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SUMMARY

Due to the increasing demands for higher data rate applications, also due to the actual spectrum crowd
situation, DSA (Dynamic Spectrum Access) turned into an active research topic. In this paper, we analyze
DSA in cellular networks context, where a CAB (Coordinated Access Band) is shared between RANs
(Radio Access Networks). We propose an SMDP (Semi Markov Decision Process) approach to derive the
optimal DSA policies in terms of operator reward. In order to overcome the limitations induced by optimal
policy implementation, we also propose two simple, though sub-optimal, DSA algorithms: a Q-learning
(QL) based algorithm and a heuristic algorithm. The achieved reward using the latter is shown to be very
close to the optimal case and thus to significantly exceed the reward obtained with FSA (Fixed Spectrum
Access). The rewards achieved using the QL-based algorithm are shown to exceed those obtained using
FSA. Higher rewards and better spectrum utilization with DSA optimal and heuristic methods are however
obtained at the price of a reduced average user throughput.
Keywords: Cellular systems, Dynamic Spectrum Access, Markov Desicion Process, Q learning. —

1. INTRODUCTION

Wireless networks are facing increasing demand for high
data rate applications, and hence their demand for spectral
resource increases. Researchers have started working on
DSA algorithms as a solution to the spectrum scarcity
problem encouraged by the rapid progress in SDR
(Software Defined Radio) systems that enable the required
reconfigurability for DSA and cognitive radio equipments.

In [1], the spectrum management models are divided
into four main axis: command and control, exclusive-use,
primary/secondary usage, and commons. The exclusive-
use model includes a dynamic mode, where spectrum is
owned by a single operator at any given point in space
or time; owner and usage of the spectrum can however
dynamically change. This model is thus particularly
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adapted to cellular networks. In this context, the IEEE
P1900.4 working group has detailed three use cases [2]
[3] with increasing levels of reconfigurability and joint
management of resources. In this paper, we focus on the
first one and consider a single operator with several RANs,
able to dynamically distribute its frequency bands between
its RANs.

Several papers are dealing with DSA for cellular
networks. For example, in [4], authors propose a
coordinated DSA system where a pool of resources (CAB
or Coordinated Access Band) is shared and controlled by
a regional spectrum broker. In [5], authors made use of
the genetic algorithm to analyze the DSA in WCDMA
networks. In [6], authors propose a MAC protocol enabling
ad-hoc secondary users to utilize the unused resources of a
GSM system.

It is however difficult to separate technical from pricing
aspects when DSA is considered, especially for cellular
operators who pay very high prices for the license. The
wide interest in DSA is indeed mainly driven by the
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expected benefits resulting from sharing the spectrum [7].
Reference [8] analyzes a network model where the service
providers base stations are sharing a common amount
of spectrum. A distributed DSA algorithm is proposed
where each user maximizes its utility (bit rate) minus the
payment for the spectrum. In [9], authors have considered
a spectrum market, where they propose a Rubinstein-Stahl
method for the spectrum trading.

In this paper, we present an approach based on SMDP to
analyze DSA in a cellular context. We analyze a network
model, where different RANs are sharing a CAB, inspired
by the idea of resource sharing proposed in [4] and by
the single operator use case presented in [3]. We take into
account the spectrum price, and maximizing the operator
revenue is our main concern.

MDP approach has been used to solve several
optimization problems in telecommunication networks. In
the context of cognitive radio, reference [10] proposes
a cognitive medium access protocol that maximizes the
throughput while limiting the interference affecting the
primary user. The authors formulated the problem within
the framework of constrained MDP. In [11], a POMDP
(Partially Observable MDP) framework is proposed to
optimize the performance of the secondary users while
limiting the interference perceived by the primary users.
These references however focus on the primary/secondary
usage model.

In [12], the SMDP framework is used in a JRRM
(Joint Radio Resource Managment) context in order to
take an optimal CAC (Call Admission Control) decision,
whether to accept a new coming call or to reject it. The
reward function in [12] presents the end-user throughput.
Different from [12], SMDP is used in this paper to find the
optimal spectrum bands allocations. The reward function
in this paper takes into account both user satisfaction and
spectrum price.

The paper is organised as follows: section 2 presents
the network model in terms of system model, traffic model
and the principle of DSA operation. The SMDP approach
is presented in section 3. In section 4, we propose a sub-
optimal DSA heuristic easier to implement for an operator
than optimal policies. Section 5 proposes an alternative
solution based on Q-learning. The performances of the
three approaches (optimal DSA, heuristic DSA and QL
based DSA) are compared to the FSA case in section 6.
Conclusion is given in section 7.

2. NETWORK MODEL

2.1. System model

We intend to study cell-by-cell DSA between two access
networks. RANs are supposed to be homogeneous in
propagation and in traffic, and the operator is assumed to
deploy classical frequency reuse schemes (i.e., reuse 1 or
reuse 3). Based on these assumptions, all cells of a RAN
statistically behave the same way, we can thus focus on a
single cell per RAN.

The system is thus made of two cells of two different
RANs (in this paper, terms cell and RAN will be used
indifferently). RANs do not have their own spectrum bands
but rather have to dynamically access to a CAB. The
CAB is sub-divided intommax elementary spectrum bands
(blocks) that can be used indifferently by any RAN. As
traffic grows, a RAN can lease a new elementary band (one
block) and as it decreases, the RAN can leave it free for the
common pool (section 3.3). We assume that the average
data rate accessible by users in a RAN is proportional to
the bandwidth allocated to the RAN and is equally divided
among all users of the RAN (section 2.2). The model is
shown in Fig. 1. Parameters ni, i = 1, 2 are the number
of active users in RAN1 and RAN2. Parameter mi is the
current number of elementary bands leased by RAN i from
the CAB.

Both RANs are operated by a single operator responsible
for attributing or freeing elementary bands to each RAN.
On the one hand, revenue is assumed to be proportional
to the satisfaction of the users. On the other hand, it is
supposed that spectrum cost follows the law of supply
and demand: as free spectrum diminishes, spectrum cost
increases (section 3.2). We are interested in the optimal
policy that assigns bandwidth to the RANs.

RAN1

Cell data rate 

of RAN i : 

RAN2

D iλ1
μ1

λ2
μ2

m

m m1 2

max

CAB

n1 n2users users

Figure 1. System model: two RANs access to a CAB according
to their needs.
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Our model could be coherent with multi-carrier HSPA
(High Speed Packet Access) systems. According to 3GPP
release 8, an evolution of the HSPA systems will indeed
allow the aggregation of 5 MHz carriers [13].

Our model could also be coherent with SOFDMA (Scal-
able Orthogonal Frequency Division Multiple Access)
cellular networks (i.e. WiMAX, 3GPP-LTE), where the
bandwidth of the system is scalable [14]. In these systems
the operator has indeed an additional flexibility in resource
allocation through the possibility of scaling the bandwidth.

2.2. Traffic

We consider a bursty packet traffic, such as web browsing
or file downloading on the downlink: a user alternates
between packet calls (several packets are transferred in a
very short time) and reading times (there is no transfer).
In this paper, we focus on the packet call level and so we
neglect the details of the packet level.

We assume Poisson arrivals of user downlink packet
calls with rate λ1 in RAN1 and λ2 in RAN2 (see Fig. 1).
Traffic is supposed to be elastic: the packet call size is
exponentially distributed with mean XON bits in both
RANs and so the service rate depends on the available
RAN throughput. We assume a throughput fair scheduling
between users of a given RAN. For RAN i letDi be the cell
data rate (in bits/s) accessible with an elementary spectrum
band. Then, the service rates can be written as:

µi =
miDi

XON
. (1)

An illustration of the traffic model is shown in Fig. 2.
Arrows on the time axis represent Poisson arrivals of new
packet calls and grey rectangles their duration. Packet calls
are made of several packets that together represent XON

bits.

timeArrival rate = λ  (RAN1) or λ  (RAN2)

Packet call arrival

Packet call

XON bits

DSA decision 
at new arrival

1 2

DSA decision 
at new departure

Figure 2. Assumed traffic model.

2.3. Dynamic spectrum access

In the considered system model, the core issue for the
operator of the RANs lies in the trade-off to be found
between spectrum cost and revenues obtained from users:
more spectrum per RAN means a higher lease cost for
the operator but also higher throughputs for users that are
encouraged to pay more for the service. As the CAB size
is limited and as spectrum cost increases with increasing
demand, there is a strong interaction between RANs.

In this paper, a DSA policy is a strategy that dynamically
attributes spectrum bands to each RAN from the CAB. We
assume that a DSA decision is taken at each new event,
i.e., a new packet call arrival or a packet call departure
in any RAN (see Fig. 2). A DSA decision is supposed to
increase the number of spectrum bands for a RAN by a
single block, to decrease by a single block this number, or
to keep constant the spectrum of a RAN. We thus do not
allow too abrupt changes in resource allocation.

We further assume that at least one spectrum block
is always available to each RAN, so that starvation is
not possible. We are now interested in the optimal DSA
policies in terms of operator revenue.

3. OPTIMAL DSA POLICIES

In order to achieve this goal, we rely on the SMDP
framework. We first define the SMDP and the reward
function, then use uniformization to obtain an MDP and
rely on the policy iteration algorithm to find the optimal
DSA policy.

3.1. State space

The system state is given by all four-tuple (n1,m1, n2,m2)
with constraints n1 ≤ nmax

1 , n2 ≤ nmax
2 and m1 +m2 ≤

mmax. The limitation imposed to the number of active
users is equivalent to setting a minimum throughput per
RAN. Let S be the state space.

3.2. Reward function

The reward function is based on the revenue expected by
the operator. The higher the satisfaction of users, the higher
the operator revenue; the higher the amount of bandwidth
leased by RAN, the higher the cost to lease this spectrum
band. We define a comfort service rate µcom. The revenue
obtained from a given customer in RAN i increases with
its satisfaction:

φi(ni,mi) = Ku(1− exp(−µi/niµcom)),

—
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where Ku is a constant in euros per unit of satisfaction.
Satisfaction, defined in [15], is an increasing function of
the user data rate and is without unit. As the scheduling is
fair in throughput, each user gets a data rate proportional
to µi/ni in RAN i. Thus the total revenue obtained by the
operator in state s = (n1,m1, n2,m2) is

g1(s) = n1φ1(n1,m1) + n2φ2(n2,m2).

We assume that the spectrum price is increasing when
the amount of free spectrum decreases and we define it as:

g2(s) = KB(m1 +m2) exp

(
−mmax −m1 −m2

mcom

)
,

where mcom is a constant that controls the variation of
the price and KB is a constant in euros per MHz (it is
the equivalent spectrum price per cell). If mcom is high,
the exponential function is close to 1 whatever the state.
If mcom is small, there is a high discount when the CAB
is free. Note that the price paid by the operator for a
given elementary band varies with the occupation of the
CAB. The global reward function per time unit can thus be
written in state s:

g(s) = g1(s)− g2(s). (2)

Note that g(s) is defined per time unit because the longer
the spectrum is used, the more the operator pays. In the
same way, for a given throughput, the longer a user is using
the bandwidth, the more he has to pay.

3.3. Action space

In each state, the operator is allowed to increase, decrease
or leave unchanged the spectrum of each RAN. As shown
in Fig. 2, a decision epoch occurs at each packet call arrival,
or departure. As state transitions occur only at the arrival
or the departure of a single user, we assume that the band
assigned to a single RAN can be increased or decreased
by a single elementary band. This leads to nine possible
actions of the form a = (a1, a2), ai ∈ {0,−1,+1} given
in Tab. 1.

The effective action space depends on the state. If mi =
1 the spectrum band of RAN i cannot decrease. If the
CAB is blocked, i.e., if m1 +m2 = mmax, no band can
increase.

Table 1. List of possible actions

Action a vector action index
Band1 constant and Band2 constant (0, 0) 1
Band1 constant and Band2 increases (0,+1) 2
Band1 constant and Band2 decreases (0,−1) 3
Band1 increases and Band2 constant (+1, 0) 4
Band1 increases and Band2 increases (+1,+1) 5
Band1 increases and Band2 decreases (+1,−1) 6
Band1 decreases and Band2 constant (−1, 0) 7
Band1 decreases and Band2 increases (−1,+1) 8
Band1 decreases and Band2 decreases (−1,−1) 9

3.4. Transition probabilities

Let ps,s′(a) be the probability that at the next decision
epoch (i.e., at the next transition), the system will be in
state s′ = (n′1,m

′
1, n
′
2,m

′
2) if a is chosen in state s =

(n1,m1, n2,m2). Let 1/νs(a) be the expected time until
next decision epoch if action a is chosen in state s:

νs(a) = 1{n1<nmax
1 }λ1 + 1{n2<nmax

2 }λ2

+1{n1>0}µ1 + 1{n2>0}µ2.

Transition probabilities are given by:

ps,s′(a) =


λi/νs(a) if (n′i = ni + 1)

and (∀j m′j = mj + aj),
µi/νs(a) if (n′i = ni − 1)

and (∀j m′j = mj + aj),
0 otherwise.

(3)

3.5. Uniformization

A step of uniformization is now needed in order to
transform the continuous time Markov chain into an
equivalent discrete time Markov chain [16]. This is
done by choosing a sufficiently small transition step 1/ν
(∀s, a, νs(a) ≤ ν) and allowing self transitions from a
state to itself.

Transition probabilities are modified in the following
way:

p̃s,s′(a) =

{
ps,s′(a)νs(a)/ν if s 6= s′,
1−

∑
s′ 6=s p̃s,s′(a) otherwise. (4)

A DSA policy R associates to each system state s, an
action R(s) from the action space of s.
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3.6. Policy iteration

We are interested in finding the optimal policy R∗ of the
continuous-time average cost problem described above.
For that, we apply the policy iteration algorithm to the
auxiliary discrete-time average cost problem obtained
after uniformization (see [16], vol.2, p.315). The iterative
algorithm is now succinctly described, it iteratively solves
Bellman equations in a synchronous manner.

Algorithm 1 Policy Iteration

1: Initialization: Let R be an arbitrary stationary policy.
2: Value-determination: For the current policy R, we

solve the system of linear equations whose unknowns
are the variables {JR, hR(s)}: hR(1) = 0 and

hR(s) = g(s)− JR +
∑
s′∈S

p̃s,s′(R(s))hR(s
′).

3: Policy improvement: For each s ∈ S, we find:

R′(s) = arg max
a∈A(s)

{g(s)− JR +

∑
s′∈S

p̃s,s′(a)hR(s
′)

}
.

4: Convergence test: If R′ = R, the algorithm is
stopped, otherwise, we go to step 2 with R := R′.

The SMDP approach has the advantage of providing
optimal policies and an upper bound on the achievable
reward. The policy iteration algorithm takes into account
not only RANs loads, the number of active users and
RANs interactions but also the whole dynamics of the
system. Optimal policies are thus strongly dependent on
the system parameters and simple examples cannot be
easily generalized when the number of system states
increases. In the next section, we propose a sub-optimal
DSA heuristic that overcomes these limitations for an
operator, while still providing a high reward.

4. HEURISTIC DSA

4.1. DSA policies implementation

In order to implement optimal policies, an operator would
have to run the policy iteration algorithm for all possible
system parameter sets and store results to be dynamically
used according to the context. Running policy iteration on
a real-time basis seems indeed difficult, especially when

the number of system states increases (for example if many
cells or users are considered). The proposed DSA heuristic
intends to ease DSA implementation for an operator. With
this heuristic, massive storage of data is not needed and
computations can be done on the fly.

4.2. Proposed DSA heuristic

Optimal DSA policies decisions are taken at each new
event (a packet call arrival or departure) and thus depend
not only on the arrival rates (λ1, λ2) but also on the
variations of the number of users (n1, n2). In order to
obtain a simple heuristic, we focus only on the arrival rates
and neglect the variations of (n1, n2).

Let us now consider that (m1,m2) is fixed for a given
couple (λ1, λ2). In this case, each of the RANs can be
considered as a M/M/1/nmax

i system. The service rate
µi is indeed constant (see Eq. 1) and in every state
ni, the departure rate is µi = ni × µi/ni because of the
throughput fairness scheduling assumption.

With these assumptions, the average heuristic reward for
the operator, gH , can be easily computed for all possible
combinations of alloacted bands (m1,m2), along with the
corresponding λi values. The average reward is the sum
of the rewards obtained from the two RANs. For a given
(λ1, λ2,m1,m2):

gH(λ1, λ2,m1,m2) =

2∑
i=1

nmax
i∑

ni=0

πni(λi)niφi(ni,mi)

−g2(n1,m1, n2,m2), (5)

where the πni(λi), i ∈ {1, 2}, ni ∈ {0, ..., nmax
i } are the

steady state probabilities of a M/M/1/nmax
i with arrival rate

λi and service rate µi. We use this result for the proposed
DSA heuristic:

Algorithm 2 Heuristic DSA

1: Estimate arrival rates λ1 and λ2.
2: for all (m1,m2) do
3: Compute the average reward gH according to Eq. 5.
4: end for
5: Allocate bandwidth according to the tuple (m1,m2)

that maximizes the average reward gH .

Eq. 5 can be instantaneously computed for realistic
values of the nmax

i and can be easily extended to several
cells. Note that this proposed heuristic algorithm still need
the knowledge of several system parameters, like λ1, λ2,
µ1, µ2 and XON , which can not be always easily obtained
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by the operator. We now propose an alternative solution
based on Q-learning in order to overcome this limitation.

5. Q-LEARNING BASED DSA

5.1. Reinforcement learning

Reinforcement learning (RL) is a simulation-based
dynammic programming technique used to solve complex
MDPs (Markov Decision Problems) without the need of
knowing the transition probabilities. RL is concerned about
learning how to take an action that maximizes a specific
metric, typically long-term rewards. The algorithm trains
an agent to take the appropriate action in response to
the environment reactions. The agent learns by analyzing
its actions through the evaluation of the received rewards
(for each action it takes). In RL, the agent / environment
interactions are usually modeled by an MDP (Markov
Decision Process) [17], [18]. In this paper, we are going
to use the Q-learning technique that solves a MDP using
the value-iteration method.

5.2. Q-learning for continuous average-cost problem

In Q-learning, the agent learns the action-value function
with the target of determining a policy that maximizes
long-term rewards. The value function is a function (known
as Q function) that gives the expected long-term reward
obtained by applying a certain policy. The Q function
represents an evaluation of each action, taken by the agent,
and associates it with the environment-state at the moment
of executing this action.

Most approaches to RL, including QL, are developed
to optimize discrete discounted-reward problems. The
original QL algorithm presented by Watkins [20],
was based on discounted reward value iteration [21].
Discounted optimization is motivated by domains in which
reward is money that earns interest in each time step [17].

In case of average cost problems, QL does not apply
immediately. Setting the discount factor to 1 in the Q-
learning algorithm would be equivalent to base the method
on the average cost value iteration, which is known to be
unstable. Using a high discount factor would cause the
learning convergence to be too slow. Authors of [19] and
[17] have proposed RL algorithms that solve the average
cost problem. They are however designed for discrete-time
models. An interesting solution for both average cost and
continuous-time problems can be found in [21].

5.3. Gosavi algorithm

In this section we give the details of the Gosavi algorithm
[21] that we used to implement a QL-based DSA for our
average-reward continuous-time problem.

5.3.1. Q factors update: Like in the traditional Q-learning
algorithm, the agent in state st takes an action at; this
causes the system to move to state st+1; reward rt is
observed and the value of the action is denoted Q(st, at).
The Q function (or the Q-factor) is updated each time there
is a state transition. The action is then taken at the instant of
a new event. The Q function is updated formally, according
to [21], as follows:

Q(st, at) = (1− α)Q(st, at) + α rt − α ρ δt (6)

+ α arg maxa∈A(s) {Q(st+1, a)} ,

where α is a learning factor, ρ is the estimated average-
reward, and rt denotes the reward obtained upon spending
a period δt in state st.

Fig. 3, gives an illustration of the Q-factor updating
principle, along with the instants where the actions are
executed, as implemented in our simulator.

Figure 3. Illustration of the Q-value updating principle in our
system-model context.

The algorithm’s main idea is a relative value iteration
update. At every state-transition instant, the agent updates
the old Q-factor according to the new information. When
the system visits a state, the agent selects the action
with the highest rewards, this is represented in the term
arg maxa∈A(s) {Q(st+1, a)} in Eq. 6

Although average-reward value iteration is numerically
unstable, Gosavi’s algorithm uses a relative value-iteration
method. The relative value iteration method differs by
substracting some value (δtρrt) from the Q-factor.

—
Prepared using ettauth.cls

Euro. Trans. Telecomms. 00: 1–10 (2007)
DOI: 10.1002/ett
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5.3.2. Exploration-exploitation policy: In this paper, we
use a p-greedy method to explore and exploite: with a
probability p, the agent chooses a random action among
the given set of authorized actions, and with a probability
1− p, the agent exploits the Q-factors.

5.3.3. Learning factors: In case the agent chooses to
exploit the Q-factors, he updates the estimated average-
reward ρ, using a decreasing (and a second) learning factor
β. The parameter ρ is updated as follows:

• The estimated total reward C is updated as:

C ← (1− β)C + β rt. (7)

• The estimated total time T is updated as:

T ← (1− β)T + β δt. (8)

• Parameter ρ is updated as:

ρ = C/T. (9)

The Gosavi algorithm is thus a two time-scales QL
algorithm, the average cost is approximated on one time
scale and the Q-factor on the other [21].

Two learning factors on two time scales are used. Both
of them decrease as the algorithm runs. The learning factor
α depends on the number of times the state-action pair
was tried until that decision epoch. The learning factor β
depends on the number of decision epochs in which the
Q-factors have been exploited.

In order to compare this approach to other DSA policies,
we first launch the algorithm during a learning phase
during which we use the exploration-exploitation policy
and two decreasing learning factors (α and β). By the
end of the learning phase, the QL algorithm provides
us with the output policy. We then calculate analytically
the average reward knowing the policy provided by the
QL algorithm. The details of the algorithm are given in
Algorithm 3.

6. PERFORMANCE EVALUATION

In this section, we compare the results obtained with
optimal DSA policies, the proposed heuristic, the QL-
based DSA and FSA in terms of operator reward, CAB
utilization, and average user throughput.

Algorithm 3 Q-learning based DSA

1: Initialize the following parameters:

• the initial state: st = (0, 0, 1, 1).
• Q-factors: Q(s, a) = 0, ∀s ∈ S and a ∈ A(s).
• the estimated total cost: C = 0.
• the estimated average reward: ρ is set to average

reward obtained with the heuristic DSA.
• the number of times Q is exploited: k = 0.
• the number of visits to the state-action pair

(s, a): Nv(s, a) = 0, ∀s ∈ S and a ∈ A(s).

2: repeat
3: Exploration-exploitation policy: draw uniform

random variable X on [0, 1].
4: if X < p (exploration) then
5: Choose action at at random
6: else
7: Choose action at that maximizes Q(st, a) on the

set of actions in state st.
8: Update learning factors α = 1/(1 +Nv(s, a))

and β = 1/(1 + k).
9: Update Q(st, at) according to Eq. 6.

10: Update the estimated average reward ρ according
to Eq. 7, 8 and 9.

11: k ← k + 1.
12: end if
13: Nv(st, at)← Nv(st, at) + 1.
14: st ← st+1.
15: t← t+ 1.
16: until End of the learning period

6.1. Parameters

The CAB is assumed to have a size of 6 MHz, the
elementary band (mi = 1) has a size of 1 MHz, and
mcom = 4 MHz. For the sake of simplicity, we assume
that both RANs have the same characteristics: the average
cell data rates Di are considered to be 1250 Kbps,
XON = 3 Mbits, λ1 = λ2 = λ, and nmax

1 = nmax
2 =

8. The pricing constants are fixed as follows: Ku =
100 euros, KB = 1 euro, and µcom = 0.167 s−1(which
corresponds to a comfort throughput of 500 Kbps).

Concerning the QL-based DSA algorithm, the agent
keeps learning (and updating the Q-factors) for 200
thousands events, and the results are averaged over 20
iterations.
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6.2. Arrival rate thresholds for heuristic DSA

For the considered parameter set, Fig. 4 shows the average
reward gH (see Eq. 5) as a function of the arrival rate λ for
different combinations of the allocated bands.
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Figure 4. Operator reward obtained for different allocated bands
combinations and load thresholds for heuristic DSA.

We can notice that the (m1,m2) values that give the
maximum reward are: (1,1), (2,2), and (3,3) depending
on the arrival rate λ. The maximum reward can then be
obtained by dynamically allocating symmetric numbers of
elementary bands to the RANs according to the cell load.
This result was expected since in this simulation λ1 = λ2.
Threshold values for λ are given on Fig. 4.

6.3. Convergence of the QL-based DSA

We illustrate in this section the convergence of the QL-
based DSA algorithm through a study on the estimated
average reward ρ. Fig. 5 represents the convergence of the
estimated average reward ρ as a function of the number
of events for two different arrival rates, λ = 0.2 and λ =
1.5 s−1.

We can notice that the value of ρ fluctuates at the
beginning of the learning phase and starts to stabilize after
a certain duration (i.e., number of events). The duration
required for ρ to stabilize is the period equivalent to about
200 thousands events in our examples. Note that the Q-
learning algorithm theoretically converges to the optimal
policy after an infinite duration. In our simulations, we stop
learning after a realistic duration (200 thousands events)
and exploit the obtained policy.
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Figure 5. Convergence of the estimated average reward ρ for Q-
learning based DSA.

6.4. Operator reward, CAB utilization, user throughput

Fig. 6 compares operator rewards obtained respectively
with optimal DSA policy, the proposed heuristic, the QL-
based DSA and FSA. By definition, FSA allocates mi = 3
elementary bands to each RAN whatever the system state.
It can be seen that optimal policies provide significant
increases of the reward for low to intermediate values of
λ (for example +229% at λ = 0.5 s−1). At high load,
FSA and optimal DSA policy converge as expected. Both
the proposed heuristic and the QL-based DSA provide the
optimal reward at low load and converges also to FSA at
high load: only for intermediate values of λ, there is a
small degradation of the reward (for example, −21% at
λ = 0.7 s−1 for the heuristic method).

Fig 7 gives a comparision of the reward gains, in
percentage, for the proposed DSA methods with respect
to the rewards obtained using FSA.

We can notice that, the three proposed methods achieve
gain in terms of rewards over FSA for arrival rate values
λ < 2 s−1. All the proposed DSA methods give rewards
that converge to the same reward values as FSA for arrival
rates λ > 2 s−1.

These results can be explained by a better utilization
of the sepctrum. CAB utilization is illustrated in Fig. 8
as a function of the arrival rate λ. Optimal DSA policy
smoothly increases the CAB utilization as arrival rate
increases. The proposed heuristic follows this trend with a
step function. QL-based DSA, although a bit less efficient,
has a similar behavior. It is worth mentioning the DSA gain
in terms of spectral resource usage with respect to FSA.
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Figure 6. Operator reward obtained with optimal DSA, heuristic
DSA, QL-based DSA, and FSA.
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Figure 7. Reward gain with respect to FSA for optimal DSA,
heuristic DSA, and QL-based DSA.

To explain the difference between the heuristic DSA
and the QL-based method, it is worth mentioning that
the heuristic method needs to know all the networks
parameters such as, λ, XON and Di, unlike the case of the
QL-based algorithm. The fact that QL-based DSA is below
the optimal DSA in terms of performance is explained by
the fact that the learning phase is voluntary limited to a
realistic duration.

Operator reward and better spectrum utilization with
the three proposed approaches are however obtained at
the price of a degradation of the average user throughput.
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Figure 8. CAB utilization with optimal DSA, heuristic DSA, QL-
based DSA, and FSA.

Fig. 9 illustrates the average user throughput as a function
of the RANs load λ. Optimal DSA policy, the proposed
heuristic and the QL-based DSA show again similar
results.

The observed variations of the heuristic DSA between
λ = 0.5 and 1.5 s−1 can be explained by the changes of
resource allocation at threshold values 0.73 and 1.44 s−1

(see Fig. 4).
The achieved average user throughput with FSA is

however much higher, especially at low loads. According
to the traffic assumptions (see section 2.2), a single
user is indeed allowed to take advantage of the whole
bandwidth allocated to a RAN. At low loads, FSA allocates
3 MHz to each RAN, while DSA methods allocates only
1 MHz leading to lower user throughputs. Our assumptions
represent thus a worst case scenario; a terminal or
service limitation in maximum data rate would reduce the
advantage of FSA at low loads.

7. CONCLUSION

In this paper, we have studied DSA in cellular networks
context. We have used the SMDP framework to derive
optimal DSA policies in terms of the operator reward. We
have proposed two methods to defeat the generalization
difficulty of the optimal policies over realistic systems:
a simple heuristic DSA method and a QL-based DSA
algorithm. The achieved reward using the heuristic DSA
gives a very close reward to the optimal obtained by
SMDP and thus significantly exceeds the reward obtained
with FSA. The obtained reward using the QL-based has
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Figure 9. Average user throughput with optimal DSA, heuristic
DSA, QL-based DSA, and FSA.

shown its gain over reward achieved using FSA. Although
less gain is achieved using QL-based DSA, however the
algorithm does not need to know the networks parameters.
Operator revenue increases but better spectrum utilization
is obtained at the price of a user throughput degradation.
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