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Abstract—In this paper, we propose and analyze a TS (Tabu
Search) algorithm for DSA (Dynamic Spectrum Access) in cel-
lular networks. We consider a scenario where cellular operators
share a common access band, and we focus on the strategy of one
operator providing packet services to the end-users. We consider
a soft interference requirement for the algorithm’s design that
suits the packet traffic context. The operator’s objective is to
maximize its reward while taking into account the trade-off
between the spectrum cost and the revenues obtained from end-
users. We focus on the temporal heterogeneity of the traffic and
we show that our algorithm allows the operator to increase its
reward by taking advantage of this heterogeneity, rather than
assuming homogeneous traffic for spectrum allocation. We study
the dynamicity of the algorithm through event-based simulations.
Results show that our algorithm uses less spectrum and achieves
less blocking probability than the FSA (Fixed Spectrum Access)
case at the price of reduced user throughput.

I. INTRODUCTION

Due to the spectrum crowd situation and the high demands
on spectral resources, spectrum sharing and DSA techniques
have been active research topics. The existing spectrum al-
location process, denoted as FSA (Fixed Spectrum Access),
headed for static long term exclusive rights of spectrum usage
[1] and is shown to be inflexible [2].

Spectrum sharing has been proposed as a promising method
for better usage of spectrum. Researchers have worked on
spectrum sharing algorithms motivated by the incentives taken
by FCC to promote a better usage of spectrum [3] [4]. For
example, the authors in [5] propose a coordinated DSA system
where a common pool of resources (CAB or Coordinated
Access Band) is shared and controlled by a regional spectrum
broker.

In this paper, we consider a framework of several operators
sharing a common pool of resources (or a CAB) inspired by
[5], and we focus on the strategy of one operator leasing
spectrum from the broker. The operator does not own the
spectrum, but rather has to lease it according to the demands
in order to provide packet services for the end-users. We are
interested in developing a DSA algorithm based on TS (Tabu
Search) that provides the number of spectrum blocks to be
acquired from the broker, as well as the frequency assignment
corresponding to the maximum reward.

Several algorithms have been proposed to solve the CAP
(Channel Assignment Problem) in cellular mobile networks.
The classical CAP consists of assigning the channels to
the cells within the mobile network while satisfying: (1)

interference constraints (co-channel, adjacent channel or both
together) and (2) the traffic load demands. The proposed
algorithms in the literature could be categorized as follows:
algorithms based on heuristic methods [6], others based on
genetic algorithm [7], on graph coloring method [8], and on
neural network methods [9].

Researchers have also studied frequency assignment using
TS algorithm. For example, the references [10], [11], [12], and
[8] make a partial list of the references proposing TS algorithm
to solve the fixed-spectrum CAP.

It is worth mentioning that most of the work done using
TS to solve the fixed-spectrum CAP in cellular networks,
has focused on circuit switched traffic (i.e. voice traffic) with
application to the GSM networks (see [11] for example).
Treating voice traffic using TS has always been associated with
a hard interference requirement: below a certain CIR (Carrier
to Interference Ratio) threshold, the service is not accessible,
while above this level, there is no significant increase of the
service quality.

For this reason, previous works have focused on the mini-
mization of the interference (as an objective function), while
satisfying the traffic demands. Note that in order to be able
to perform the spectrum assignment, in fixed-spectrum CAP
problems, it is necessary to know the number of channels
required by each cell.

With the increasing demand of packet data services along
with the development of new standards supporting packet
applications, i.e. LTE and WiMAX, it would be interesting
for DSA techniques to take into account the specificities of
packet traffic. This is the challenge we are tackling in this
paper. In contrast with the case of voice traffic, in packet
traffic services, we see the interference constraint as a soft
interference requirement, where interference can be tolerated
without a hard threshold. A higher level of interference
however induces a soft degradation of end-users throughput
and consequently affects their satisfaction.

Different from references [8], [10], [11] and [12] that used
TS algorithms, we set an objective function of maximizing the
operators’ reward. The reward is computed here as the sum of
revenues obtained from end-users deduced from the spectrum
cost. The revenue obtained from a user is in turn an increasing
function of its throughput.

Our formulations presented in this paper leads to a simple
algorithm that does not require excessive memory space, and



suits the implementation in a dynamic context. Hereafter we
summarize our main contributions with respect to the related
work: proposing and analyzing a DSA algorithm based on
adapted TS method, where (1) we consider packet traffic ser-
vices, (2) we address the spectrum pricing issue, (3) we set an
objective function for maximizing the operator’s reward, and
(4) we introduce adaptations to TS for a dynamic deployment
of the algorithm.

In this paper we extend our work in [13] and [14], where
we supposed a priori that a classical frequency reuse scheme
is deployed. We also extend the work in [15] by focusing on
the temporal heterogeneity of the network’s traffic, rather than
the spatial heterogeneity as done in [15].

In this paper we also introduce amendements to the algo-
rithm, in [15], to better suit the implementation in a dynamic
context: (1) enhancing the initialization process, (2) increasing
the algorithm’s convergence speed through: a) limiting the
number of generated neighbors at each new event depending
on the event type, b) reducing the complexity of calculating
the reward corresponding to each neighbor by selecting only
the concerned cells. Finally (3) we evaluate the performance
of the algorithm’s dynamicity using event-based simulations.

The paper is organised as follows: Section II presents the
network model in terms of system model, DSA principle,
cell capacity calculations, and reward model. In Section III,
we illustrate the TS framework and we give our algorithm’s
details. Section IV gives the numerical results. Conclusion is
finally given in Section V.

II. NETWORK MODEL

A. System model

We study DSA on the cell level and we focus on a mono-
operator case. The operator is supposed to deploy a RAN
(Radio Access Network) providing packet services to the end-
users. The operator does not own the spectrum but rather has
to lease it according to the traffic load. We are considering
a hexagonal topology for the RAN, consisting of one central
cell and two rings of cells surrounding the central cell. Fig. 1
gives the hexagonal model of our study, where parameter R
is the cell radius.

Fig. 1. Hexagonal network of study.

We assume a fair scheduling in throughput for the users of
a given cell. The average data rate accessible by users in a
cell is proportional to the bandwidth allocated to the cell and
is equally divided among all users of the cell.

B. Dynamic spectrum access

In the considered system model, the core issue for the
operator lies in the trade-off to be found between spectrum
cost and revenues obtained from users: more spectrum means
a higher cost for the operator but also higher throughputs for
users that are encouraged to pay more for the service [14].

We suppose a DSA decision is taken by the operator at
each new event, i.e. arrival of a new user, or a user departure
in any cell. A DSA decision assigns spectrum blocks to each
cell in the RAN. We assume that at least one spectrum block is
always available to each cell, so that starvation is not possible.

At the very beginning, the operator is supposed to launch
the TS for a sufficient number of iterations (which depends
on the users’ distribution in the RAN, as shown in [15], and
that ensures the algorithm is able to track the traffic changes),
then at each new event the operator launches TS-based DSA
for a reasonably limited number of iterations.

C. CIR and cell capacity

Clearly, the bit-rate obtained by the end-users depends on
the perceived CINR (Carrier to Interference plus Noise Ratio)
level. The CINR level depends on the frequency assignment.

The exact CINR distribution in a cell is hard to be deter-
mined in practice. For the sake of simplicity, we rely on an
approximate calculation for the CINR by focusing on the cell
edge, which is worst case in terms of interference. We consider
an urban environment, and hence we neglect the noise and we
focus on the CIR (Carrier to Interference Ratio). The users
are assumed to be located on the cell border and facing the
highest level of interference from the interefering cells.

According to the previous assumptions, the CIR perceived
by the users in cell c on frequency block f , can be denoted
by:

CIRfc =
R−α∑Bf

i=1,i6=c (dc,i −R)−α
,

where R is the cell radius, α is the path-loss exponent, dc,i is
the distance between the victim cell c and the interfering cell
i, and Bf is set of all cells using the frequency block f .

We approximate the cell capacity (in bps) using Shannon’s
classical formula. The cell capacity Cc is the sum of capacities
provided by the frequency blocks used by the cell:

Cc =
Fc∑
f=1

Wf log2(1 + CIRfc ),

where Wf is the block size of frequency f in Hz, CIRfc is
the CIR perceived by cell c on frequency block f and Fc is
the number of frequency blocks used by cell c.

As we consider fair throughput scheduling between users
of a given cell, the data-rate Dc obtained by each of the users
in cell c is given by: Dc = Cc/Nc, where Nc is the number
of users in cell c.



D. Reward model

The challenging issue in DSA techniques for the operator
lies in the trade-off between the cost paid for the spectrum
and the revenues obtained from the satisfied users. Based on
this principle we define a reward model that takes into account
both the user date-rate as well as the spectrum price.

The reward function depends on the revenue expected by the
operators. The higher the satisfaction of users, the higher the
operator revenue. The revenue obtained from a given customer
in cell c increases with its satisfaction:

φc(Dc) = Ku(1− exp(−Dc/Dcom)),

where Ku is a constant in euros per unit of satisfaction
(without unit), Dcom is a constant called comfort data-rate,
and the satisfaction is an increasing function of the user data
rate [16].

We consider the spectrum price to be fixed by MHz. The
cost paid by the operator for the spectrum can be given as:

KB Wf F,

where F is the number of frequency blocks used by the RAN,
Wf is the block size in Hz, and KB is a constant in euros
per block. The reward obtained by the operator can thus be
written:

g =
B∑
c=1

Ncφc(Dc)−KB Wf F,

where B is the total number of cells in the cluster area where
DSA is performed.

III. TABU SEARCH

A. Principle

Tabu search is a metaheuristic that guides a local heuristic
search procedure to explore the solution space beyond local
optimality (by allowing a degenerated solution) [12]. TS was
originally presented by Glover in [17].

The basic idea is to forbid a move that would return to
recently visited solutions by classifying them as tabu. The
algorithm uses a memory structure called TL (Tabu List) to
avoid cycles. At each iteration the TS updates the TL by
adding attributes of the selected solution. Note that such
attributes do not contain the complete solution otherwise
handling the TL will become costly (in terms of required
memory) when the number of iterations increases [12]. The
TL has a limited size called Tabu Tenure TT.

The initial point of the TS algorithm has its importance
in determining the time (i.e. number of iterations) required
to reach the optimal solution. Starting from a solution very
far away from the zone where the optimal solution exists,
will require more iterations to explore different zones. An
initialization process aims at facilitating the search procedure
for the algorithm, through the reduction of the time required
to reach the optimal solution.

As the minimum number of iterations required to reach an
”efficient” solution using TS is very dependent on the initial

start point, the basic idea of our TS-based DSA algorithm
makes use of this dependency and applies the TS at each
new event. In a dynamic context, the algorithm is launched at
each new event where it starts from the last reached allocation
solution.

B. Definitions

Before illustrating our implementation of the TS algorithm,
we give the following key definitions.

A solution s, in our context, is defined as a Boolean matrix
of size Fmax × B, where Fmax is the CAB size (or the
maximum number of blocks the operator can lease) and B
is the number of cells in the RAN. An element sfc of the
matrix equals to 1 if frequency f is assigned to cell c, and 0
otherwise.

Taking an example of Fmax = 3 blocks, and B = 5 cells,
then a ”possible” solution s can be given as:

s =

1 0 1 0 1
0 1 0 1 1
0 0 0 0 0


In this simple example, only 2 blocks are used by the RAN
(F = 2) and the operator pays for the corresponding spectrum
size. According to our model, a ”possible” solution, means
there is at least one block assigned to any cell. Practically, this
assumption helps reducing the search space for the algorithm,
and hence increasing the chance of reaching a better solution
in less number of iterations. The assumption is also realistic
that avoids a starvation situation.

For each solution s, we define the set of moves M(s) which
can be applied to s in order to obtain a new solution s′. A
neighbor s′ of the solution s is created by applying one move
m, where m ∈ M(s). The move m is a Boolean matrix of
the same size as s, all its elements equal to zero except one
or two elements that equal to one.

The reward g(s) achieved using a solution s is calculated as
illustrated previously in Sections II-C and II-D. The maximum
reward ever-reached during the search process is denoted
gmax. At each iteration, attributes of the selected solution
are added to the TL. We have chosen to consider the reward
corresponding to each selected solution (among all neighbors
at each iteration) as its attribute (see section III-C).

C. Implementation

We present in Algorithm 1 our TS algorithm that suits the
CAP for packet services.

We illustrate now the details of the steps given in Algo-
rithm 1, and we illustrate the improvements with respect to the
work in [15] that suit a dynamic deployment of the algorithm.

Initialization: From our experience, we have noticed that
the TS algorithm assigns a number of blocks to each cell that
is proportional to the number of users in the cell. Accordingly,
in this paper we add an amendment to the initialization method
used in [15] making use of this property, to get a good starting
solution closer to the zone where the optimal solution exists.

We have chosen an initialization method based on randomly
formed solutions. Note that the operator does not have any



Algorithm 1 TS algorithm for reward maximization in packet
services context

1: Initialization: an initial solution sinit is found.
2: s← sinit
3: gmax ← g(sinit)
4: while Nb. of iterations ≤MAXITER do
5: Neighborhood formation: all possible neighbors of the

initial solution s are created, except those who are listed
as tabu.

6: Neighbor selection: the solution s′ that achieves the
maximum reward is chosen, among the set of neighbors,
s← s′

7: Tabu list update: the reward g(s′) corresponding to the
selected solution s′ is added to the TL.

8: Maximum reward update: gmax is updated:
if g(s′) > gmax, then gmax ← g(s′) end if

9: end while

requirements on the number of blocks to assign to the cells
(unlike [8], [10] and [12]), hence the total number of blocks to
be used is unknown to the operator. We divide the search zones
according to the total number of blocks F the operator can
lease, F ∈ (1, ..., Fmax). We generate randomly 300 possible
solutions for each search zone with the conditions: (1) only
one block is assigned to the cell(s) having one user, (2) a
number of blocks equals to F is assigned to the cell(s) having
the maximum number of users. The TS algorithm starts using
the solution corresponding to the maximum obtained reward
among all randomly created solutions.

Neighborhood formation: All possible neighbors are cre-
ated by whether: (1) removing an assigned block from a
random cell, (2) adding a non-used block to a random cell,
or (3) replacing one of the used blocks in a random cell by
a non-used block. Note that adding, removing, or replacing
a frequency can be performed by a simple XOR operation.
The neighbor s′ = s⊕m, where m is a Boolean matrix that
contains zeros except one element equal to one in case of
adding or removing a block. In case of replacing a block, two
elements of the matrix m equal to one.

For an efficient algorithm that can be executed at each new
event, a limitation of the number of neighbors for the first
iteration is introduced, in this paper, depending on the event
type (i.e. arrival or departure of a user). In case of arrival
or departure of a user, replacing one of the used blocks is
considered, however: (a) adding a non-used block to a random
cell is only considered in case of arrival, and (b) removing an
assigned block from a random cell is only considered in case
of departure.

Neighbor selection: In order to choose one TS neighbor,
the operator needs to calculate the reward for all neighbors.
This process might affect the efficiency of the algorithm. In
order to reduce the algorithm’s complexity, we introduce in
this paper the following method for the selection of cells while
calculating the reward for each TS neighbor.

For each move that creates a TS neighbor, only the affected

cells by the move are chosen for the reward update. For
example: In case of replacing f5 by f4 in a cell, then only
the cells using f5 or f4 need to be updated.

Tabu list update: we have chosen to consider the reward
corresponding to each selected solution (among all neighbors
at each iteration) as its attribute. There is two main advantages
behind this approach: first, adding the reward g(s) (of the
selected solution s) in the TL, will not only forbid the TS from
selecting s as a valid solution for the following iterations, but
will also forbid visiting all solutions who achieve the same
reward as g(s).

The second advantage is related to the required memory
space for the TL. Our TL is composed of a single vector
of size TT, each of its elements being equal to the reward
g(s) corresponding to the selected solution s. Note that, in
our case, g(s) holds the complete needed information (from
the operator’s perspective) of the solution matrix s.

IV. NUMERICAL RESULTS

A. Simulation scenario and parameters

We consider a RAN consisting of 19 cells. The RAN’s
topology is formed of one central cell and two rings of cells
surrounding the central cell as shown in Fig. 1.

Hereafter we define the parameters used for our simulations.
The maximum number of blocks Fmax the operator can lease
is assumed to be 6 blocks, with block size of 1 MHz. The
comfort bit-rate for the user Dcom = 500 Kbps, the cell radius
R = 1 Km, and the path-loss exponent α = 3. The pricing
constants are fixed as follows: Ku = 20 euros and KB = 100
euros. The maximum number of users that each cell accepts
(according to the Connection Admission Control configura-
tion) equals to 10 users. We suppose a heterogenous traffic
(arrival rate per cell) in the RAN. There is a high concentration
of traffic in the central cell, and this concentration decreases
as the distance from the cluster’s center increases. We assume
the arrival rate for the central cell λ1 = 4λ2, where λ2 is
the arrival rate per cell for the cells in the middle-circle, and
λ1 = 6λ3, where λ3 is the arrival rate per cell for the cells in
the outer-circle.

TS algorithm parameters are set as follows: TT = 200, the
maximum number of iterations MAXITER = 300 iterations
at the very begining of launching the TS, and 10 iterations at
each new event. The presented results are the average of 20K
events.

According to the defined parameter set as well as to the
neighbor definition, the total number of possible neighbors
created from a solution s, in the worst case, equals to 285
neighbors. It is clear that, for our case study, generating all
possible neighbors at each iteration is very feasible.

We compare the reward obtained by two operators; (1) one
assumes a homogeneous traffic over the RAN to perform its
channel assignment, and (2) a second operator uses DSA, and
considers the exact (heterogenous) distribution of the traffic to
dynamically assign spectrum blocks.

In the coming section we evaluate the performance of the
algorithm’s dynamicity using event-based simulations.



B. Results

We compare between FSA and TS-based DSA in terms of
the obtained reward, CAB utilization, blocking probability, and
the user throughput. Note that in FSA case the operator uses
the whole spectrum of the CAB and applies reuse 3 scheme.

Fig. 2 gives the obtained reward as well as the CAB
utilization versus the mean arrival rate λ using both TS-based
DSA and FSA.

Fig. 2. CAB utilization and obtained reward obtained using FSA and TS-
based DSA.

We can notice that the obtained rewards using TS-based
DSA exceed significantly the rewards obtained using FSA for
all values of simulated λ, even for 2 ≤ λ ≤ 4s−1 where
both techniques use 100% of the CAB. At λ = 1s−1, the
reward obtained using TS-based DSA is 334.5 compared to
75.9 using FSA (+345%). We can also see from Fig. 2 that a
considerable spectrum conservation using the proposed DSA
algorithm is achieved with respect to FSA for λ < 2s−1.

Fig. 3 gives the end-user throughput as well as the blocking
probability obtained using both FSA and TS-based DSA.

Fig. 3. Blocking probability and end-user throughput obtained using FSA
and TS-based DSA.

As the FSA uses more spectrum than TS-based DSA,
consequently the achieved user throughput is reduced for the
DSA case, especially for low values of λ, as shown in Fig. 3.
Note that in FSA case a single user in a cell takes advantage of

using 2 blocks assigned to the cell, while in DSA case only
1 block is assigned to the user. As the spectrum allocation
depends on the cells’ traffic loads, the blocking probability
decreases using DSA with respect to FSA.

V. CONCLUSION

We have proposed and analyzed a TS-based DSA for
cellular systems adapted to packet services. We have con-
sidered a spectrum sharing context and we focused on the
strategy adapted by one operator to maximize its reward.
The revenues are modeled as an increasing function of the
achieved throughput of end-users. We adapted the TS objective
function to suit packet traffic. Our TS-based DSA algorithm
is simple, does not require an excessive memory space. The
proposed algorithm allows the operator to increase its rewards,
to use less spectrum, and to achieve less blocking probability,
however at the price of reduced user throughput.
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