
HAL Id: hal-01144496
https://imt.hal.science/hal-01144496v1

Submitted on 21 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Average SIR Estimation in Cellular Networks with Best
Server Policy

Mattia Minelli, Marceau Coupechoux, Jean-Marc Kélif

To cite this version:
Mattia Minelli, Marceau Coupechoux, Jean-Marc Kélif. Average SIR Estimation in Cellular Networks
with Best Server Policy. IFIP Wireless Days, Oct 2010, Venice, Italy. pp.1-5. �hal-01144496�

https://imt.hal.science/hal-01144496v1
https://hal.archives-ouvertes.fr


Average SIR Estimation in Cellular Networks with
Best Server Policy

Mattia Minelli
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— Abstract—The evaluation of the Signal to Interference Ratio
(SIR) in cellular networks is of primary importance for network
dimensioning. For static studies, which evaluate cell capacity
and coverage, as well as for dynamic studies, which consider
arrivals and departures of mobile stations (MS), the SIR is always
an important input. Contrary to most of the analytical works
evaluating SIR, we assume in this paper that the MS is attached
to the best server, i.e., to the base station (BS) from which it
receives the highest power. This is a policy that is more realistic
than the classical assumption that considers MSs to be attached
to the nearest BS. The exact formulation of the SIR is however in
this case uneasy to handle and numerical methods remain heavy.
In this paper, we thus propose an approximate analytical study
based on truncated lognormal distributions that provides very
close results to Monte Carlo simulations.

I. INTRODUCTION

Downlink capacity estimation is an issue of critical impor-
tance in cellular networks design, and it is directly bonded
with the Signal over Interference Ratio (SIR) estimation.

Several papers address the capacity estimation matter under
the assumption that the Mobile Station (MS) is always served
by the nearest Base Station (BS), although the presence of
shadowing in real mobile networks configures a more complex
scenario: in fact, according to the most commonly used policy
the MS is served by the station from which it receives more
power (best server policy), which can be often different than
the nearest BS. The shadowing effect, affecting each signal
received by the MS and usually modeled as a lognormal
random variable [9], depends on the local environment in
which the MS is deployed and cannot be ignored while
trying to model real situations. Moreover, the performance
indicators analyzed in the papers are not ideal for the purpose
of estimating the network capacity; for example, the Other-
Cell Interference Factor (OCIF), defined as the ratio of the
total in-cell received power to the out-of-cell received power
is often derived in place of the SIR.

In [4] and [5] the outage probability in presence of shad-
owing is derived without considering the best server, through
the OCIF computation, while [13] and [12] compute the
average OCIF (no best server) over a cell by numerical
integration, considering a hexagonal network. In [2] the precise
distribution of the other-cell interference is derived, although
the derived formulas are quite difficult to be implemented.

The probability density function (PDF) and the cumulative
density function (CDF) of the SIR in presence of fast fading
and shadowing is found in [10], under the assumption that
all the interferers have the same mean, which is unrealistic
in real networks, where each BS has a different distance
with respect to the MS. This assumption is not used in [11],
but the formulae derived for the SIR distribution require the
knowledge of the serving station, which is not given when
the best server policy is used. [7] and [8] find the OCIF
(no best server taken into account) for CDMA systems, using
simulation and modeling.

In this paper, both the shadowing effect and the best server
policy are taken into account to derive the average spatial
SIR distribution in hexagonal networks. Section II introduces
the system model, while in Section III the SIR expression
is derived, making use of the probability for an MS to be
served by a given station in the network, whose expression
is shown in a dedicated subsection. An approximate method
for the derivation of the average SIR, making use of the fluid
network model [6] is then exposed in Section IV and validated
in Section V through Monte-Carlo simulations, for a wide set
of path-loss models and shadowing standard deviations.

II. SYSTEM MODEL

We consider the downlink of a hexagonal radio cellular
network. All the BSs have omni-directional transmitting an-
tennas and they transmit using the same power Ptx, while
a frequency reuse 1 pattern is adopted, meaning that all the
stations transmit on the same frequency. The BS density is
ρBS , the half-distance between BS is Rc and the cell range is
R.

All the MSs are assumed to be served by the BS from
which they receive more power, measured on the pilot signal,
according to the so-called best server policy. MS location
in the network can be measured with respect to its distance
from the serving station (position in its logical cell, i.e., to
which it is attached) or with respect to its distance from the
nearest BS (position in the geographical cell). In this paper
we always refer to the geographical cell because it represents
a steady reference, while the logical cell changes according to
the serving station.

The metric for the evaluation of the transmission quality is
the average SIR γpdq experienced by an MS, expressed as a



function of the distance d from the nearest BS.
The propagation of radio signals is supposed to be affected

by path-loss and lognormal shadowing, according to the fol-
lowing model:

Sipdq � PtxKri
�ηA, (1)

where Sipdq represents the received power from the i-th BS
by an MS at a distance d from the cell center, K is a constant,
ri is the distance between the considered MS and the i-th BS,
η is the path loss exponent and A � 10

ξ
10 is a lognormal

random variable (RV) taking into account the variations over
the received power due to the shadowing effect. ξ is a normal
zero-mean RV, whose standard deviation is denoted with σ
(in dB). Received power Si is thus a lognormal RV with PDF
fSi and CDF Φi. The background noise is not considered
here, because its effects are neglectable with respect to the
interference effect in urban environments.

The SIR is evaluated according to the position of a given
MS in its cell, conventionally considered to be the ’central cell’
of the network and covered by a BS conventionally named as
’BS1’ (figure 1).

Let us divide the central cell into 6 sectors, each one
covering an angle of 60�, having its vertex in the BS1, as
shown in figure 1. The borders of each sector are the lines
joining the BS1 with its nearest neighbors BSs. Without any
loss of generality, the generic MS we are considering in this
paper can be assumed to be deployed in one of these sectors,
thanks to the symmetries of the hexagonal network. As a
further simplification, we assume MS to lie on the line splitting
the chosen sector into two symmetric sectors of 30� each
(figure 1). This assumption doesn’t meaningfully affect the
validity of the obtained results, as shown in Section V.

Fig. 1. System model

III. SIR DERIVATION

We are considering an MS being at a given distance d from
the cell center. For the sake of notation simplicity the index d
is omitted in the following.

In presence of shadowing, an MS could be served by any of
the BSs. This makes the SIR computation very complicate in
absence of further assumptions, because the serving BS choice
strongly influences the experienced SIR. Let now suppose we
know the probability pi for a given MS to be served by the
i-th BS. We can compute the average SIR γi knowing that the
serving BS is BS i and then γ can be derived summing all
the γi for every possible serving station i, weighting each of

them with its associated pi:

γ �
¸
iPB

γipi, (2)

where B of cardinality B is a set including all the indexes of
the network BSs.

In Subsections III-A and III-B the expressions for pi and
γi are derived.

A. Derivation of pi
We consider the quantity Lk, defined as the natural loga-

rithm of the power Sk received from the k-th BS:

Lk � lnpSkq. (3)

Given the lognormal distribution of Sk, Lk is a normal-
distributed RV, whose PDF fLk

is given by

fLk
pxq � 1?

2πa2σ2
exp

�
�plnpxq � µkq2

2a2σ2



, (4)

where µk � lnpPtxKr�η
k q is the average value of Lk, and

a � ln 10{10.
The probability pi for an MS to be served by the i-th BS

can be written as

pi � P pSi ¡ Sh, @h � iq � P pLi ¡ Lh, @h � iq, (5)

which gives, taking into account the independence between all
the Lk,

pi �
» �8

�8

P pLh   x, @h � iqfLipxqdx

�
» �8

�8

¹
h�i

Q

�
lnpxq � µh

aσ



fLipxqdx, (6)

where Qpxq � 1{?2π
³�8
u

e�u2{2du is the error function.
Note that the computation of pi is very fast because few
samples of the normal distribution are needed in order to
have an accurate approximation of the integral, e.g. with the
midpoint rule.

B. Derivation of γi
We introduce the random variables rSh,i, which represent

the received powers from BSs h � i knowing that BS i is the
serving BS: rSh,i �

Sh1tSz Si,@z�iu

pi
. (7)

We also define the interference power knowing that BS i is
the serving BS: rIi � ¸

h�i

rSh,i. (8)

With these notations, γi can be written:

γi � E

� rSi,irIi
�

(9)

�
» �8

0

xE

�
1rIi |rSi,i � x

�
f
rSi,i

pxqdx, (10)



where f
rSi,i

pxq is the PDF of the power received by the serving
station.

On the one hand, this function can be obtained considering
that

f
rSi,i

pxqdx � P pSi � x|Si ¡ Sh,@h � iqdx

� P pSi ¡ Sh,@h � i|Si � xqP pSi � xqdx
piq

�
¹
h�i

Φhpxqfsipxq
pi

dx, (11)

where we exploited the fact that RVs Sh are independent.
On the other hand, the expectation in (10) can be written

as
E

�
1rIi |rSi,i � x

�
�
»

1

t
f
rIi| rSi,i�xdt. (12)

The function f
rIi| rSi,i�x is the PDF of a sum of B�1 lognormal

RVs truncated in x:

f
rIi| rSi,i�x � fŜ1,x


 � � �
fŜi�1,x

fŜi�1,x


 � � �
fŜB,x
, (13)

where 
 is the convolution operator and

fŜh,x
pyq � fSh

pyq
P pSh   xq , 0   y   x, h � i. (14)

We finally rewrite (10) as

γi �
�8¼
0

x

t
f
rSi,i

pxqf
rIi| rSi,i�xptqdxdt (15)

�
�8¼
0

x

t


h�i

fSh
ptqfSipxq

pi
dxdt. (16)

We now observe that pi can be simplified in equation (2):

γ �
¸
iPB

�8¼
0

x

t


h�i

fSh
ptqfSi

pxqdxdt. (17)

It is now theoretically possible to compute the average SIR
using this formula. However, the convolution over the whole
set of BS can be difficult to be performed in a large network.
In the same way, infinite integrals computations are not easily
performed for practical shadowing standard deviations because
of the support of a lognormal PDF. Several approximations are
however possible and give valid results, as shown in the next
section.

IV. APPROXIMATE METHOD FOR γ USING TRUNCATED
LOGNORMALS

We derive here an approximate method, valid on a wide
range of values of σ and η, which makes the computation of
γi sensibly simpler.

Let divide the set B in 2 sets, B � Bn

�
Bf , where Bn

of cardinality N is the set of the indexes of the N nearest
BSs, with respect to the central cell, while Bf of cardinality
B�N includes the indexes of all the other BSs in the network.
According to (2), γi is obtained as the sum of B terms,

where B is the number of BS in the network and is thus
potentially infinite. However, for all the practical values of η,
the probabilities pi are meaningful only for the nearest BSs,
whose indexes are included in Bn. Thus we can write that

γ �
¸
iPBn

γipi. (18)

Under the condition that σ is reasonably low and thanks to
the delta method [3], we can approximate in our context
Er1{rIis by 1{ErrIis (the validation is done by simulations
in Section V). The expression of γi thus becomes: γi �
ErrSi,is{ErrIis. We now focus on each of these expectations
by approximating involved RVs by truncated lognormal RVs.

A. Average received signal

The average power ErrSi,is received by the serving BS is
given by

ErrSi,is �
» �8

0

xf
rSi,i

pxqdx, (19)

but the computation of the integral in (19) can be avoided.
This average value can indeed be written:

ErrSi,is � E rSi |Sh   Si,@h � is (20)

Now, Si is lognormal RV, which is independent on all Sh and
is greater than all Sh with probability pi. We make the simple
approximation that this happens only for the highest values
of Si. More precisely, we consider Si to be the maximum
of all received signals when it is greater than some cut off
value r̄i such that P pSi ¡ r̄iq � pi, i.e., r̄i � Φ�1

i p1� piq. It
is illustrated on figure (2), where we assume that, above the
threshold, Si is always the highest signal. As a consequence:

ErrSi,is � E rSi |Si ¡ r̄is

� eµi�a2σ2{2
1� ϕ

�
lnpr̄iq�µi�a2σ2

aσ

	
1� ϕ

�
lnpr̄iq�µi

aσ

	 , (21)

which is the average value of a truncated lognormal RV [1]
and where ϕ is the standard normal CDF.
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Fig. 2. Truncated lognormal.



B. Average interference

Let us now consider the average interference. ErrIis takes
into account the average interference seen by an MS served by
the i-th station. We compute it as the sum of two terms, one
taking into account the contribution of the far BSs (included
in Bf ) and one taking into account the contribution of the near
BSs (included in Bn). Only the PDF of the power received by
the BSs belonging to Bn are considered to be meaningfully
modified with respect to the lognormal distribution, when the
serving station is known. Thus the contribution If of the
far BSs can be approximated with the average of a sum of
lognormal RV:

ErrIis � E

� ¸
hPBn

rSh,i

�
� E

�� ¸
hPBf

Sh

�� (22)

�
¸

hPBn

E rSh | Si ¡ Sh,@h � is � If . (23)

The precision of the approximation is determined by N .
The term If � °

hPBf
E rShs can be computed starting

from the expression found in [6], which well approximates the
extra-cell received power without shadowing for best server
policy, using the fluid model. Following this approach, taking
into account the shadowing effect and removing the influence
of the nearest BSs, we obtain:

If �
» �8

2Rc�d

» 2π

0

ρBSPtxKr�ηArdrdθ � E

� ¸
hPBn

Sh

�

� 2πρBSPtxK

η � 2

�p2Rc � dq2�η
�
e

a2σ2

2

� e
a2σ2

2

¸
hPBn

eµh (24)

Concerning the first term of the sum (22), we adopt the
same approach as for the average received power. The distri-
butions of the rSh,i are approximated by truncated lognormal
distributions. In this case, we look for a common upper limit
r̄1i for all interference received powers such that:

ErrSh,is � E rSh|Si ¡ Sh,@h � is
� E

�
Sh|Sh   r̄1i

�
� eµi�a2σ2{2

ϕ
�

lnpr̄1iq�µi�a2σ2

aσ

	
ϕ
�

lnpr̄1
i
q�µi

aσ

	 . (25)

By analogy with r̄i, we propose the following cut off value:

r̄1i � 1� Φ�1
i p1� pi{2q. (26)

Simulations in Section V shows that this value provides a very
good approximation.

Summarizing, the approximate method requires, for every
average SIR value we want to estimate, the calculation of
few formulas to evaluate the contribution of each of the N
terms considered in the derivation of γ. These operations
include the computation of the average signal (according to
formula (21)), the computation of If (applying formula (24)),

and the computation of the N approximate values of ErrSh,is
(each derived as in formula (25)). All the computationally
inconvenient integrals over the support of a lognormal RV are
in this way avoided.

V. RESULTS

In this section, we compare our method to Monte Carlo
simulations. All Monte-Carlo simulations are carried out con-
sidering a four rings hexagonal network (with range R �
1 Km) with wraparound. At each snapshot, a MS dropped
randomly with uniform spatial distribution in each sector. SIR
is computed and averaged at a distance d from the BS over a
ring of ranges d and d� δ (δ � 50 m). Note that distance d is
the distance between MS and the BS of its geographical cell
(nearest BS) although SIR is computed with the best server
policy. Simulations are performed with 10000 snapshots.

A. Simulation vs. Analysis

Figures (3) and (4) show the comparison between the ana-
lytical approximation and the simulation results for different
figures of the path-loss exponent η and the shadowing standard
deviation σ. In all cases, the matching is very good, even for
σ � 10 dB. It is interesting to see that the average SIR is
increasing with σ when the best server policy is chosen. This
can be explained by the increased opportunity for a MS to
receive a good signal from one of the neighbor BSs.

dB

dB

dB

Fig. 3. SIR vs. distance to BS, approximate analysis (solid lines with circles)
vs. simulations (solid lines with squares) (η � 3, N � 18).

B. Approximation Accuracy

Figure (5) shows the improvement of the results accuracy
while increasing the number N of BSs considered as ’near’
(in the set Bn). The value of N can be increased or decreased
according to the desired trade-off between computational
speed and precision of the results. The higher is σ, the higher
should be N for a given accuracy because the high variations
of the received power increase the influence of farer BSs.

Figure (6) shows the accuracy of the approximations done
for the computation of the average received signal (right) and
of the average interference (left). On the y axis, we plot the
difference between the simulated value and the approxima-
tion obtained with the truncated lognormal: 10 log10 |ErrSis �



Fig. 4. SIR vs. distance to BS, approximate analysis (solid lines with circles)
vs. simulations (solid lines with squares) (σ � 6.5 dB, N � 18).
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Fig. 5. SIR vs. distance to BS, influence of N (η � 2.5, σ � 10 dB).

ErSi|Si ¡ r̄is| as a function of the cut off value r̄i in logarith-
mic scale. The vertical line corresponds to r̄i � Φ�1

i p1�piq. In
the same way, we plot 10 log10 |

°pErrSh,is�ErSh|Sh   r̄1isq|
as a function of r̄1i. The vertical line corresponds to r̄1i �
1 � Φ�1

i p1 � pi{2q. In both cases, the induced error is very
low and our cut off values are nearly optimal. Errors have
been plotted for specific figures of η, σ and d but the same
conclusion can be drawn for a wide range of realistic values
of these parameters.
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Fig. 6. Truncated lognormal approximation error vs. cut off value for average
received power (right) and interference (left) (η � 4, σ � 10 dB, d �
0.5 Km).

C. Best Server vs. Non Best Server

Figure (7) shows the influence of the best server policy.
Average SIR is compared for the best server policy and for
the nearest server policy as a function of the distance to the
nearest BS. Until d � 500 m, the nearest BS is also the best
one with high probability. At cell border, the best server policy
provides up to 4.3 dB gain.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

30

40

50

Distance respect to cell center (km)

A
ve

ra
ge

 S
IR

 (
dB

)

 

 
No Best Server
With Best Server

Fig. 7. SIR vs. distance to BS, influence of the MS attachment policy (best
server vs. non best server) (η � 2.5, σ � 10 dB).

VI. CONCLUSION

In this paper, we have proposed an efficient and fast ana-
lytical approximation for the estimation of the SIR in cellular
networks with the realistic best server policy. This method is
based on truncated lognormal random variables. Results show
that the analytical approach gives very good results compared
to Monte Carlo simulations.
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