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Pilot Allocation and Receive Antenna Selection: A
Markov Decision Theoretic Approach

Reuben George Stephen∗, Chandra R. Murthy†, and Marceau Coupechoux‡

Abstract—This paper considers antenna selection (AS) for
packet reception at a receiver equipped with multiple antenna ele-
ments but only a single radio frequency chain. The receiver makes
its AS decisions based on noisy channel estimates obtained from
the training symbols (pilots). The time-correlation of the wireless
channel and the results of the link-layer error checks upon
data packet reception provide additional information that can be
exploited for AS. This information can also be used to optimally
distribute pilots among the antenna elements, so that packet loss
due to selection errors is minimized. The task of the receiver, then,
is to sequentially select (a) the pilot symbol allocation for channel
estimation on each of the receive antennas and (b) the antenna
to be used for data packet reception. The goal is to maximize
the expected throughput, based on the history of allocation
and selection decisions, and the corresponding noisy channel
estimates and error check observations. This joint problem of
pilot allocation and AS is solved as a partially observed Markov
decision problem (POMDP) and the solutions yield the optimal
policies that maximize the long-term expected throughput. The
performance of the POMDP solution is compared with several
other schemes for a 2-state Markov channel model, and it is
illustrated that it outperforms the others.

Index Terms—Antenna selection, pilot allocation, POMDP.

I. INTRODUCTION

Antenna selection (AS) [1], [2] is a popular technique
for reducing the hardware costs at the transmitter and/or
receiver of a multiple antenna wireless link. The idea is to
use a limited number of radio frequency (RF) chains while
adaptively switching to subsets of a larger number of available
antenna elements. AS maintains the same diversity order as a
system that uses all the available antenna elements, and only
a small loss in data rate is suffered when the receiver uses the
best possible subset [2]. AS can be employed at the transmitter,
receiver or both ends; this work focuses on receive AS.

Several algorithms for AS that assume perfect channel
state information (CSI) at the receiver have been proposed
earlier [3, and references therein]. However, in practice, it is
necessary to estimate CSI, using, for example, a pilot-based
training scheme. Imperfect CSI can lead to both inaccurate AS
and erroneous decoding of data, increasing the symbol error
probability (SEP) [4]. Quite surprisingly, it has been shown
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that transmit and receive AS can achieve full diversity order,
even in the presence of channel estimation errors [5]. However,
most of the past work on AS with imperfect CSI suffers from
three drawbacks. First, it assumes that the receiver equally
divides the pilots among the available antenna elements during
the training phase [4], [6]. However, when the channel is
slowly-varying, such an equal allocation is not optimal, as past
estimates of the channel and the time-correlation information
can be used to re-allot pilots among the antennas in subsequent
training periods. Second, link-layer error checks on the re-
ceived packets provide additional information on the channel,
and this is typically not exploited in the literature. Third, a
quasi-static block-fading channel is usually assumed [1], [7],
which precludes the receiver from fully exploiting the temporal
channel correlation. This work seeks to overcome all these
three drawbacks and fully exploit the information available at
the receiver in deciding the optimal pilot allocation for channel
estimation and AS for data packet reception.

The system model in this work consists of a transmitter
with a single antenna and a receiver with N antenna elements.
The receiver has a single RF chain, so it needs to decide
on the antenna with which it should receive data from the
transmitter. The transmitter sends data in frames, with each
frame having L pilot or training symbols, followed by a data
packet. The receiver then has the following trade-off. On the
one hand it could allot many pilots out of the available L to one
particular antenna, getting an accurate estimate of the channel
on that antenna. However, this would mean losing track of
possibly better channels on other antennas. Alternatively, fewer
pilots can be allotted to each of the antennas, tracking all of
their channels. But now the receiver will have poorer quality
estimates of the channels on a larger number of antennas,
leading to errors in subsequent AS decisions, and packet
loss. As the receiver can vary the accuracy with which to
estimate the channels at the antennas, and select the one
to be used for packet reception, it can control the (partial)
observability of the system. These controls must be applied
so as to maximize some notion of long-term reward. Hence,
the joint problem of pilot allotment and antenna selection at
the receiver in each frame is modeled in this work as a Partially
Observable Markov Decision Process (POMDP) [8]–[10] with
the objective of maximizing the long-term packet success rate.
The contributions of this work are as follows.

• For the first time in the literature, the general problem
of joint pilot allocation and AS in a time-correlated



channel is solved in a decision-theoretic framework to
obtain an optimal policy that maximizes the throughput.
A challenge in the formulation is being able to deal with
two different kinds of actions, viz., the pilot allocation
and AS decisions, and two types of observations in the
training and data phases, as elaborated in Section III.

• Insights are provided on the nature of the policies to be
followed. For example, with N = 2 and a 2-state Markov
channel model, it is found, somewhat surprisingly, that
when the channel is fast-varying, the POMDP solution
allots all the pilots to the same antenna, and selects the
antenna that is most likely to be in a good state.

• With a 2-state channel and N = 2, it is found that
employing the POMDP solution can lead to savings of
4−8 dB in the pilot SNR, to achieve the same throughput
as a scheme that allots pilots equally among antennas
in all frames and selects antennas without using past
information about the channels. For this case, it is also
found that the myopic policy [11] is nearly optimal over a
wide range of channel parameters and pilot SNR values.

The advantage of posing the problem as a POMDP is that it
admits the use of a gamut of computationally efficient meth-
ods [12, and references therein] for solving it. The solution can
be computed offline, and once it is obtained, implementing the
optimal policy for pilot allotment and AS is simple. One has
to update the belief vector for the system state based on the
observations in every slot using Bayes’ rule, and then employ
the optimal action corresponding to the updated belief vector,
possibly by using a look-up table. The solutions presented in
this work can lead to a significant reduction in the pilot SNR
or the number of pilot symbols required to obtain a given
performance, or an improvement in the average data rate in
practical AS based systems.

II. SYSTEM MODEL

Consider a wireless system with a single transmit antenna,
N receive antenna elements and a single RF chain at the
receiver. Time is divided into frames of fixed duration Tf .
Each frame has a training period Tt and a data transmission
period Td. In the training period, L pilot symbols, each of
duration Ts, are received and used to estimate the channel
gains at the N antenna elements. This is followed by a data
packet transmission, at the end of which the receiver performs
an error check and knows whether the packet was received
correctly or not. Figure 1 shows the frame structure.

Let hi[k] denote the frequency-flat channel between the
transmitter and the ith receive antenna at the start of frame
k. hi[k] is assumed to be constant for the duration Tf of
each frame k, but correlated across frames. This holds if the
coherence time Tc of the channel satisfies Tc � Tf . Consider
a particular frame in which `i ∈ {0, 1, . . . , L} pilots are used
to estimate the channel1 hi at antenna i, where

∑N
i=1 `i = L.

The time overhead of switching between antennas is assumed
to be negligible compared to the duration of the training

1The frame index k in hi[k] is dropped here for convenience.

Antenna
Selection
n[k]

Receiver/Controller

Z[k]

Pilot Allotment
l[k]

Θ[k]

Error Check
ObservationObservation

Training

1 2 Training Period Data Period Error
Check

Sub-frame k0, Tt = LTs Sub-frame k1, Td

Frame k, Tf = Tt + Td

L

Fig. 1. Sequence of operations in frame k.

phase [2], and is hence ignored. It is common in AS literature
to assume that pilots within the same training period can
be received on different antenna elements [4], [13]. If yi =
[y1 · · · y`i ]

H ∈ C`i is the vector of received training

symbols on the ith antenna and pi =
√

Ep
L

[1 · · · 1]T is
the `i-length vector of pilots with energy Ep/L each, one can
write,

yi = hipi + wi, i = 1, . . . , N, (1)

when2 `i > 0, where wi ∈ C`i is the additive white Gaussian
noise vector, with wi ∼ CN (0, σ2I`i).

In the sequel, the channels at the N antenna elements are
modeled by N independent Gilbert-Elliot channels [14]. This
is a popular model to characterize packet-level performance
measures of correlated Rayleigh fading channels [15], [16].
The extension to a finite number of states is straightfor-
ward [17], but handling continuous-valued channels is much
harder, and is out of the scope of this work. The channels
are assumed to be mutually independent, which holds true
if the receive antennas are placed sufficiently apart. This is
not a necessary assumption for the POMDP formulation in
this work, but is used as it simplifies the derivation of the
observation probabilities in the training and observation phases
as given in the Appendix. The receiver observes the state of
the channel at antenna i with some error that depends on
`i. The precise relation depends on the channel estimation
method used. For the sake of concreteness, a particular ob-
servation model for the 2-state channel is described in the
Appendix along with the derivations of the corresponding
probabilities in the training and data phase. However, this
is not restrictive; other observation models can be used with
the POMDP framework constructed in the sequel. Successful
packet reception is assumed to depend only on the true channel
state of the selected antenna, rather than the receiver’s estimate
of the channel. This leads to a tractable relation between
the AS decisions and packet success probabilities, which is
required to design the optimal policies. As an example, in
LTE systems, there are separate sounding reference signals for
channel quality estimation, and demodulation reference signals
for channel estimation during coherent demodulation [18].

2When `i = 0, no symbol is received on the ith antenna.



III. POMDP FORMULATION

Let S[k] = [S1[k] · · · SN [k]]T denote the state vector
of the channels at the N antenna elements in frame k, with
Si[k] ∈ {0, 1}, i = 1, . . . , N . Here, Si[k] , 0 if the channel
at antenna i is in the bad state and Si[k] , 1 if it is in
the good state. Let k0 and k1 represent the training and data
sub-frames, respectively. At the start of frame k, the receiver
decides on the value of `i[k] to be used to estimate the
channels at antennas i = 1, . . . , N in the training period.
The actual channel state vector transits to S[k] according to
the transition probabilities of the underlying Markov chains.
Observations Θi[k] that depend on Si[k] as well as `i[k]
are made on each antenna i, and the receiver determines the
antenna n ∈ {1, . . . , N} to be used to receive the data packet.
Θi[k] are obtained from (6) using a MAP detector as described
in the Appendix. It is assumed that the receiver knows the
channel statistics, and hence it can determine the probability
P`i {Si = s|Θi = θi} that the true channel state is s, given the
observations θi ∈ {0, 1}. At the end of the packet reception,
Z[k] ∈ {0, 1} is observed, which indicates whether the packet
was received in error (0), or there was no error (1).

The sequential decision-making process described above
and illustrated in Figure 1 is now formalized as a POMDP.
Here two actions, viz., pilot allocation and AS, are to be
taken at different points in a single frame, and two different
observations are made in the training and data phase, while
the channel state remains the same. In the classical POMDP
framework, actions belong to a single set at all decision points.
Hence, the pilot allocation and AS decisions are combined to
form a single composite action, to be taken at the start of both
the training and the data phase. Also, only one observation
can be obtained for a single state-action combination. This
mandates a distinction between the state of the system in
the training and the data phase, and hence the state vector
is expanded with an additional variable m ∈ {0, 1} that
represents the two different decision points in a single frame.
This is necessary to bring the joint pilot allocation and AS
problem to a standard form, where it can be solved using
existing POMDP solving algorithms.

Within a frame k, m = 0 denotes the start of the training
period and m = 1, the start of the data packet reception period.
Since the channels are constant over a frame, transitions are
naturally restricted so that

P {S[k1] = s̃1|S[k0] = s0} =

{
0, s̃ 6= s,

1, s̃ = s,
(2)

where s̃, s ∈ {0, 1}N , s1 , [s 1]T and s0 , [s 0]T .
Here s = [s1 · · · sN ]T , denotes the channel state vector
without the decision point indication m. Subscripts 0 and 1
are used on s to indicate the state of the system in the training
phase and the data phase, respectively, and

km + 1 , (k +m)m′ , (3)

with m′ , 1 − m, m ∈ {0, 1}. That is, the POMDP slots
are the subframes indexed as 10, 11, 20, 21, and so on. The

components of the POMDP are formally described next.
1) State Space: The state space of the system is defined

as S , {0, 1}N+1. The transition probabilities are denoted by
P {s̃m̃|sm} where P {s̃1|s0} is given by (2) and P {s̃0|s1}
is the transition probability from state s1 to s̃0, calculated
from the transition probability matrices of the Markov chains
governing the evolution of the channel states.

2) Action Space: The action in a frame has two parts:
• A pilot allocation vector l = [`i]

N
i=1 ∈ L, where L ,{

l : `i ∈ {0, . . . , L},
∑N
i=1 `i = L

}
, |L| =

(
N+L−1

L

)
.

• An antenna selection decision n ∈ C , {1, . . . , N}.
The receiver takes the composite action A , {l, n} ∈ A,
where A , L × C, and |A| =

(
N+L−1

L

)
N , at the start of

every decision period km = 10, 11, 20, and so on. However,
for points k0, only the pilot allocation l affects the observation,
and for k1, only the selection decision n is of relevance.

3) Observation Space: The observation also has two parts:
• The vector of channel state observations at the antennas,

Θ[k0] = [Θi[k0]]Ni=1, whose reliability depends on `i[k0].
• The packet error indication Z[k1] ∈ {0, 1} obtained at the

end of each frame, which depends on the channel state
of the antenna selected.

In general, on taking action A ∈ A, at each km, the receiver
observes z[km] ∈ Ωm. For points k0, z[k0] , Θ[k0] ∈ Ω0,
with Ω0 , {0, 1}N , and for points k1, z[k1] , Z[k1] ∈ Ω1 ,
{0, 1}. The combined observation set is thus Ω , Ω0∪Ω1 with
|Ω| = 2N + 2 for the 2-state channels considered here. The
probabilities of observing z ∈ Ωm satisfy PA {z ∈ Ω1|s0} =
PA {z ∈ Ω0|s1} = 0.

4) Reward: The reward is defined as the number of bits or
symbols that can be delivered if the packet is received suc-
cessfully. Given the action A[km] = {l[km], n[km]}, and the
system state vector S[km] = sm, the expected immediate re-
ward for the decision period km is given by: R(sm, A[km]) =
mPA {Z[km] = 1|sm} · B. In the sequel, B = 1 is assumed
without loss of generality. Thus, R(s0, A[k0]) = 0 ∀k, as
the receiver does not collect any immediate reward in the
training phase, reward being counted only for packets received
successfully. However, the choice of vector l[k0] indirectly
affects the selection decision at k1, and hence, the future
reward. The expected discounted total reward of the POMDP
over an infinite horizon represents the expected total number
of bits that can be delivered, after applying a discounting factor
for future rewards.

5) Belief Vector: With a Markovian evolution of the states,
it is known that [9] the entire decision and observation
history can be encapsulated in a belief vector b[km] ,
[bsm [km]]sm∈S . Here, bsm [km] ∈ [0, 1] denotes the condi-
tional probability, given the decision and observation his-
tory, that the state of the system in decision period km
is sm, after taking some action at the start of km, and
making an observation in km. Thus, bsm [km] , P

{
S[km] =

sm
∣∣b[0], {l[νµ], n[νµ],Θ[νµ], Z[νµ]}kmνµ=10

}
, where b[0] is

the initial belief vector, i.e., the a priori distribution on the
system state just before the start of frame k = 1. If no



information on the initial state is available, this can be set
to the stationary distribution of the underlying Markov chain.

6) Policy: A policy π specifies the action to be taken at each
decision point, in order to meet some objective. The optimal
policy for infinite horizon problems is a stationary mapping
from the belief space to the action space [10], and hence the
optimal policy at decision point km maps the belief vector
b[km − 1] to an action A[km] = {l[km], n[km]} ∈ A.

7) Objective: It is desired to design the optimal policy π∗

that maximizes the expected total number of bits that can
be received, i.e., the expected total discounted reward of the
POMDP over an infinite horizon. Thus,

π∗ = arg max
π
Eπ

{ ∑
km=10,11,...

βqR (sm[km], A[km])
∣∣b[0]

}
where β ∈ [0, 1) is the discount factor [19], and the exponent
q , 2(k − 1) +m, ∀k,m.

IV. SOLVING THE POMDP

The value function [10] of the POMDP, denoted by
V (b[km]), represents the maximum expected discounted re-
ward that can be obtained, starting in the belief state b[km].
According to the notation introduced in the preceding section,
at the end of decision period km, the receiver takes action
A[km + 1] = A ∈ A and observes z[km + 1] = z ∈ Ωm′ ,
where m′ = 1−m, m ∈ {0, 1}. Then, the reward that can be
accumulated starting from point km + 1 consists of two parts:
• immediate reward R (s′m′ [km + 1], A) = m′1{z=1} · 1,
• maximum expected future reward V (b[km + 1]),

where km + 1 is as defined in (3) and s′m′ is the new state in
km + 1 that the system transitions to, starting from sm in km.
Also, b[km + 1] ,

[
bs′
m′

[km + 1]
]
s′
m′∈S

= f(b[km], A, z),

represents the updated knowledge of the state of the system,
after incorporating action A[km+1] = A at the start of period
km + 1, and observation z[km + 1] = z, obtained during
period km + 1. Averaging over all possible states sm ∈ S and
observations z ∈ Ωm′ , and then maximizing over all actions
A ∈ A, the optimality equations can be written as:

V (b[k0]) = max
A∈A

∑
s0∈S

bs0 [k0]
∑
z∈Ω1

PA {z|b[k0]} ·

[z · 1 + βV (f(b[k0], A, z))], and (4)

V (b[k1]) = max
A∈A

∑
s1∈S

bs1 [k1]
∑
θ∈Ω0

βPA {θ|b[k1]} ·

V (f(b[k1], A,θ)). (5)

Here, ∀z ∈ Ωm′ , and ∀A ∈ A,

PA {z|b[km]} =
∑

s′
m′∈S

PA {z|s′m′}
∑
sm∈S

bsm [km]P {s′m′ |sm}.

Note that two equations are needed to represent the value
function updates in the training and data phases and these
need to be simultaneously satisfied, unlike traditional POMDP
value updates, where only one equation is required. The

first term in (4) corresponds to the expected immediate re-
ward in the data reception period k1 and the second term
V (f(b[k0], A, z)) is the value obtained starting from point
k1, scaled by discount factor β. On the other hand, (5) has
only one term as there is no immediate reward accrued during
the training phase (k0), and only the value V (f(b[k1], A,θ))
is averaged over the conditional probability mass function
(pmf) of training observation θ, PA {θ|b[k1]}. The term
PA {θ|s′m′} = PA {Θ[km + 1] = θ|S[km + 1] = s′m′} is the
conditional pmf of the channel state observation vector, given
the landing state S[km + 1] = s′m′ and action A[km + 1] = A,
while PA {z|s′m′} = PA {Z[km + 1] = z|S[km + 1] = s′m′}
is the pmf of the packet error indication. Since the channels
are independent, given l, the observations Θi depend only on
the corresponding states Si, and hence PA {Θ[k0] = θ|s0} =∏N
i=1P`i {Θi[k0] = θi|s0,i}. Similarly, PA {Z[k1] = z|s1} =

Pn {Z[k1] = z|s1,n}, where n[k1] = n is the antenna selected
in subframe k1. The updated belief vector, b[km + 1], is
obtained by applying Bayes’ rule, as

bs′
m′

[km + 1] = P {S[km + 1] = s′m′ |b[km], A, z}

=

PA {z|s′m′}
∑
sm∈S

bsm [km]P {s′m′ |sm}∑
s′
m′∈S

PA {z|s′m′}
∑
sm∈S

bsm [km]P {s′m′ |sm}

Since the channels at the antennas are mutually independent,
P {s′|s} =

∏N
i=1P {s′i|si}. P {s′i|si} can be obtained from

the transition probabilities of the Markov chains. Observation
probabilities PA {z|s′} can be obtained using the MAP crite-
rion as described in the Appendix.

V. SIMULATION RESULTS

The POMDP formulated in Section III is solved using the
Approximate POMDP Planning Toolkit [20], implementing
the SARSOP algorithm. [12]. In all the cases described,
the code is run until the error between the value functions
(discounted rewards) obtained in consecutive steps falls below
a tolerance limit of ε = 1. The discount factor β = 0.99,
since a large value of β is needed for designing the policies
that maximize the long-term average performance of the
receiver. The channels at all the antennas are independent
and assumed to have identical statistics, modeled by a 2-
state Markov chain, as described in Section II. Results are
shown here for N = 2, and L = 4. Similar results are
obtained when N > 2, and for channels with more than
2 states [17]. Performance is evaluated over 2 × 103 sub-
frames, comparing the average throughput achieved—i.e., the
average number of packets successfully received per frame—
by the POMDP solution with other schemes, as described be-
low. Max. (genie aided) gives the maximum attainable
throughput when the receiver has perfect knowledge of the
channel states at all the antennas. POMDP solution shows
the performance of the policy obtained by solving the POMDP.
Myopic is a purely greedy policy [11] that allots all L pilots
to the antenna that has the highest likelihood of being in
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Fig. 2. Avg. Throughput vs. Pilot SNR for 2-state model (N = 2, L = 4,
p01 = 0.2, p11 = 0.8).

the good state, and selects the antenna using the same crite-
rion, based on the current belief. Equal allocation-MLS
heuristic selection uses an equal pilot allocation in
all frames and the Maximum Likelihood State (MLS) heuris-
tic solution [21] for AS. Equal allocation-No past
info plots the performance of a scheme that uses an equal
pilot allocation and makes AS decisions based only on the
current training phase observation in each frame; i.e., for a
given observation θ, the AS decision is n = i if θi = 1, and
θj 6= 1∀j < i, where i, j ∈ {1, . . . , N}.

1) Variation of Throughput with Pilot SNR: Figure 2 shows
the variation of throughput with the pilot SNR (dB). Here, the
channel transition probabilities are p01 = 0.2 and p11 = 0.8,
and hence the stationary probability of being in the good state
is p̄1 = 0.5 for each channel. For pilot SNRs from 3− 5 dB,
POMDP solution offers a throughput gain of around 12%
compared to Equal allotment-No past info. Also,
for the same packet success rate, POMDP solution requires
a 4 − 8 dB lower pilot SNR than Equal allotment-No
past info. Myopic performs slightly worse than POMDP
solution. For channel sensing in cognitive radio, Myopic
was shown to be optimal [11] when there are only 2 channels
to choose from. Figure 2 shows that when N = 2, Myopic is
a very good heuristic for AS as well. This is not surprising, as
the error check on the data packet provides accurate informa-
tion about the channel state, and although the actions taken by
Myopic are suboptimal, the margin of error against POMDP
solution is small with N = 2 and L = 4. Both Myopic
and POMDP solution require belief update operations at
each decision point, but Myopic does not require offline
planning and the online table look-up operations as POMDP
solution does. At high pilot SNRs, all the schemes tend to
the maximum attainable limit.

2) Variation of Throughput with Switching Rate: The varia-
tion of average throughput with the switching rate p01 at 3 dB
pilot SNR is shown in Figure 3. The switching rate is the
probability of transiting to state 1 in the next frame, given
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Fig. 3. Avg. Throughput vs. Switching rate p01(= 1 − p11 = p10) for
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that the current state is 0, and vice versa. In this paper, the
switching rate is assumed to be known; in practice, it depends
on the Doppler spread or velocity of the receiver, which can be
estimated. Here, p̄1 = 0.5 and hence, p11 = 1−p01. With both
p̄1 and the pilot SNR fixed, Equal allotment-No past
info does not show any performance variation with p01, as
this scheme does not use information from link-layer error
checks to optimize AS or pilot allotment decisions. The per-
formance of POMDP solution decreases as p01 varies from
0 to 0.5, and it provides maximum gain (≈ 22% over Equal
allocation-No past info) when p01 is low. Thus it
appears that POMDP solution is most suited to slowly
varying channel scenarios. However, even when p01 = 0.5,
POMDP solution performs better than the equal allocation
scheme, though matched by Myopic. Hence, an unequal pilot
allocation is beneficial even when p01 approaches 0.5. For
p01 = 0.5, the POMDP solution is observed to be somewhat
simple, allotting all L = 4 pilots to the first antenna in every
frame, and changing only the selection decision based on the
current belief state. Thus, surprisingly, when the channels at
the antennas are equally likely to transition to either state,
it is better to put all the pilots on one antenna and track
it constantly with a high accuracy, rather than use an equal
allocation and get estimates that are less accurate. If the
channel at this antenna is observed to be in the good state
in the training phase, the receiver uses it for data reception,
and otherwise, it receives the data on the other antenna. From
Figure 3, when N = 2, close to optimal behavior can be
achieved for the whole range of p01 by the Myopic policy.

VI. CONCLUSION

In this paper, the sequential decision problem faced by a
multiple antenna receiver with a single RF chain, of determin-
ing how accurately the channel at a particular antenna should
be estimated, and selecting the best antenna in each frame, so
as to maximize throughput, was modeled as a POMDP. The
solution to the POMDP yielded the policy based on the past



decision and observation history for making the joint decision
of the number of pilot symbols to be used for estimating
the channel at each antenna, and the antenna to be used for
data reception. Numerical examples showed that the POMDP
solution outperforms other existing schemes. The POMDP
solution is particularly useful at low pilot SNRs and can save
several dB of pilot power to achieve the same throughput as
other existing schemes. For a 2-state Markov channel model
with N = 2 antennas and a switching rate p01 = 0.5, the
POMDP solution gave a surprising policy, where the receiver
allotted all the pilots to the same antenna in all frames, and
changed only the AS decision according to the current belief
state. Further, with 2 receiver antennas, the myopic policy was
found to perform nearly optimally, and hence can be a good
alternative to finding and implementing more complex optimal
policies. Future work could consider continuous observations
in the training phase, selecting a subset of antennas, AS at both
the transmitter and receiver, and in multi-user communication
systems, all in a decision theoretic framework.

APPENDIX

Here, hi[k] ∈ {h0, h1}, where h0 is the bad state and h1

the good state and their values are known to the receiver.
The receiver then has a detection problem at hand in the
training phase, and hi[k] can be written as hi[k] = xi(h0 −
h0) + 1

2 (h0 + h1), with xi ∈
{
− 1

2 ,
1
2

}
being the value to be

detected, where xi = + 1
2 corresponds to h0 and xi = − 1

2
corresponds to h1. Also, Si[k] = 0 if hi[k] = h0 and
Si[k] = 1 if hi[k] = h1. Let v , h0−h1

|h0−h1|
p
‖p‖ , where

p is as in (1), dropping the antenna index i. Then, from
(1), ỹ , vH

[
y − 1

2 (h0 + h1)p
]

= x |h0 − h1| ‖p‖ + w,
where w ∼ CN (0, σ2). Since x is real-valued, <{ỹ} is
sufficient [22] to detect x. Conditioned on x, <{ỹ}|x ∼
N
(
x|h1 − h2|‖p‖, σ

2

2

)
. In this case, obtaining a MAP deci-

sion rule is straightforward, and the observation of the channel
state of antenna i is given by

Θi[k] ,

{
1, if λi[k] ≥ ηi
0, otherwise,

(6)

where λi[k] , ln
P`i
{ỹi[k]|Si[k]=1}

P`i
{ỹi[k]|Si[k]=0} =

√
`iEp
L
|h0−h1|<{ỹi[k]}

σ2/2 ,
and

ηi , ln
P {Si[k] = 0}
P {Si[k] = 1}

= ln
1− p(i)
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p
(i)
01

. (7)

If `i = 0, no observations are made on antenna i, and
the belief vector is updated using the transition probabili-
ties of the Markov chain. Now the observation probabilities
PA {Θ[k0] = θ|S[k0] = s0} and PA {Z[k1] = z|S[k1] = s1}
are derived. When a likelihood ratio-based detector of the
channel state is used as described above, it can be shown that3

PA {Θi = 1|s0,i} = Q
(
κi

(
ηi
κ2
i
− xi

))
where Q(·) is the

Gaussian Q-function, κi = |h0 − h1|
√

2`iEp
Lσ2 and ηi is given

3Frame/sub-frame indexes are dropped for convenience.

by (7). For the data reception phase, the observation Z = 1
only if Sn = 1. Thus, PA {Z = 1|Sn = s1,n} = 1{s1,n=1},
where 1A is the indicator function, taking the value 1 when
event A is true, and zero otherwise.
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