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Abstract—In this paper, we present and analyze a Tabu Search
(TS) algorithm for DSA (Dynamic Spectrum Access) in cellular
networks. We study a mono-operator case where the operator
is providing packet services to the end-users. The objective of
the cellular operator is to maximize its reward while taking into
account the trade-off between the spectrum cost and the revenues
obtained from end-users. These revenue are modeled here as an
increasing function of the achieved throughput. Results show
that the algorithm allows the operator to increase its reward by
taking advantage of the spatial heterogeneity of the traffic in the
network, rather than assuming homogeneous traffic for radio
resource allocation. Our TS-based DSA algorithm is efficient in
terms of the required memory space and convergence speed.
Results show that the algorithm is fast enough to suit a dynamic
context.

I. INTRODUCTION

Due to the spectrum crowd situation and the high demands
on spectral resources, spectrum sharing and DSA techniques
have been active research topics. The existing spectrum al-
location process, denoted as FSA (Fixed Spectrum Access),
headed for static long term exclusive rights of spectrum usage
[1] and shown to be inflexible [2].

Spectrum sharing has been proposed as a promising method
for better usage of spectrum. Researchers have worked on
spectrum sharing algorithms motivated by the incentives taken
by FCC to promote a better usage of spectrum [3] [4]. For
example, the authors of [5] propose a coordinated DSA system
where a common pool of resources (CAB or Coordinated
Access Band) is shared and controlled by a regional spectrum
broker.

In this paper, we consider a framework of several operators
sharing a common pool of resources (or a CAB) inspired by
[5], and we focus on the strategy of one operator leasing
spectrum from the broker. The operator does not own the
spectrum, but rather has to lease it according to the demands.
The operator is providing packet services for the end-users. We
are interested in developing a DSA algorithm based on Tabu
Search (TS) that provides the number of spectrum blocks to be
acquired from the broker, as well as the frequency assignment
corresponding to the maximum reward.

Several algorithms have been proposed to solve the CAP
(Channel Assignment Problem) in cellular mobile networks.
The classical CAP consists of assigning the channels to
the cells within the mobile network while satisfying: (1)
interference constraints (co-channel, adjacent channel or both

together) and (2) the traffic load demands. The proposed
algorithms in the literature could be categorized as follows:
algorithms based on heuristic methods [6], others based on
genetic algorithm [7], on graph coloring method [8], and on
neural network methods [9].

Researchers have also studied frequency assignment using
TS algorithm. For example, papers [10], [11], [12], and [13]
make a partial list of the references proposed TS algorithm to
solve the fixed-spectrum CAP.

It is worth mentioning that most of the work done using
TS to solve the fixed-spectrum CAP in cellular networks,
has focused on circuit switched traffic (i.e. voice traffic) with
application to the GSM networks (see [11] for example).
Treating voice traffic using TS has always been associated with
a hard interference requirement: below a certain CIR (Carrier
to Interference Ratio) threshold, the service is not accessible,
while above this level, there is no significant increase of the
service quality.

For this reason, the previous works have focused on the
minimization of the interference (as an objective function),
while satisfying the traffic demands. Note that in order to be
able to perform the spectrum assignment, in fixed-spectrum
CAP problems, it is necessary to know the number of channels
required by each cell.

With the increasing demand of packet data services along
with the development of new standards supporting packet
applications, i.e. LTE and WiMAX, it would be interesting
for DSA techniques to take into consideration the specificities
of packet traffic. This is the challenge we are tackling in this
paper. In contrast with the case of voice traffic, in packet
traffic services, we see the interference constraint as a soft
interference requirement, where interference can be tolerated
without a hard threshold. A higher level of interference
however induces a soft degradation of end-users throughput
and consequently affects their satisfaction.

Different from references [8], [10], [11] and [12] that used
TS algorithms, we set an objective function of maximizing the
operators’ reward. The reward is computed here as the sum of
revenues obtained from end-users deduced from the spectrum
cost. The revenue obtained from a user is in turn an increasing
function of its throughput.

In our formulation of the dynamic-CAP for packet service,
the operator does not know the number of frequency blocks
required by the cells. Assigning only one, but poorly inter-



fered, block to a given cell might provide higher throughput
to the end-users than assigning two (or more) highly interfered
blocks. The operator needs to find a certain level of compro-
mise in order to maximize its reward (Section II-B).

In [8], the authors have used TS method to solve the
minimum interference DSA problem. Our approach differs
from [8] mainly due to the consideration of packet context.
Consequently our formulation of the objective function, the
neighborhood structure, and the tabu list is different and
adapted to the packet traffic assumption. Our formulations
presented in this paper leads to obtain a simple algorithm
that does not require excessive memory space, and can be
envisaged for the implementation in a dynamic context. Here-
after we summarize our main contributions: Presenting and
analyzing a DSA algorithm based on adapted TS method,
where (1) we consider packet traffic services, (2) we address
the spectrum pricing issue, and (3) we set an objective function
for maximizing the operator’s reward.

In this paper we extend our work in [14] and [15] by
presenting an algorithm for heterogeneous traffic, where we
do not suppose a priori that a classical frequency reuse (e.g.
reuse 1 or reuse 3) is deployed as it is done in the above
references.

The paper is organised as follows: Section II presents the
network model in terms of system model, DSA principle,
cell capacity calculations, and reward model. In section III,
we illustrate the TS framework and we give our algorithm’s
details. Section IV gives the numerical results. Conclusion is
finaly given in section V.

II. NETWORK MODEL

A. System model

We study DSA on the cell level and we focus on a mono-
operator case. The operator is supposed to depoly one RAN
(Radio Access Network) providing packet services to the end-
users. The operator does not own the spectrum but rather has
to lease it according to the traffic load. We are considering
a hexagonal topology for the RAN, consisting of one central
cell and two rings of cells surrounding the central cell. Fig. 1
gives the hexagonal model of our study, where parameter R
is the cell radius.

Fig. 1. Hexagonal network of study.

It is worth mentioning that the usage of a hexagonal model
is only for the sake of simple simulations. Our algorithm
behaves the same way no matter the type of network topology.

We assume a scheduling fair in throughput for the users of
a given cell. The average data rate accessible by users in a
cell is proportional to the bandwidth allocated to the cell and
is equally divided among all users of the cell.

B. Dynamic spectrum access

In the considered system model, the core issue for the
operator lies in the trade-off to be found between spectrum
cost and revenues obtained from users: more spectrum means
a higher cost for the operator but also higher throughputs for
users that are encouraged to pay more for the service [15].

We suppose a DSA decision is taken by the operator at each
event, i.e. arrival of a new user, or a user departure in any cell.
A DSA decision assigns spectrum blocks to each cell in the
RAN. We assume that at least one spectrum block is always
available to each cell, so that starvation is not possible.

C. CIR and cell capacity

Clearly, the bit-rate obtained by the end-users depends on
the perceived CINR (Carrier to Interference plus Noise Ratio)
level. The CINR level depends on the frequency assignment.

The exact CINR distribution in a cell is hard to be deter-
mined in practice. For the sake of simplicity, we rely on an
approximate calculation for the CINR by focusing on the cell
edge, which is a worst case in terms of interference.

We consider an urban environment, and hence we neglect
the noise and we focus on the CIR (Carrier to Interference
Ratio). The users are assumed to be located on the cell
border and facing the highest level of interference from the
interefering cells.

According to the previous assumptions, the CIR perceived
by the users in cell c on frequency block f , can be denoted
by:

CIRfc =
R−α∑Bf

i=1 (dc,i −R)−α
,

where R is the cell radius, α is the path-loss exponent, dc,i is
the distance between the victim cell c and the interfering cell
i, and Bf is set of all cells using the frequency block f .

We approximate the cell capacity (in bps) using Shannon’s
classical formula. The cell capacity is the sum of capacities
provided by the frequency blocks used by the cell. Formaly,
the cell capacity Cc of cell c is denoted by:

Cc =
Fc∑
f=1

Wf log2(1 + CIRfc ),

where Wf is the block size of frequency f in Hz, CIRfc is
the CIR perceived by cell c on frequency block f and Fc is
the number of frequency blocks used by cell c.

As we consider fair throughput scheduling between users of
a given cell. The data-rate Dc obtained by each of the users
in cell c is given by: Dc = Cc/Nc, where Nc is the number
of users in cell c.



D. Reward model

The challenging issue in DSA techniques for the operator
lies in the trade-off between the cost paid for the spectrum and
the revenues obtained from the satisfied users: more spectrum
per cell means a higher cost for the operator but also means
higher throughputs for the end-users. Based on this principle
we define a reward model that takes into account both the user
date-rate as well as the spectrum price.

The reward function depends on the revenue expected by the
operators. The higher the satisfaction of users, the higher the
operator revenue. The revenue obtained from a given customer
in cell c increases with its satisfaction:

φc(Dc) = Ku(1− exp(−Dc/Dcom)),

where Ku is a constant in euros per unit of satisfaction, Dcom

is a constant called comfort data-rate, and the satisfaction is
an increasing function of the user data rate (without unit) [16].

We consider the spectrum price to be fixed by MHz. The
cost paid by the operator for the spectrum can be given as:

KB Wf F,

where F is the number of frequency blocks used by the RAN,
Wf is the block size in Hz, and KB is a constant in euros
per block. Note that considering a different spectrum price
function (for example a function that depends on the demands
in the market as considered in [14] and [15]) will not affect
the behavior nor the performance of our algorithm.

The reward obtained by the operator can thus be written:

g =
B∑
c=1

Ncφc(Dc)−KB Wf F,

where B is the total number of cells in the cluster area where
DSA is performed.

III. TABU SEARCH

A. Principle

Tabu search is a metaheuristic that guides a local heuristic
search procedure to explore the solution space beyond local
optimality (by allowing a degenerated solution) [12]. TS was
originally presented by Glover in [17] and [18].

The basic idea is to forbid a move that would return
to recently visited solutions by classifying them as tabu.
Hereafter we give the fundamentals of TS. Let S be the
set containing the possible solutions to a problem. For each
solution s ∈ S there exists a subset of S called neighborhood
of s. The neighborhood contains feasible solutions, each of
them is obtained by making a simple move from the solution
s. The algorithm uses a memory structure called TL (Tabu
List) to avoid cycles. The algorithm forbids the selection of a
solution among the neighborhood, if this solution have been
visited in a previous iteration. At each iteration the TS updates
the TL by adding attributes of the selected solution. Note that
such attributes do not contain the complete solution otherwise
handling the TL will become costly (in terms of required
memory) when the number of iterations increases [12]. Note

that the TL has a limited size (called TT for Tabu Tenure) and
the choice of the TT has an impact on the obtained result. The
smaller the TT, the higher the chance to have cycles (visiting
previously visited solutions) and hence TS cannot go beyond
the local optimal solution. However if the TT is very large,
very few options will be left for the neighborhood formation.

The initial point of the TS algorithm has its importance
in determining the time (i.e. number of iterations) required
to reach the optimal solution. Starting from a solution very
far away from the zone where the optimal solution exists,
will require more iterations to explore the different zones. An
initialization process aims at facilitating the search procedure
for the algorithm, through the reduction of the time required
to reach the optimal solution. Usually an initialization process
is based on some heuristic method.

B. Definitions

Before illustrating our implementation of the TS algorithm,
we give the following key definitions.
• A solution s is defined as a Boolean matrix of size
Fmax×B, where Fmax is the CAB size (or the maximum
number of blocks the operator can lease) and B is the
number of cells in the RAN. An element sfc of the matrix
is defined as:

sfc = 1, if frequency f is assigned to cell c,
0, otherwise.

Taking an example of Fmax = 3 blocks, and B = 5 cells,
then a ”possible” solution s can be given as:

s =

1 0 1 0 1
0 1 0 1 1
0 0 0 0 0


In this simple example, only 2 blocks are used by the
RAN (F = 2) and the operator pays for the corresponding
spectrum size.

• According to our model, a ”possible” solution means
there is at least one block assigned to any cell. Prac-
tically, this assumption helps reducing the search space
for the algorithm, and hence increasing the chance of
reaching a better solution in less number of iterations.
The assumption is also realistic that avoids a starvation
situation.

• For each solution s ∈ S, we define the set of moves
M(s) which can be applied to s in order to obtain a new
solution s′.

• A neighbor s′ of the solution s is created by applying
one move m, where m ∈M(s).

• The move m is a Boolean matrix of the same size as s,
all its elements equal to zero except one, or two elements
equal to one.

• The reward g(s) achieved using a solution s is calculated
as illustrated previously in sections II-C and II-D. The
maximum reward ever-reached during the search process
is denoted gmax.



• At each iteration, attributes of the selected solutions are
added to the TL.

We have chosen to consider the reward corresponding to
each selected (among all neighbors at each iteration) solution
as its attribute. There is two main advantages behind choosing
the reward as the attribute of the visited solution. First, adding
the reward g(s) (of the selected solution s) in the TL, will not
only forbid the TS from selecting s as a valid solution for the
following iterations, but will also forbid visiting all solutions
that achieve the same reward as g(s).

The second advantage is related to the required memory
space for the TL. Our TL is composed of a single vector
of size TT, each of its elements being equal to the reward
g(s) corresponding to the selected solution s. Note that, in
our case, g(s) holds the complete needed information (from
the operator’s perspective) of the solution matrix s.

C. Implementation

We present hereafter our TS algorithm that suits the CAP
for packet services:

Algorithm 1 TS algorithm for reward maximization in packet
services context

1: Initialization: an initial solution sinit is found.
2: s← sinit
3: gmax ← g(sinit)
4: while Nb. of iterations ≤MAXITER do
5: Neighborhood formation: all possible neighbors of the

initial solution s are created, except those who are listed
as tabu.

6: Neighbor selection: one solution s′ is chosen among
the set of neighbors to be considered as the ”initial”
solution for the next iteration.

7: Tabu list update: the reward g(s′) corresponding to the
selected solution s′ is added to the TL.

8: Max. reward update: the maximum ever-obtained re-
ward gmax is updated:
if g(s′) > gmax, then gmax ← g(s′) end if

9: end while

We illustrate now the details of the steps given in Algo-
rithm 1.

Initialization: We have chosen an initialization method
based on randomly formed solutions. Note that the operator
does not have any requirements on the number of blocks to
assign to the cells (unlike [8], [10] and [12]), hence the total
number of blocks to be used is unknown to the operator. We
divide the search zones according to the total number of blocks
the operator can lease (1, ..., Fmax). Note that the search zone
with a single block is a trivial one because in this case, there is
a single possible solution corresponding to frequency reuse 1.
We generate randomly 300 possible solutions for each search
zone. The TS algorithm starts using the solution corresponding
to the maximum obtained reward among all randomly created
solutions.

Neighborhood formation: All possible neighbors are cre-
ated by whether: (1) removing an assigned block from a
random cell, (2) adding a non-used block to a random cell,
or (3) replacing one of the used blocks in a random cell by
a non-used block. Note that adding, removing, or replacing
a frequency can be performed by a simple XOR operation.
The neighbor s′ = s⊕m, where m is a Boolean matrix that
contains zeros except one element equal to one in case of
adding or removing a block. In case of replacing a block, two
elements of the matrix m equal to one.

Neighbor selection: According to our defined objective
function, the neighbor that achieves the maximum reward
among all neighbors is selected.

IV. NUMERICAL RESULTS

A. Simulation scenarios and parameters

We consider a RAN consisting of 19 cells. The RAN’s
topology is formed of one central cell and two rings of cells
surrounding the central cell as shown in Fig. 1.

Hereafter we define the parameters we used for our simula-
tions. The maximum number of blocks Fmax the operator can
lease is assumed to be 6 blocks, with block size of 1 MHz.
The comfort bit-rate for the user Dcom = 500 Kbps, the cell
radius R = 1 Km, and the path-loss exponent α = 3. The
pricing constants are fixed as follows: Ku = 10 euros and
KB = 50 euros.

TS algorithm parameters are set as follows: Tabu Tenure
= 200 and the maximum number of iterations MAXITER =
800 iterations. According to the defined parameter set as well
as to the neighbor definition, the total number of possible
neighbors created from a solution s equals to:

Fmax B −Bs0 +
B∑
c

Fc F̄c,

where Bs0 is the number of cells having one block in s, B
is the total number of cells in the RAN, Fc is the number of
frequency blocks used by cell c, and F̄c is the number of blocks
not used by cell c. Note that Fc + F̄c = Fmax. The first part
of the equation (Fmax B − Bs0) represents the total number
of possible neighbors created due to adding or removing a
block from a cell, knowing that at least one block should be
assigned to any cell. The summation part represents the total
number of possible neighbors created due to the replacement
of a block.

It is clear that, for our case study, generating all possible
neighbors at each iteration is very feasible.

B. Homogeneous versus heterogenous traffic

Now we are going to use TS to compare the obtained reward
through serving a specific amount of traffic load (determined
by the total number of active users) in two different cases:
(1) the case of an operator using FSA, who assumed a
homogeneous traffic over the RAN to perform its channel
assignment, and (2) the case of an operator using DSA, who
considers the exact (heterogenous) distribution of the traffic to
dynamically assign spectrum blocks.



We have considered the parameter set given in section IV-A,
with a total number of users equal to 57 users. We suppose the
distribution of the users is following a decreasing function of
the distance from the central cell. There is a high concentration
of users in the central cell, and this concentration decreases
with the distance from the center of the cluster. Tab. I gives
all studied users’ distributions following this criterion with a
total number of users equals to 57 users. It gives the number
of users/cell for the central cell, the middle-circle cells, and
the outer-circle cells as well as the distributions’ standard-
deviation σ. The homogeneous traffic scenario is also included
with its zero standard deviation (all cells have the same number
of users).

TABLE I
STUDIED USERS’ DISTRIBUTIONS AND CORRESPONDING STANDARD

DEVIATIONS σ

central cell middle-circle cells outer-circle cells σ

33 2 1 7.28
27 3 1 5.88
21 4 1 4.58
15 5 1 3.46
9 6 1 2.76
9 4 2 1.73
3 3 3 0

The operator using FSA has assigned frequency blocks to
the cells while assuming a homogeneous traffic (last line of
Tab. I). For a fair comparison, the assignment is obtained
using the TS algorithm but remains fixed whatever the traffic
conditions.

The operator using DSA adapts its frequency assignment
according to the dynamic of the traffic and try to maximize
its reward whatever its heterogeneity using the proposed TS
based DSA algorithm.

Fig. 2 gives the obtained reward versus the standard de-
viation σ for both operators. Each point corresponds to a
line in Tab. I. For σ = 0, as both operators launch the TS
algorithm, obtained reward are equal. As heterogeneity grows
up (σ increases), the FSA allocation remains the same for the
first operator, while for the second, DSA strategy adapts the
assignment to the traffic.

We can notice that the obtained reward decreases as σ
increases for both cases, even for the operator who considers
the real traffic in the RAN. Fig. 2 shows however that the
reward obtained by the DSA operator exceeds the reward
obtained by the FSA operator for all values of σ.

We give in Fig 3 the spectrum assignment obtained using
TS-based DSA algorithm for σ = 7.28.

The numbers indicated on the cells represent the block
numbers. The TS-based DSA algorithm has assigned one block
to all the cells, except the central cell. The algorithm has
assigned 3 blocks to the central cell; two of them (block 4
and block 5) are not assigned to any of the other cells, while
the third block (block 2) is assigned to some of the cells on
the outer-circle. We see this assignment is coherent with the
distribution of users in the cells. Note that the central cell has
33 users (see Table I).

Fig. 2. Obtained reward by the two operators as a function of σ.

Fig. 3. Obtained spectrum assignment using TS-based DSA for σ = 7.28.

C. Performance of TS

In this section, we evaluate the performance of our TS algo-
rithm in terms of the minimum number of iterations required
to reach an ”efficient” solution. This metric is important from
the dynamicity point of view of the algorithm. We assume the
same parameter set as given in section IV-A. The RAN has a
total number of 57 users. We compare different cases of users’
distributions: homogeneous and heterogeneous distributions.

Fig. 4 gives the mean obtained reward using TS as a
function of the number of iterations for σ = 0, 2.76 and 3.46
(see Table I for the exact number of users in each cell). Each
of the presented curves in Fig. 4 is the output of averaging
250 trials.

It is clear that the higher the number of iterations, the higher
the chance to get a better solution. A too high number of
iterations would however prevent an operator from using the
proposed algorithm in a dynamic context.

We can notice from Fig. 4 that the mean value of the reward
increases with the increase of the iterations’ number until it
stabilizes (this is true for all values of σ).

The minimum number of iterations required for the mean
reward to stabilize is found to be approximately 200, 240, and
320 iterations for σ = 0, 2.76, and 3.46 respectively.

In the homogenenous distribution case (σ = 0) the mean re-



Fig. 4. Average reward versus the number of iterations.

ward curve stabilizes very fast. However in the heterogeneous
case, the mean reward curve needs higher number of iterations
to stablize. Obviously, finding the allocation which maximizes
the reward in a heterogenous traffic case is more challenging.

We can notice that the required minimum number of iter-
ations are reasonable enough to allow the operator to launch
the algorithm at each new event.

It is very important to note that the obtained minimum
number of iterations is very dependant on the initial start
point. In a dynamic context, and at each new event, the
operator is supposed to start TS algorithm from the last
reached allocation solution. Hence the minimum number of
iterations are expected to be reduced.

V. CONCLUSION AND FUTURE WORK

We have presented and analyzed a TS algorithm for DSA in
cellular systems adapted to packet services. We have studied
a mono-operator case assuming the operator is sharing the
spectrum. We focused on packet traffic context where we
considered the revenues obtained from users as well as the
spectrum price. We modeled an objective function for the
maximization of the operator’s reward. Our TS based DSA
algorithm is simple, does not require an excessive memory
space, and hence can be envisaged for the implementation in
a dynamic context. Results have also shown that the algorithm
is efficient in terms of convergence speed.

In our future work, we plan to study the temporal aspects of
the traffic using event based simulations. We also plan to study
a distributed approach that allows the operators to perform
DSA on a larger RAN with high number of cells.
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