fig. 1. Simulation setting

On the other hand, we have
Si((af, b)), (a—i, 0% ) < maxU;(Vi) — Tar Giar Vi, VO, > 0.
Yi o o

2?7

Hence, it holds that

Z pla_;|a;)[Si((a, b)), (a—;,b";))— A. Simulation parameters and reference scheme
a; EN JEM,j#i In our simulations, we consider a network of two PUs and
Si((ai, b)), (a—;,*,))] <0, Va, e N, Vb; >0, multiple SUs (transmitter-receiver pairs). PUs can be seen

indicating thatp is also a CE of the SINR auction gamam WO access points or base stations covering two hexagonal
As a desirable property, Algorithm 2 can be implementeQF”_S: as shown in Flgure 1._ They can accept a certain amount

distributedly such that each SWonly needs to know the Of !nterference W_h||§ allowing SUs to communicate during

price vectorr, its own channel gairh;; and that betweers;  UPlink PU_ transmissions.

and each PU: g;,. The best response update of the bidding !N all simulations, we seB,, = 5 MHz and P, = 2n By,

game can be implemented distributedly at each iShhased V7- We adopt a typical urban path-loss model (C2 NLOS

on the knowledge of:; and g;,,, the measurement af, WINNER model [15] for WIMAX) with carrier freque_ncy

and the SINRy;, as detailed in [10]. We then show that thefc = 3.5 GHz and path-loss exponent = 3.5. Shadowing

average regret can be calculated at each SU without any otB#gct is neglected. _

information. Noticing (9) and recall the utility functiorf the ~ In order to show the performance gain brought by our

PU selection game in Definition 2, it suffices to show thayolutions, we introduce a reference power allocation sehem
at each iteratiort, T (a!,a’ ;) £ 57, ., Si(at,a*,),Vat € N termed NAIVE. In NAIVE, SUs choose the furthest PU based

can be calculated distributedly. on the knowledge of channel gaims,’. Each PUn then
In fact, at each iteratiott, 5; can be calculated as allocates powep; = P, /(Mygin) to SUi choosing it, where
U}(hﬁﬁgﬂw) at = N +1 M, is the number of SU choosing Pt In the scenario with
gk )7t v l : a free band, the SUs in the NAIVE scheme switch to the
' {Ui(ﬁag) = TatYiat Vgt ai # N +1 free band with certain probability;,... (we analyze the cases

where? , = Ul (e giar), IV is the interference expe-Pfree = 1/2 andp¢ree = 1/3). This simple scher_ne serves as
rienced by SUi when choosing the free band, which can b€ reference scheme for performance comparison.
measured locallyl™! can then be calculated by induction as

. Utat,at ) t=1 B. lllustrative example: SINR and power auctions

_ [3 17—

I = ' Yat,a' =) + Ul(at,at ) t>1" We start with an illustrative example to compare the SINR,
K3 27 —1 2 (2 —1 . . .

Consequently, the average regret can then be calculaBSyVe" auctions and the NAIVE scheme. We consider the fixed

based on only local measurement, which leads to the entir?@twcs)rdj coqfir?;ration iIIustratc?rdhin Figure ﬁWithJWOdRUSj;n
distributed implementation of the proposed algorithm. our IS erwt i € [1,20], vi. ere is n((; gez. En n this
For the power auction, a similar distributed algorithm msé*@mple. The prices; = r, are optimized by dic otonfy

on no-regret learning can be derived with convergence to.a ceVe study the dynamics of the spectrum acutlo_n game
under the best-response update. In the SINR auction, each

SU chooses the PU with the minimum effective price (cf.
. ) ) ) Corollary 1) and then iteratively adjust its bid. Figure &fi{)
In this section, we conduct simulations to evaluate the p&jhows the convergence of allocated power to SUs. After about

formance of the proposed auction framework and demonstrafg jterations, convergence is reached. Compared with the
some intrincical properties of the proposed auction fraoréyw

especially the fairness and efficiency, which are not ekplic "The rationale of the choice is that choosing the furthest BUses the
addressed in the analytical part of the paper. After prasgnt €3St interference at the PU. _ o

he i lati ti introd f f Recall that the more competitive scenario where the PUshsét prices

the simulation setting, we introduce a reference powercaso to maximize their revenue consists of a significant extensibthe current

tion scheme, called NAIVE, to which our proposed auctiowork and is left for future studies.

V. SIMULATION ANALYSIS



PUL1 - SINR auction POWER auction

503

EC
Iterations

PU2 - SINR auction

A
ed Transmit Power [dBm]
Convergence Probability

Assign

" Number of SUs M

Fig. 4. Convergence probability of power auction

<%

“leratons P erations
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1) Convergence:As explained in Section 1lI-B, the best-
response update is not guaranteed to converge. We thus study
the convergence probability. We consider that the converge

} 3 o ] is achieved if the best-response update in the power auction
E'ags'eg' or{}/_\iv/%r??ﬁgﬁtt)m%rpSeIrNngp((ISVﬁe)r Zﬂ%tif)?]'g ers'mifjg“dcam'ated converges withinl00 iterations, otherwise we consider that

the auction does not converge. Figure 4 shows the probabilit

SINR auction where the choice of PU is done at the veRf convergence as a function of the number of SU under this
first iteration and is not modified afterwards, in the poweifiterion: in the vast majority cases (more precisely, inreno
auction, the effective price is given by Lemma 3. As one pdfian95% cases), convergence is achieved. In the subsequent
of the effective price/; changes from one iteration to anothefimulations, in case of non-convergence, the results seda
depending on the strategy of other Skls;, thus the choice On the allocated power values aftei0 iterations.
of PU may also vary from one iteration to another. However, 2) Load balancing: Figure 5 shows a scenario in which
as shown in Figure 2 (right), the final allocated power of eadtl 1 fixes its pricer; = 10*° and PU 2 varies its price:
SU converges after abol® iterations and the choice of PU isin the range{10**,10°%]. The total number of SU3/ is set
stablized. Compared with the SINR auction, the power anctid 40. As shown in the figure, the number of SUs choosing
converges in a faster but less smooth way. PU 1 increases withry. The results demonstrate the benefit

In Figure 3, we focus on the efficiency and fairness &if the proposed power auction framework in load balancing
the considered schemes by studying the average utility gt adjusting the prices of PUs. This feature is obviously not
SU and the Jain's fairness index [16]. The Jain's index ROSSible in NAIVE.
computed based on the normalized utility /6;. From the  3) Efficiency and fairness:We now focus on two key
results, we observe that the SINR auction and the NAlveerformance metrics: efficiency and fairness. To this ensdl, w
scheme have almost the same average utility, but the SIRMPare the power auction and the NAIVE scheme in terms
auction outperforms significantly the NAIVE scheme in term@f average utility per SU and the Jain fairness index in two
of fairness. The power auction, on the other hand, has a végpfigurations. In the first configuratidd/2 system half of
good performance in terms of both efficiency and fairness. SUs are geographically located in cell 1 and the other half in
cell 2. In the second configuratidd-2 systemthe number
of SUs in cell 2 is constantM/> = 2), while the number
of SU in cell 1 is variable in cell 1, = M — 2). The

We now turn to more realistic scenarios. We focus on theo configurations represent two typical network scenarios
power auction as it achieves the best performance in tthe balanced one with a homogeneous distribution of SUs and
above illustrative exemple. The power auction is also motke unbalanced one with a heterogeneous distribution of SUs
natural and realistic in that SUs pay for the interferendds for the illustrative example, we set = m, and choose
they create to PUs instead of the SINR they get as in thee price by dichotomy for the given number of SUs.

SINR auction. In our simulation, the transmitters of SUs are Figure 6 (left) shows that the average utility per SU is
randomly located in each of the two cells. the receivers aaémost the same in the two configurations in the power auction
randomly drawn in a disk with radius0)0m whose center is (see the M/2=M-2 MultiPU Power curve in the figure) and is
the corresponding transmitter. We run Monte Carlo simoiegi always higher than that in the NAIVE scheme. Figure 7 shows
with 1000 snapshots. At each snapshot, SU locations dhat the Jain fairness index (calculated in the same way as in
randomly drawn withd; randomly drawn in1, 20]. the illustrative example) of power auction is always abdna t

C. Realistic experiment: power auction
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depth analysis on the resulting multiple-PU multiple-Suhno
cooperative auction game. We then extended the proposed
auction framework to the more challenging scenario with
free spectrum bands by developing an algorithm based on
no-regret learning to reach a CE of the auction game. The
proposed algorithm, which can be implemented distribyted|
based on local observation, is especially suited in deakzrdd
adaptive learning environments as cognitive radio netaork
The simulation results demonstrate the effectiveness ef th
proposed auction framework in achieving high efficiency and
fairness in spectrum allocation.

As stated in the paper, a significant extension of our work
is to study the more competitive Stackelberg game in which
PUs choose their prices to maximize their revenue. Studying
the efficiency of the spectrum auction in that scenario is the

subjet of our on-going work.

of NAIVE. In particular, in the unbalanced scenario, the pow
auction outperforms significantly the NAIVE scheme.

4) Power auction with a free bandWe now study the
power auction and the proposed no-regret learning alguorith
(Section IV-C) by introducing a free band 8fMHz. p[*** =
20 dBm, Vi € M. In the simulation, SUs in the NAIVE
scheme choose the free band with probabifify... = 1/2
or prree = 1/3 and emit at the maximum powef"**. The [4]
power allocation of SUs staying in licensed bands followes th
same way as in the scenario without free band. (5]

Figure 6 (right) shows the average utility of the power
auction and NAIVE. As can be observed, compared with the
scenario without free band, the average utility in NAIVE is
slightly degraded even a new band is introduced. In comtraé?]
the no-regret learning algorithm results a higher utilitiien
the free band is added. Consequently, the utility gap beatwedd]
the power auction and NAIVE is more significant in the
scenario with free band. Furthermore, we observe the cqig)
vergence of the no-regret learning algorithm. Figure 8 show
the evolution of the number of SUs choosing PU1, PU2 akt
the free band foiM/ = 50. The results demonstrate the benefit
of the proposed no-regret learning algorithm to converganto [12]
equilibrium with reasonable network efficiency in a distrtiéd
fashion.

(1]

(2]
(3]

[13]

VI. CONCLUSION [14]

In this paper, we proposed an auction framework for co§=!
nitive radio networks to allow unlicensed SUs to share thgs
available spectrum of licensed PUs, subject to the interfer
ence temperature constraint at each PU. We provided an in-
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