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a b s t r a c t

Our work is motivated by impromptu (or ‘‘as-you-go’’) deployment of wireless relay nodes
along a path, a need that arises in many situations. In this paper, the path is modeled as
starting at the origin (where there is the data sink, e.g., the control center), and evolving
randomly over a lattice in the positive quadrant. A person walks along the path deploying
relay nodes as he goes. At each step, the path can, randomly, either continue in the same
direction or take a turn, or come to an end, at which point a data source (e.g., a sensor)
has to be placed, that will send packets to the data sink. A decision has to be made at each
step whether or not to place a wireless relay node. Assuming that the packet generation
rate by the source is very low, and simple link-by-link scheduling, we consider the problem
of sequential relay placement so as to minimize the expectation of an end-to-end cost met-
ric (a linear combination of the sum of convex hop costs and the number of relays placed).
This impromptu relay placement problem is formulated as a total cost Markov decision
process. First, we derive the optimal policy in terms of an optimal placement set and show
that this set is characterized by a boundary (with respect to the position of the last placed
relay) beyond which it is optimal to place the next relay. Next, based on a simpler one-
step-look-ahead characterization of the optimal policy, we propose an algorithm which
is proved to converge to the optimal placement set in a finite number of steps and which
is faster than value iteration. We show by simulations that the distance threshold based
heuristic, usually assumed in the literature, is close to the optimal, provided that the
threshold distance is carefully chosen.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Wireless networks, such as cellular networks or multi-
hop ad hoc networks, would normally be deployed via a
planning and design process. There are situations, how-
ever, that require the impromptu (or ‘‘as-you-go’’) deploy-
ment of a multihop wireless packet network. Such an
impromptu approach would be required to deploy a wire-
less sensor network for situational awareness in emer-
gency situations such as those faced by firemen or
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commandos ([2,3]). For example, as they attack a fire in a
building, firemen might wish to place temperature sensors
on fire-doors to monitor the spread of fire, and ensure a
route for their own retreat; or commandos attempting to
flush out terrorists might wish to place acoustic or passive
infra-red sensors to monitor the movement of people in
the building. As-you-go deployment may also be of interest
when deploying a multi-hop wireless sensor network over
a large terrain (such as a dense forest) in order to obtain a
first-cut deployment which could then be augmented to a
network with desired properties (connectivity and quality-
of-service). Such quick deployment of a wireless relay net-
work also becomes necessary if the deployment needs to
be stealthy (for example, for detecting poachers or fugi-
tives in a forest), or if the network has to be redeployed
at short time intervals to track an evolving phenomenon.

With the above larger motivation in mind, in this paper
we are concerned with the rigorous formulation and solu-
tion of a problem of impromptu deployment of a multihop
wireless network along a random lattice path, see Fig. 1,
which, while being a simple model for providing insights
into a larger class of problems, could also be a reasonable
model for a forest trail on flat ground. The objective is to
create a multihop wireless path for packet communication
from the end of the path to its beginning. The problem is
formulated as an optimal sequential decision problem.
The formulation gives rise to a total cost Markov decision
process, which we study in detail in order to derive struc-
tural properties of the optimal policy. We also provide an
efficient algorithm for computing the optimal policy.

1.1. Related work

‘‘As-you-go’’ deployment of wireless relay networks
has, in the past, been motivated by ‘‘first responder’’
Fig. 1. A wireless network being deployed as a person steps along a
random lattice path. Inverted V: location of the deployment person; path
drawn with a solid line: path already covered; circles: deployed relays;
path drawn with a thick dashed line: a possible evolution of the
remaining path. The source to be placed at the end is also shown as the
black rectangle.
networks, a concept that has been around at least since
2001. In [3], Howard et al. provide heuristic algorithms
for the problem of incremental deployment of sensors
(such as surveillance cameras) with the objective of cover-
ing the deployment area. Their problem is related to that of
self-deployment of autonomous robot teams and to the
art-gallery problem. Creation of a communication network
that is optimal in some sense is not an objective in [3]. In a
somewhat similar vein, the work of Loukas et al. [4] is con-
cerned with the dynamic locationing of robots that, in an
emergency situation, can serve as wireless relays between
the infrastructure and human-carried wireless devices. The
problem of impromptu deployment of static wireless net-
works has been considered in [5–9]. In [5], Naudts
et al. provide a methodology in which, after a node is
deployed, the next node to be deployed is turned on and
begins to measure the signal strength to the last deployed
node. When the signal strength drops below a predeter-
mined level, the next node is deployed and so on. Souryal
et al. provide a similar approach in [6,8], where an exten-
sive study of indoor RF link quality variation is provided,
and a system is developed and demonstrated. The work
reported in [9] is yet another example of the same
approach for relay deployment. More recently, Liu
et al. [10] describe a ‘‘breadcrumbs’’ system for aiding fire-
fighters inside buildings, and is similar to our present
paper in terms of the class of problems it addresses. In a
survey article [2], Fischer et al. describe various localiza-
tion technologies for assisting emergency responders, thus
further motivating the class of problems we consider. Bao
and Lee [7] consider the problem of multiple persons, each
carrying some relays, exploring an unknown region, and
collaboratively placing relays to stay connected to a com-
mand center. The objective is to maximize the area they
can explore while staying connected, using these relays.
They propose a heuristic algorithm based on measure-
ments between the deployed relays and between the
mobile individuals.

In the literature referred to above, heuristic algorithms
are proposed for relay placement. In our earlier work
(Mondal et al. [1]) we took the first steps towards rigor-
ously formulating and addressing the problem of
impromptu optimal deployment of a multihop wireless
network along a line at the end of which a source has to
placed. The source (e.g., a sensor) placement location is
discovered only as the network is deployed. A probabilistic
model is used for the unknown location of the source along
the line. Once placed, the sensor sends periodic measure-
ment packets to a control center near the start of the line.
It is assumed that the measurement rate at the sensor is
low, so that (with a very high probability) a packet is deliv-
ered to the control center before the next packet is gener-
ated at the sensor. This, so called, ‘‘lone packet model’’ is
realistic for situations in which the sensor makes a mea-
surement every few seconds, or where the main purpose
of the sensor network is to detect sporadic events, and
communicate the detection to the sink.

The objective of the sequential decision problem is to
minimize a certain expected per packet cost (e.g., end-to-
end delay or total energy expended by a node), which
can be expressed as the sum of the costs over each hop,
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subject to a constraint on the number of relays used for the
operation. It has been proved in [1] that an optimal place-
ment policy solving the above mentioned problem is a
threshold rule, i.e., there is a threshold r� such that, after
placing a relay, if the operative has walked r� steps without
the path ending, then a relay must be placed at r�.
1.2. Outline and our contributions

In this paper, we adopt the following model features
from [1]: (a) a single operative moves step-by-step along
a path, deciding to place or to not place a relay; (b) the
length of the path is a geometrically distributed random
multiple of the step size; (c) a source of packets is placed
at the end of the path; (d) the lone packet traffic model
applies; (e) the total cost of a deployment is a linear com-
bination of the sum of convex hop costs and the number of
nodes placed. We, however, extend the work presented in
[1] to the two-dimensional case. The path evolves from a
sink at the origin, over a lattice in the positive quadrant.
The spacing between the lattice points is equal to the step
size of the person deploying the network. The path evolves
by stepping over the lattice in the þx, or the þy, direction.
This type of movement is common for forest trails on flat
ground, where the trail exhibits a steady drift towards
some direction in the positive quadrant. While the
expected path length is fixed by the parameter of the geo-
metrically distributed number of steps, the ‘‘twistiness’’ (or
the frequency of turns) in the path is parameterised by a
probability of the path taking a turn at each step. We note
that a similar mobility model has been used in the simula-
tion experiments used for evaluating the heuristics
reported in [7]. A radio link exists between successive
nodes placed anywhere on the path (see Fig. 2), but the
quality of the link would depend on the distance between
the nodes. The lone packet model is a natural first assump-
tion, and would be useful in low-duty cycle monitoring
applications. Once the network has been deployed, an ana-
lytical technique such as that presented in [11] can be used
to estimate the actual packet carrying capacity of the
network.
Fig. 2. A depiction of relay deployment along a random lattice path.
We will formally describe our system model and prob-
lem formulation in Section 2. The following are our main
contributions:

� We formulate the problem as a total cost Markov deci-
sion process (MDP), and characterize the optimal poli-
cies in terms of placement sets. We show that these
optimal policies are threshold policies and thus the
placement sets are characterized by boundaries in the
two-dimensional lattice (Section 3). Beyond these
boundaries, it is optimal to place a relay.
� Noticing that placement instants are renewal points in

the random process, we recognize and prove the One-
Step-Look-Ahead (OSLA) characterization of the place-
ment sets (Section 4).
� Based on the OSLA characterization, we propose an iter-

ative algorithm, which converges to the optimal place-
ment set in a finite number of steps (Section 5). We
have observed that this algorithm converges much fas-
ter than value iteration.
� In Section 7 we provide several numerical results that

illustrate the theoretical development. The relay place-
ment approach proposed in [5,6,8,9] would suggest a
distance threshold based placement rule. We numeri-
cally obtain the optimal rule in this class, and find that
the cost of this policy is numerically indistinguishable
from that of the overall optimal policy provided by
our theoretical development. This suggests that it might
suffice to utilize a distance threshold policy. However,
the distance threshold should be carefully designed tak-
ing into account the system parameters and the opti-
mality objective.

For the ease of presentation we have moved most of the
proofs to the Appendix.
2. System model

We consider a deployment person, whose stride length
is 1 unit, moving along a random path in the two-dimen-
sional lattice, placing relays at some of the lattice points
of the path and finally a source node at the end of the path.
Once placed, the source node periodically generates mea-
surement packets which are forwarded by the successive
relays in a multihop fashion to the control center located
at ð0;0Þ; see Fig. 2.
2.1. Random lattice path

Let Zþ denote the set of non-negative integers, and Z2
þ

the non-negative orthant of the two dimensional integer
lattice. Starting from ð0;0Þ there is a lattice path that takes
random turns in the þx direction, or in the þy direction
(this is to avoid the path folding back onto itself, see
Fig. 2). Under this restriction, the path evolves as a stochas-
tic process over Z2

þ. When the deployment person has
reached some lattice point, the path continues for one
more step and terminates with probability p, or does not
terminate with probability 1� p. In either case, the next
step is in the þx direction with probability q, and in the
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þy direction with probability 1� q. Thus, for instance,
ð1� pÞq is the probability that the path proceeds in the
þx direction without ending. The person deploying the
relays is assumed to keep a count of m and n, the number
of steps taken in the x direction and in y direction, respec-
tively, since the previous relay was placed. He is also
assumed to know the probabilities p and q. Thus the
parameter p governs the path length. If p is small then long
paths will be sampled, whereas if p is large then short
paths will be sampled. In either case the path length is
finite w.p. 1. See Fig. 3 for an illustration of typical sample
path evolutions for a given path length (in number of
steps), for different turn probabilities q.

As mentioned earlier, the above structure, while being a
simple setting for obtaining insights into the general prob-
lem of as-you-go deployment, could reasonably model a
winding forest trail on flat ground. If the step sizes are
small, random movement on the integral lattice is a good
practical approximation to a situation such as traversing
along a continuous two-dimensional random trail in a for-
est. For example, while deploying relays along a forest trail,
the lattice pitch could be as little at 3 to 5 meters, while the
deployment area could be a few millions of square meters.
Thus a path along a fine-pitch lattice can adequately
approximate a trail. The details of the model can be moti-
vated as follows. The length, say, L, of the path is a priori
unknown, but there is prior information (e.g., the mean
distance, L, along the path from the source to the sink) that,
given the stride length d, leads us to model L as a geomet-
rically distributed number of steps.3 The stride length d and
the mean length L can be used to obtain the parameter of the
geometric distribution, i.e., the probability p that the source
has to be placed at the next step.

As a practical example, the step size (the distance
between points at which placement decisions are taken)
can be as small as, say, 5 meters. If the expected distance
to the sensor is, say, 500 meters, i.e., 100 steps, then p
would be chosen to be 0:01. With this value of
p;ProbðL > 3000 mÞ ¼ ð1� pÞ600 � 0:0024. Hence, if the
forest under consideration has dimensions of a few kilome-
ters, then these forest dimensions are essentially ‘‘infinite’’
compared to the length of the path that is being modeled.
The probability q models the ‘‘twistiness’’ of the path, and
can also be based on prior information. If the path is known
to follow a straight line, then q can be taken to be 0 (the
path is a straight line proceeding in the þx direction), or,
equivalently, 1 (the path is a straight line proceeding þy

direction). On the other hand a path that takes frequent
turns would be modeled by q close to 0:5.

We have used location independent path evolution
probabilities. We note that the Markov decision setting
can be extended by making the turn probabilities state
dependent. However it would be hard to obtain prior infor-
mation for getting such state dependent path evolution
parameters. Our model uses the minimal information of
3 One justification for the use of the geometric distribution, given the
prior knowledge, L, is that it is the maximum entropy discrete probability
mass function with the given mean. Thus, by using the geometric
distribution, we are leaving the length of the line as uncertain as we can,
given the prior knowledge of its mean.
expected path length, and provides a simple and comput-
able stationary deployment policy.

The sequential decision making formulation, later in
this paper, assumes the knowledge of p and q. In many sit-
uations (e.g. for deployment along a forest trail) these
parameters might be estimated to some accuracy (e.g.,
from a map). In this paper we provide general structural
results for the optimal policy for any p and q, and investi-
gate how well a simple policy performs as compared to the
optimal policy.

2.2. Traffic model

In this paper, we assume that the source (i.e., the sensor
placed at the end of the path) generates packets at a rate so
low that one packet exits to the sink before the next packet
is generated. Such a, so called, ‘‘lone packet’’ model would
be appropriate for situations in which the sensor makes
low duty cycle environment measurements (a measure-
ment every few seconds), or generates an occasional alarm
packet.

As practical examples, applications such as forest fire
detection, intrusion detection, animal surveillance, etc.,
while sensing would be performed continuously, there will
be packet transmission activities only when some activity
is detected. Also, there are many wireless sensor applica-
tions where continuous sensing is required but the mea-
surement period is of the order of a few seconds (e.g.,
soil moisture measurement, and ambient temperature
measurement). In typical deployments (using, for example,
IEEE 802.15.4 radios, and 4–6 hops), the total transmission
delay (sum of all one-hop delays) incurred by a packet
would be only of the order of milliseconds. This essentially
means that consecutive packets are unlikely to interfere
with each other in time, thus justifying our lone-packet
assumption. A design based on such a lone packet model
could also be the starting point for a design for higher
packet rates.

With such low packet arrival rates, each packet tra-
verses the network without encountering interference
from any other packet. Hence, the delay on any link, or
the power required for a given link quality, depend on
the path loss characteristics of that link alone.

2.3. Cost definition

In our model, packet transmission can take place
between any two successive relays even if they are not
on the same straight line segment of the lattice path. Such
a model is suitable, for example, when the deployment
region is a thickly wooded forest where the deployment
person is restricted to move only along some narrow path.
The cost on each link could be the expected delay for deliv-
ering a packet across the link (taking into account the med-
ium access and retransmission delays), or the power
required to obtain a certain communication quality over
the link. For example, the quality of a link can be specified
in terms of the probability of the received power on the
link falling below a certain minimum received power
(i.e., the outage probability of the link) below which the
packet error rate (PER) exceeds a desired level (e.g., a
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�88 dBm received power, with receiver noise, could yield a
PER of 3% for the packets being carried by the network; see
[12]). The outage probability can be lower bounded by
ensuring that the average received power across the link
(averaged over shadowing and fading) meets a received
power target. Such a target average received power would
be obtained by deriving a margin above the minimum
value of received power (e.g., the �88 dBm above), from
statistics of shadowing and fading. Of course, this would
be a conservative approach compared to one where only
a fade margin is applied and shadowing is accounted for
by making measurements (see [8] for a discussion of issues
related to link quality measurement). A measurement-
based approach would require additional state to be main-
tained in the decision formulation, and is a topic of our
ongoing research. We note, however, that measurements
would take time at each step, and, thus, might not be fea-
sible if the deployment has to be carried out very quickly.

It is then easily seen that for two successive relays sep-
arated by a distance r, the cost (expected delay or average
power) would be a function dðrÞ. A formula for expected
delay, under the IEEE 802.15.4 MAC has been derived in
[13]. In our numerical work we use the power cost,
dðrÞ ¼ Pm þ crg, where Pm is the minimum power required,
c relates to an SNR (Signal-to-Noise Ratio) constraint, and g
is the path-loss exponent. Now suppose N relays are placed
such that the successive inter-relay distances are
r0; r1; . . . ; rN (r0 is the distance from the control center at
ð0;0Þ and the first relay, and rN is the distance from the last
relay to the source placed at the end of the path) then,
under the lone packet model, we take the total cost of this
placement as the sum of the one-hop costs C ¼

PN
i¼0dðriÞ.

Note that we require that all deployed relays are used in
the path from the source to the sink.4
4 We have investigated the case where relay skipping is allowed in our
work [14] under a measurement based setting. After the relays are placed,
the path using all the relays from the source to the sink is not necessarily the
shortest path. Thus, the agent could have kept this in mind when deploying the
relays in the first place. However, the complexity of the formulation and its
solution is significantly more, since, at each decision point, the deployment
agent needs to keep some information pertaining to all relays deployed up to
any point.
2.3.1. Justification for sum of hop costs
There are two ways in which the network could be

operated: (i) the nodes are always awake, or (ii) the nodes
sleep-wake cycle.

(i) It is a well known fact that the current drawn by an
awake radio, waiting to receive a packet, is almost as
large as the current required to transmit a packet
(e.g., see [15, Page 13]). A network with continu-
ously awake nodes will have a short life span (two
or three days, depending on the battery size), and
will be employed for transient applications where
the network is deployed and removed within a few
10s of hours. During the operational period, an
objective could be to minimize the mean end-to-
end packet delay. If the network cost is end-to-end
delay, then, under the lone-packet model, the end-
to-end mean delay is just the sum of the expected
hop delays.

(ii) If the network has to last for a long time (several
months) then the nodes must sleep-wake cycle,
packet delays will be large, and the primary criterion
of network cost would be in terms of life-time.
When nodes are sleeping, then a node with a packet
to transmit (the ‘‘custodian’’ node) requires an
awake downstream relay in order to forward the
packet. If nodes are equipped with wake-on radios
then the custodian node sends a low power ‘‘wake’’
signal to the sleeping relay followed immediately by
the packet [16,17]. Alternatively, the clocks of the
neighboring nodes could be synchronized, so that
the custodian node knows when to transmit its
packet so as to ‘‘catch’’ the downstream node just
when it wakes up [18]. If the node battery energy
is E joules, the transmission power required is dðrÞ,
the receiver power required is Prcv, the packet trans-
mission time is tpkt,5 then the life-time of a relay
whose next hop node is a distance r away is given
by Ti :¼ E

AðdðrÞþPrcvÞtpkt
, where A is the rate at which

the source generates packets. It follows that if the
5 Assuming a constant packet size, and a constant physical layer bit rate
(the IEEE 802.15.4 physical layer has just one bit rate).
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network objective is to minimize the rate of replacing
node batteries (i.e.,

P
06i6N

1
Ti

) then the criterion

should be min
P

06i6NdðriÞ, whereas if the objective
is to maximize the life-time then the criterion should
be min max06i6NdðriÞ. However note that

max
N

i¼1
dðriÞ ¼ lima!1

XN

i¼1

dðriÞa
 !1

a

: ð1Þ

Hence if we solve the min-sum problem with a new cost-
function f ðrÞ ¼ dðrÞa, for some fixed, yet large enough a,
we have a good approximate solution for the min–max
problem via the solution of the min-sum problem. It is easy
to verify that the function f ðrÞ also satisfies the required
technical conditions. This is quite a standard technique
for solving min–max problems via a min-sum relaxation
and a set of useful references for this method is [19] and
the references cited therein.

We now impose a few technical conditions on the one-
hop cost function dð�Þ: (C1) dð0Þ > 0, (C2) dðrÞ is convex and
increasing in r, and (C3) for any r and d > 0 the difference
dðr þ dÞ � dðrÞ increases to 1 as the argument r !1.

(C1) is imposed considering the fact that it requires a
non-zero amount of delay or power for transmitting a
packet between two nodes, however close they may be.
(C2) and (C3) are properties we require to establish our
results on the optimal policies. They are satisfied by the
power cost, Pm þ crg, and also by the mean hop delay
(see [13]).

We will overload the notation dð�Þ by denoting the one-
hop cost between the locations ð0;0Þ and ðx; yÞ 2 R2 as
simply dðx; yÞ instead of dðjjðx; yÞ � ð0;0ÞjjÞ. Using the con-
ditions on dðrÞ we prove the following convexity result of
dðx; yÞ.

Lemma 1. The function dðx; yÞ is convex in ðx; yÞ, where
ðx; yÞ 2 R2.
Proof. Since dð�Þ is convex, non-decreasing in its argu-
ment, the proof follows by invoking the composition rule
[20, Section 3.2.4]. h

We further impose the following condition on dðx; yÞ
where ðx; yÞ 2 R2. We allow a general cost-function dðx; yÞ
endowed with the following property: (C4) The function
dðx; yÞ is positive, twice continuously partially differentia-
ble in variables x and y and 8x; y 2 Rþ,

dxxðx; yÞ > 0;dxyðx; yÞ > 0;dyyðx; yÞ > 0; ð2Þ

where dxyðx; yÞ ¼ @2dðx;yÞ
@x@y . These properties also hold for the

mean delay and the power functions mentioned earlier.
Finally define, for ðm;nÞ 2 Z2

þ;D1ðm;nÞ ¼ dðmþ 1;nÞ�
dðm; nÞ and D2ðm;nÞ ¼ dðm;nþ 1Þ � dðm; nÞ.

Lemma 2. D1ðm;nÞ and D2ðm;nÞ are non-decreasing in both
the coordinates m and n.
Proof. See Appendix A. h
2.4. Deployment policies and problem formulation

A deployment policy p is a sequence of mappings
ðlk : k � 0Þ, where at the k-th step of the path (provided
that the path has not ended thus far) lk allows the deploy-
ment person to decide whether to place or not to place a
relay where, in general, randomization over these two
actions is allowed. The decision is based on the entire
information available to the deployment person at the k-
th step, namely the set of vertices traced by the path and
the location of the previous vertices where relays were
placed. Let P represent the set of all policies. For a given
policy p 2 P, let Ep represent the expectation operator
under policy p. Let C denote the total hop cost (as defined
earlier) and N (a random variable) the total number of
relays used. We are interested in solving the following
problem,

min
p2P

EpC þ kEpN; ð3Þ

where k > 0 may be interpreted as the cost of a relay. Solv-
ing the problem in (3) can also help us solve the following
constrained problem,

min
p2P

EpC;

S:t: : EpN 6 qavg ; ð4Þ

where qavg > 0 is a constraint on the expected number of
relays (we will describe this procedure in Section 6; for
details see [21]).

Remark. A constraint on the expected number of relays
would be applicable to a situation in which relays are
deployed along multiple paths to connect a sink and a
source at the ends of each path. Because of the randomness
in the lengths of the paths, we will place more relays along
some paths and less along others, with the total number of
relays deployed being governed by the constraint on the
mean number of relays. For deployment along a line, a
constraint on the actual number of relays was dealt with in
[13], and leads to a non-stationary deployment policy.

In Sections 3–5, we work towards obtaining an efficient
solution to the problem in (3).
3. MDP formulation and solution

In this section we formulate the problem in (3) as a total
cost infinite horizon MDP and derive the optimal policy in
terms of optimal placement set. We show that this set is
characterized by a two-dimensional boundary, upon cross-
ing which it is optimal to place a relay.

3.1. States, actions, state-transitions and cost structure

We formulate the problem as a sequential decision pro-
cess starting at the origin of the lattice path. The decision to
place or not place a relay at the k-th step is based on
ððMk;NkÞ; ZkÞ, where ðMk;NkÞ denotes the coordinates of
the deployment person with respect to the previous relay
and Zk 2 fe; cg; Zk ¼ e means that at step k the random
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lattice path has ended and Zk ¼ c means that the path will
continue in the same direction for at least one more step.
Thus, the state space is given by:

S ¼ ðm;n; zÞ : ðm;nÞ 2 Z2
þ; z 2 fe; cg

� �
[ f/g; ð5Þ

where / denotes the cost-free terminal state, i.e., the
state after the end of the path has been discovered. The
action taken at step k is denoted Uk 2 f0;1g, where
Uk ¼ 1 is the action to place a relay, and Uk ¼ 0 is the
action of not placing a relay. When the state is ðm;n; cÞ
and when action u is taken, the transition probabilities
are given by:

� If u is 0 then,
(i) ðm;n; cÞ �! ðmþ 1;n; cÞ w.p. ð1� pÞq

(ii) ðm;n; cÞ �! ðmþ 1;n; eÞ w.p. pq
(iii) ðm;n; cÞ �! ðm;nþ 1; cÞ w.p. ð1� pÞð1� qÞ
(iv) ðm;n; cÞ �! ðm;nþ 1; eÞ w.p. pð1� qÞ.
� If u is 1 then
(i) ðm;n; cÞ�!ð1;0; cÞ w.p. ð1� pÞq

(ii) ðm;n; cÞ�!ð1;0; eÞ w.p. pq
(iii) ðm;n; cÞ�!ð0;1; cÞ w.p. ð1� pÞð1� qÞ
(iv) ðm;n; cÞ�!ð0;1; eÞ w.p. pð1� qÞ.

If Zk ¼ e then the only allowable action is u ¼ 1 and we
enter into the state /. If the current state is /, we stay in
the same cost-free termination state irrespective of the
control u. The one step cost when the state is s 2 S is
given by:

cðs;uÞ ¼
dðm;nÞ if s ¼ ðm;n; eÞ;
kþ dðm;nÞ if u ¼ 1 and s ¼ ðm; n; cÞ;
0 if u ¼ 0 or s ¼ /:

8><
>:

For simplicity we write the state ðm;n; cÞ as simply ðm;nÞ.

3.2. Optimal placement set Pk

Let Jkðm;nÞ denote the optimal cost-to-go when the cur-
rent state is ðm; nÞ. When at some step the state is ðm;nÞ
the deployment person has to decide whether to place or
not place a relay at the current step. Jk is the solution of
the Bellman equation [22, Page 137, Prop. 1.1],

Jkðm;nÞ ¼minfcpðm;nÞ; cnpðm;nÞg; ð6Þ

where cpðm;nÞ and cnpðm; nÞ denote the expected cost
incurred when the decision is to place and not place a relay,
respectively. cpðm;nÞ is given by

cpðm;nÞ ¼ kþdðm;nÞþð1�pÞð1�qÞJkð0;1Þþð1�pÞqJkð1;0Þþpdð1Þ:
ð7Þ

The term kþ dðm;nÞ in the above expression is the one
step cost which is first incurred when a relay is placed.
The remaining terms are the average cost-to-go from the
next step. The term ð1� pÞð1� qÞJkð0;1Þ can be understood
as follows: ð1� pÞð1� qÞ is the probability that the path
proceeds in the þx direction without ending. Thus the state
at the next step is ð0;1; cÞ w.p. ð1� pÞð1� qÞ, the optimal
cost-to-go from which is Jkð0;1Þ. Similarly for the term
ð1� pÞqJkð1;0Þ; ð1� pÞq is the probability that the path will
proceed, without ending, towards the þy direction
(thus the next state is ð1;0; cÞ) and Jkð1;0Þ is the cost-to-
go from the next state. Finally, in the term pdð1Þ; p is the
probability that the path will end, either proceeding in
the þx direction, or in the þy direction, at the next
step and dð1Þ is the cost of the last link. Following a
similar explanation, the expression for cnpðm;nÞ can be
written as:

cnpðm;nÞ ¼ ð1� pÞqJkðmþ 1;nÞ þ ð1� pÞð1� qÞJkðm;nþ 1Þ
þ pqdðmþ 1;nÞ þ pð1� qÞdðm;nþ 1Þ: ð8Þ

We define the optimal placement set Pk as the set of all
lattice points ðm;nÞ, where it is optimal to place rather
than to not place a relay. Formally,

Pk ¼ ðm;nÞ : cpðm;nÞ 6 cnpðm;nÞ
� �

: ð9Þ

In this definition, if the costs of placing and not-placing are
the same, we have arbitrarily chosen to place at that point,
which is equivalent from the point of view of minimizing
the total cost-to-go. This is because, if we do not place
the relay at the current step and the path continues, the
earliest opportunity to place a relay is at the next (random)
lattice point, thus increasing our current hop-length.
Hence, although we do not incur any relay-cost k > 0 at
the current step, the total expected placement cost will
increase due to increased value of the current hop-cost,
which is strictly increasing in hop-length. On the other
hand, if we do place a relay at the current step, we will
incur a placement cost of k immediately at our current step
plus a smaller hop-cost for the next hop, due to convexity
of the hop-cost function dð�Þ and relay placement points
being regenerative points for the process. Hence when
these two costs are equal, either action is as good for min-
imizing the total cost.

The above result yields the following main theorem of
this section which characterizes the optimal placement
set Pk in terms of a boundary.

Theorem 1. The optimal placement set Pk is characterized by
a boundary, i.e., there exist mappings m� : Zþ ! Zþ and
n� : Zþ ! Zþ such that:
Pk ¼
[

n2Zþ
fðm;nÞ : m P m�ðnÞg; ð10Þ

¼
[

m2Zþ
fðm;nÞ : n P n�ðmÞg: ð11Þ
Proof Outline. The proof utilizes the conditions C2 and C3
imposed on the cost function dð�Þ. First, using (7) and (8) in
(9) and rearranging we alternatively write Pk as,
Pk ¼ fðm;nÞ : Fðm;nÞP Kg, where K is a constant and
Fð�; �Þ is some function of m and n. Then, we complete the
proof by showing that Fðm;nÞ is non-decreasing in both
m and n. This requires us to prove (using an induction
argument) that Hkðm;nÞ :¼ Jkðm;nÞ � dðm;nÞ is non-
decreasing in m and n. Also, Lemma 2 has to be used here.
For a formal proof see Appendix B. h
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Remark. Though the optimal placement set Pk was char-
acterized nicely in terms of a boundary m�ð�Þ and n�ð�Þ, a
naive approach of computing this boundary, using value
iteration to obtain Jkðm;nÞ (for several values of
ðm;nÞ 2 Z2

þ), would be computationally intensive. Our
effort in the next section (Section 4) is towards obtaining
an alternate simplified representation for Pk, using
which we propose an algorithm in Section 5, which is
guaranteed to return Pk in a finite (in practice, small)
number of steps.
4. Optimal stopping formulation

We observe that the points where the path has not
ended, and a relay is placed, are renewal points of the deci-
sion process. This motivates us to think of the decision pro-
cess after a relay is placed as an optimal stopping problem
with termination cost Jkð0;0Þ (which is the optimal cost-to-
go from a relay placement point). Let Pk denote the place-
ment set corresponding to the OSLA rule (to be defined
next). In this section we prove our next main result that
Pk ¼ Pk.

4.1. One-step-look-ahead stopping set Pk

Under the OSLA rule, a relay is placed at state ðm;n; cÞ if
and only if the ‘‘cost c1ðm;nÞ of stopping (i.e., placing a
relay) at the current step’’ is less than the ‘‘cost c2ðm;nÞ
of continuing (without placing relay at the current step)
for one more step, and then stopping (i.e., placing a relay
at the next step)’’. The expressions for the costs c1ðm;nÞ
and c2ðm;nÞ can be written as:

c1ðm;nÞ ¼ kþ dðm;nÞ þ Jkð0; 0Þ

and

c2ðm;nÞ ¼ pqðdðmþ 1;nÞ þ pð1� qÞdðm;nþ 1ÞÞ
þ ð1� pÞ qdðmþ 1;nÞ þ ð1� qÞdðm;nþ 1Þ þ kþ Jkð0;0Þð Þ:

Then we define the OSLA placement set Pk as:

Pk ¼ fðm;nÞ 2 Z2
þ : c1ðm;nÞ 6 c2ðm;nÞg:

Substituting for c1ðm;nÞ and c2ðm;nÞ and simplifying we
obtain:

Pk ¼ ðm;nÞ 2 Z2
þ : pðkþ Jkð0;0ÞÞ 6 Dqðm; nÞ

� �
; ð12Þ

where Dqðm;nÞ ¼ qD1ðm;nÞ þ ð1� qÞD2ðm;nÞ.

Theorem 2. The OSLA rule is a threshold policy, i.e., there
exist mappings �m : Zþ ! Zþ and �n : Zþ ! Zþ, which define
the one-step placement set Pk as follows,

Pk ¼
[

n2Zþ
fðm;nÞ : m P �mðnÞg; ð13Þ

¼
[

m2Zþ
fðm;nÞ : n P �nðmÞg: ð14Þ

Proof. Noticing that in (12) Dqðm;nÞ is non-decreasing in
ðm;nÞ and pðkþ Jkð0;0ÞÞ is a constant, the proof follows
along the lines of the proof of Theorem 1. h
Now, we present the main theorem of this section.

Theorem 3.

Pk ¼ Pk:
Proof. See Appendix C. h
Remark. The characterization in (12) is much simpler
than the one in (9) once the value of Jkð0;0Þ is given. In
the following subsection, we define a function gð�Þ and
express Jkð0;0Þ as the minimum value of this function.
4.2. Computation of Jkð0; 0Þ

Let us start by defining a collection of placement sets
indexed by h P 0:

PðhÞ ¼ fðm;nÞ 2 Z2
þ : pðkþ hÞ 6 Dqðm;nÞg: ð15Þ

Referring to (12), note that PðJkð0;0ÞÞ ¼ Pk. Let gðhÞ denote
the cost-to-go, starting from ð0;0Þ, if the placement set
PðhÞ is employed. Then, since Jkð0;0Þ is the optimal cost-
to-go and Pk 2 fPðhÞghP0, we have Jkð0; 0Þ ¼minhP0gðhÞ.

To compute gðhÞ, we proceed by defining the boundary
BðhÞ of PðhÞ as follows:

BðhÞ ¼ fðm;nÞ 2 PðhÞ : ðm� 1;nÞ 2 PcðhÞ or
ðm;n� 1Þ 2 PcðhÞg; ð16Þ

where PcðhÞ :¼ Z2
þ � PðhÞ.

Suppose the corridor ends at some ðm;nÞ 2 PcðhÞ [ BðhÞ,
then only a cost of dðm;nÞ is incurred. Otherwise (i.e., if the
corridor reaches some ðm;nÞ 2 BðhÞ and continues), using a
renewal argument, a cost of dðm; nÞ þ kþ gðhÞ is incurred,
where dðm;nÞ þ k is the cost of placing a relay and gðhÞ is
the future cost-to-go. We can thus write:

gðhÞ ¼
X

ðm;nÞ2PcðhÞ[BðhÞ
Pððm;nÞ; eÞdðm;nÞ

þ
X

ðm;nÞ2BðhÞ
Pððm;nÞ; cÞðgðhÞ þ kþ dðm;nÞÞ; ð17Þ

where Pððm;nÞ; eÞ is the probability of the corridor ending
at ðm;nÞ and Pððm;nÞ; cÞ is the probability of the corridor
reaching the boundary and continuing. Solving for gðhÞ,
we obtain:

gðhÞ ¼ 1
1�

P
ðm;nÞ2BðhÞPððm;nÞ; cÞ

X
ðm;nÞ2Pc ðhÞ[BðhÞ

Pððm;nÞ; eÞdðm;nÞ þ
X

ðm;nÞ2BðhÞ
Pððm; nÞ; cÞðkþ dðm;nÞÞ

0
@

1
A: ð18Þ

The above expression is extensively used in our algorithm
proposed in the next section.

We conclude this subsection by deriving the expression
for the probabilities Pððm;nÞ; eÞ and Pððm;nÞ; cÞ. Let us par-
tition the boundary BðhÞ into three mutually disjoint sets:

BwðhÞ ¼ fðm;nÞ 2 BðhÞ : ðm� 1;nÞ 2 BðhÞg
BsðhÞ ¼ fðm;nÞ 2 BðhÞ : ðm;n� 1Þ 2 BðhÞg
BnullðhÞ ¼ fðm;nÞ 2 BðhÞ : ðm� 1;nÞ R BðhÞ and ðm;n� 1Þ R BðhÞg:
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For a depiction of the various boundary points, see Fig. 4.
Now, Pððm;nÞ; eÞ can be written as:

Pððm;nÞ; eÞ ¼

mþ n

m

 !
pð1� pÞmþn�1qmð1� qÞn

if ðm;nÞ 2 PcðhÞ [ BnullðhÞ

mþ n� 1

m

 !
pð1� pÞmþn�1qmð1� qÞn ifðm;nÞ 2 BwðhÞ

mþ n� 1

m� 1

 !
pð1� pÞmþn�1qmð1� qÞn ifðm;nÞ 2 BsðhÞ:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

This can be understood as follows. Any point
ðm;nÞ 2 PcðhÞ [ BnullðhÞ can be reached from the left or

from below. mþ n
m

� �
is the number of possible paths for

reaching ðm;nÞ. Each such path has to go m times in the
þx direction (thus the term qm) and n times in the þy direc-
tion (thus the term ð1� qÞn) and finally ending at

ðm;nÞ (thus the term pð1� pÞmþn�1). Any point ðm;nÞ 2
BwðhÞ can be reached only from the point ðm;n� 1Þ. The
probability of reaching ðm;n� 1Þ without ending is

mþ n� 1
m

� �
ð1� pÞmþn�1qmð1� qÞn�1. Then, the corridor

reaches ðm;nÞ and ends with probability pð1� qÞ.
Pððm;nÞ; eÞ for ðm;nÞ 2 BsðhÞ can be obtained
analogously.

Similarly, Pððm;nÞ; cÞ can be written as:

Pððm;nÞ; cÞ ¼

mþ n

m

 !
ð1� pÞmþnqmð1� qÞn if ðm; nÞ 2 PcðhÞ [ BnullðhÞ

mþ n� 1

m

 !
ð1� pÞmþnqmð1� qÞn if ðm; nÞ 2 BwðhÞ

mþ n� 1

m� 1

 !
ð1� pÞmþnqmð1� qÞn if ðm; nÞ 2 BsðhÞ:

8>>>>>>>>>>><
>>>>>>>>>>>:
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Fig. 4. Example of a placement set of the form in (15): ‘o’ denotes lattice
points outside the placement set; lattice points on the boundary can be
partitioned into three sets according to the direction, from which they can
be reached.
5. OSLA based fixed point iteration algorithm

In this section, we present an efficient fixed point itera-
tion algorithm (Algorithm 1) using the OSLA rule in (12) for
obtaining the optimal placement set, Pk, and the optimal
cost-to-go, Jkð0;0Þ. There are two advantages of our algo-
rithm over the naive approach of directly trying to mini-
mize the function gð�Þ to obtain Jkð0;0Þ (recall that
Jkð0;0Þ ¼minh�0gðhÞ):

� On the theoretical side, this iterative algorithm avoids
explicit optimization altogether, which, otherwise
would be performed numerically over a continuous
range. Without any structure on the objective
function, direct numerical minimization of gð�Þ is dif-
ficult and often unsatisfactory, as it invariably uses
some sort of heuristic search over this continuous
range.
� On the practical side, this algorithm is proved to con-

verge within a finite number of iterations and observed
to be extremely fast (requires 3 to 4 iterations
typically).

The following is our Algorithm (Algorithm 1) which
we refer to as the OSLA Based Fixed Point Iteration
Algorithm.

Algorithm 1. OSLA Based Fixed Point Iteration Algorithm
Require: 0 < p < 1;0 6 q 6 1; k P 0

1: k ¼ 0;hðkÞ ¼ 0
2: while 1 do

3: PðhðkÞÞ  fðm; nÞ 2 Z2
þ : pðkþ hðkÞÞ 6 Dqðm;nÞg

4: Compute gðhðkÞÞ using (18)

5: if gðhðkÞÞ ¼¼ hðkÞ then
6: Break;
7: end if

8: hðkþ1Þ  gðhðkÞÞ
9: k kþ 1
10: end while

11: return gðhðkÞÞ;PðhðkÞÞ

We now prove the correctness and finite termination
properties of our algorithm. First, we define
g� :¼ Jkð0;0Þ ¼minhP0gðhÞ. Now consider a sample plot of
the function gðhÞ in Fig. 5. From Fig. 5(a) observe that
whenever h > g� (which is around 150), h > gðhÞ. Also,
Fig. 5(b) (where we have plotted the functions gðhÞ and
lðhÞ ¼ h) suggests that gðhÞ has a unique fixed point. We
formally prove these results.
Lemma 3. If h > g� then h > gðhÞ.

Proof. This follows from the manipulation of (18). See
Appendix D for details. h
Lemma 4. gðhÞ has a unique fixed point.
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Proof. From (15) and (12), we observe that
PðJkð0;0ÞÞ ¼ Pk. From Theorem 3, Pk is the optimal place-
ment set and thus the cost-to-go of using PðJkð0;0ÞÞ is
Jkð0;0Þ, i.e., gðJkð0;0ÞÞ ¼ Jkð0;0Þ. Hence, Jkð0;0Þ ¼ g� is a
fixed point of gð�Þ. Now, any h > g� cannot be a fixed point
since, in this case, h > gðhÞ from Lemma 3. On the other
hand, any h < g� is such that h < g� 6 gðhÞ because g� is
the optimal cost-to-go. Hence, g� is the unique fixed point
of gð�Þ. h

We are now ready to prove the finite convergence prop-
erty of our Algorithm.

Lemma 5.

1. The sequence fhðkÞgkP1 (in Algorithm 1) is non-increasing,
i.e., hðkþ1Þ

6 hðkÞ, with the equality sign holding if and only
if hðkÞ ¼ g�.
2. The sequence fPcðhðkÞÞgkP1 is non-increasing, i.e.,

Pcðhðkþ1ÞÞ#PcðhðkÞÞ, where the containment is strict

whenever Pcðhðkþ1ÞÞ(Pc
k.
Proof. The first part of the Lemma follows from applica-
tion of Lemma 3 and the second part follows from applica-
tion of Lemma 4. See Appendix E for details. h
Theorem 4. Algorithm 1 returns g� and Pc
k in a finite num-

ber of steps.
Proof. Noting that hð1Þ ¼ gðhð0ÞÞP g� and using (15), we

have Pc
k #Pcðhð1ÞÞ. Either Pc

k ¼ Pcðhð1ÞÞ, in which case the
algorithm terminates. Otherwise, note that both sets, Pc

k

and Pcðhð1ÞÞ contain a finite number of lattice points (from

the definition of PðhÞ in (15)). Using Lemma 5, PcðhðkÞÞ con-

verges to Pc
k in at most jPcðhð1ÞÞ n Pc

kj <1 iterations. We
can also obtain a crude upper bound for the number of iter-
ations needed. Assuming that we start with

hð0Þ ¼ 0; jPcðhð1ÞÞ n Pc
kj ¼ jfðm;nÞ 2 Z2

þ : pðkþ g�Þ 6 Dqðm;nÞ
6 pðkþ gð0ÞÞgj. Once PcðhðkÞÞ converges to Pk, the algo-
rithm terminates and returns the optimal cost-to-go g�.
h

5.1. Performance comparison of Algorithm 1 with naive value
iteration

To obtain the optimal placement policy directly using
Eq. (9) of Section (3), we need to compute the values of
Jðm;nÞ for all ðm;nÞ 2 Z2

þ, which is usually obtained
through value iterations. Since the state-space under con-
sideration is countably-infinite, a direct numerical evalua-
tion of the optimal cost-to-go function is computationally
prohibitive. See Section 3.1 of [22] for details.

On the contrary, exploiting the structure of the prob-
lem, Algorithm 1 performs a finite amount of computation
per iteration (which is bounded by the number of lattice
points in the set Pc

kðh
ðkÞÞ (See Eqn. 15)) and correctly termi-

nates after provably finite number of iterations.

6. Solving the constrained problem

In this section, we devise a method to solve the con-
strained problem in (4) using the solution of the uncon-
strained problem (3) provided by Algorithm 1. This
method is applied in Section 7.2 where, imposing a con-
straint on the average number of relays, we compare the
performance of a distance based heuristic with the
optimal.

We begin with the following standard result which
relates the solutions of the problems in (3) and (4). See also
[21].

Lemma 6. Let p�k 2 P be an optimal policy for the uncon-
strained problem in (3)such that Ep�k N ¼ qavg . Then p�k is also
optimal for the constrained problem in (4).
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Proof. (We provide this proof for completeness.) Since p�k
is optimal for the unconstrained problem in (3) we can
write, for any p 2 P,

Ep�
k
C þ kEp�

k
N 6 EpC þ kEpN:

Rearranging the above expression and using Ep�
k
N ¼ qavg ,

we obtain

Ep�
k
C 6 EpC þ k EpN � qavg

� �
:

Thus, Ep�
k
C 6 EpC for any p such that EpN 6 qavg . h

However, the above lemma is useful only when we are
able to exhibit a k such that Ep�

k
N ¼ qavg . The subsequent

development in this section is towards obtaining the solu-
tion to the more general case.

The expected number of relays used by the optimal pol-
icy, p�k, which uses the optimal placement set Pk, can be
computed as:

Ep�
k
N ¼

P
ðm;nÞ2Bk

Pððm;nÞ; cÞ
1�

P
ðm;nÞ2Bk

Pððm; nÞ; cÞ ; ð19Þ

where Pððm;nÞ; cÞ is the reaching probability correspond-
ing to Pk and Bk is the boundary of Pk. A plot of Ep�

k
N

vs. k is given in Fig. 6. We make the following observations
about Ep�

k
N.

(1) Ep�
k
N decreases with k; this is as expected, since as

each relay becomes ‘‘costlier’’ fewer relays are used
on the average.

(2) Even when k ¼ 0; Ep�
k
N is finite. This is because

dð0Þ > 0, i.e., there is a positive cost for a 0 length
link. Define the value of Ep�

k
N with k ¼ 0 to be qmax.

(3) Ep�
k
N vs. k is a piecewise constant function. This

occurs because the relay placement positions are
discrete. For a range of values of k the same thresh-
old is optimal. This structure is also evident from
the results based on the optimal stopping formula-
tion and the OSLA rule in Section 4. It follows that
for a value of k at which there is a step in the plot,
there are two optimal deterministic policies, p and
p, for the relaxed problem. Let q ¼ EpN and
q ¼ EpN.

We have the following structure of the optimal policy
for the constrained problem:

Theorem 5.

1. For qavg P qmax the optimal placement set is obtained for
k ¼ 0, i.e., is P0.

2. For qavg < qmax, if there is a k such that (a) Ep�
k
N ¼ qavg

then the optimal policy is p�k, or (b) q < qavg < q then
the optimal policy is obtained by mixing p and p.
Proof. (1) is straight forward. For proof of (2)-(a), Lemma
6. Considering now (2)-(b), define 0 < a < 1 such that
ð1� aÞqþ a�q ¼ qavg . We obtain a mixing policy pm by
choosing p w.p. 1� a and �p w.p. a at the beginning of
the deployment. For any policy p we have the following
standard argument:

Epm C þ kEpm N ¼ ð1� aÞðEpC þ kqÞ þ aðE�pC þ k�qÞ
6 ð1� aÞðEpC þ kEpNÞ þ aðEpC þ kEpNÞ
¼ EpC þ kEpN: ð20Þ

The inequality is because p and p are both optimal for the
problem (3) with relay price k. Thus, we have shown that
pm is also optimal for the relaxed problem. Using this along
with Epm N ¼ qavg in Lemma 6, we conclude the proof.
7. Numerical work

For our numerical work we use the one-hop power
function dðrÞ ¼ Pm þ crg, with Pm ¼ 0:1; c ¼ 0:01. We first
study the effect of parameter variation on the various
costs. Next, we compare the performance of a distance
based heuristic with the optimal.

7.1. Effect of parameter variation

In Fig. 4, we have already shown an optimal placement
boundary for p ¼ 0:002; q ¼ 0:5, and g ¼ 3. Since q ¼ 0:5
the boundary is symmetric about the m ¼ n line.

In Fig. 6, we plot Ep�
k
N and Ep�

k
C vs. k. The plot of Jkð0;0Þ

vs. k is in Fig. 7. These plots are for p ¼ 0:002 and q ¼ 0:5.
Since k is the cost per relay, as expected, Ep�

k
N decreases as

k increases. We observe that Ep�
k
C and the optimal total cost

Jkð0;0Þ increase as k increases. A close examination of Fig. 6
reveals that both the plots are step functions. This is due to
the discrete placement at lattice points, which results in
the same placement boundary being optimal for a range
of k values. Thus, as seen in Section 6, at the k values,
where there is jump in Ep�

k
N, a random mixture of two pol-

icies is needed.
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Fig. 8 shows the variation of the total optimal cost
Jkð0;0Þ with q. The variation is symmetric about q ¼ 0:5.
For a given probability p of the path ending, q ¼ 0:5 results
in the path folding frequently. In such a case, since the
path-loss is isotropic, fewer relays are required to be
placed. On the other hand, when q is close to 0 or to 1
the path takes fewer turns and more relays are needed,
leading to larger values of the total cost.

In Fig. 9 we show the variation of optimal boundaries
with g. As g, the path-loss exponent, increases the hop cost
increases for a given hop distance. This results in relays
needing to be placed more frequently. As can be seen the
placement boundaries shrink with increasing g. We also
notice that the placement boundary for g ¼ 2 is a straight
line; indeed this provable result holds for g ¼ 2 for any val-
ues of p and q.
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Fig. 8. Average total cost Jkð0;0Þ as a function of q (p ¼ 0:002 and g ¼ 2).
7.2. Comparison with the distance based heuristic

We recall from the literature survey in Section 1 that
prior work invariably proposed the policy of placing a relay
after the RF signal strength from the previous relay
dropped below a threshold. For isotropic propagation (as
we have assumed in this paper), this is equivalent to plac-
ing the relay after a circular boundary is crossed. With this
in mind, we obtained the optimal constant distance place-
ment policy (called the heuristic hereafter) numerically in
a manner similar to what is described in Section 4.2. A
sample result is provided in Fig. 10, for the parameters
p ¼ 0:002, q ¼ 0:5 and g ¼ 2. We observe that if the path
were to evolve roughly in the þx direction, or the þy direc-
tion, then the heuristic will result in many more relays
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Fig. 10. Boundary of the optimal placement set (OSLA boundary) and
boundary derived from the heuristic policy (p ¼ 0:002; q ¼ 0:5 and g ¼ 2).
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being placed. On the other hand, if the path evolves diago-
nally (which has higher probability) then the two place-
ment boundaries will result in similar placement decisions.

This observation shows up in Fig. 11, where we show
the cost incurred by the optimal policy (for q ¼ 0:5 and
for q ¼ 1, which corresponds to a straight line corridor)
and the heuristic (q ¼ 0:5) vs. q for the constrained prob-
lem. As expected, the cost is much larger for q ¼ 1 since
the path does not fold. We find that for q ¼ 0:5 the optimal
placement boundary and the heuristic provide costs that
are almost indistinguishable at this scale. We have per-
formed simulations by varying the system parameters
and observed the same good performance of the optimal
constant distance placement policy. This suggests that
the heuristic policy performs well provided that the
threshold distance is optimally chosen with respect to
the system parameters.
8. Conclusion and ongoing work

We considered the problem of placing relays on a ran-
dom lattice path to optimize a linear combination of aver-
age total hop cost and the average number of relays
deployed. The optimal placement policy was proved to be
of a threshold type (Theorem 1). We further proved the
optimality of the one-step-look-ahead (OSLA) rule (in
Theorem 3). We have also devised an OSLA based fixed
point iteration algorithm (Algorithm 1), which we have
proved to converge to the optimal placement set in a finite
number of steps. In our numerical work we assumed the
hop cost to be the transmitter power. We observed that
the performance (in terms of average power incurred for
a given relay constraint) of the optimal policy is close to
that of the distance threshold policy provided that the
threshold distance is optimally chosen with respect to
the system parameters.

The work that we have presented in this paper can be
extended in several directions:
1. Measurement-based placement: When the cost of a link
is taken as the power required to sustain a certain qual-
ity of communication over it, in this paper, we have
taken the approach of modeling the required power
by a function of distance, by imposing a large shadowing
and fading margin. An alternative would be to make a
measurement, at each step, to obtain the power
required to establish a good link from that point to
the previous node. This measurement, the distance
from the previous node, and a statistical model for the
quality of links that will be encountered as-we-go,
could be used to obtain a more efficient placement. In
addition, instead of evaluating just the link to the last
placed node, we could also evaluate the links to the
nodes placed earlier. Of course, the measurements
would require time to be spent at each step, which
might not be feasible for rapid deployment, as would
be necessary for first responders. A measurement-based
approach is a topic of our ongoing work; our early
results have been presented in [14].

2. Multiple sources: In the work presented here, only one
packet source is placed (at the end of the path). The
model can be extended to the case where multiple
sources might need to be placed along the path. A
parameter, say r;0 < r < 1, could be the probability
that the current step is a source location given that
the path has not ended thus far. When such a location
is encountered, a node will necessarily have to be
placed at that point. Since this would be a regeneration
point for the remaining problem, we expect that results
analogous to Theorem 1 and 3 can be proved. This will
be a topic of our future work.
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Appendix A. Proof of Lemma 2

Proof. It is easier to prove the lemma allowing the
arguments m and n take values from the Real line. We
have,

D1ðx; yÞ ¼ dðxþ d; yÞ � dðx; yÞ:

Partially differentiating both sides w.r.t. x, we get

@D1ðx;yÞ
@x

¼ dxðxþ d;yÞ�dxðx;yÞ ¼ ddxxðf;yÞwhere x< f< xþd> 0;

where the equality follows from the application of
Lagrange’s Mean Value Theorem to the function dxð:; yÞ
and the inequality is due to assumption in (2). The above
proves the fact that D1ðx; yÞ is non-decreasing in x.
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To prove that D1ðx; yÞ is non-decreasing in y, we
partially differentiate D1ðx; yÞ w.r.t. y and obtain

@D1ðx; yÞ
@y

¼ dyðxþ d; yÞ � dyðx; yÞ

¼ ddxyðg; yÞ where x < g < xþ d > 0;

where the equality follows from the application of
Lagrange’s Mean Value Theorem to the function dyð:; yÞ
and the inequality is due to assumption in (2). This shows
that the function D1ðx; yÞ is non-decreasing in both the
coordinates x and y. In a similar way it can also be shown
that D2ðx; yÞ is non-decreasing in x and y under the
assumption made in (2). This completes the proof.
Appendix B. Proof of Theorem 1

We begin by defining Hkðm;nÞ :¼ Jkðm;nÞ � dðm;nÞ.
Substituting for cpðm;nÞ and cnpðm;nÞ (from (7) and (8),
respectively) into (9) and rearranging we obtain (recall
the definitions of D1ðm;nÞ and D2ðm;nÞ from Section 2):

Pk ¼ ðm;nÞ : ð1� pÞðqHkðmþ 1; nÞ þ ð1� qÞHkðm;nþ 1ÞÞf

þpðqD1ðm;nÞ þ ð1� qÞD2ðm; nÞÞP kþ ð1� pÞqJkð1;0Þ

þð1� pÞð1� qÞJkð0;1Þ þ pdð1Þg: ðB:1Þ

Lemma 7. For a fixed k;Hkðm;nÞ is non-decreasing in both
m 2 Zþ and n 2 Zþ.
Proof. Consider a sequential relay placement problem
where we have K steps to go. The corridor length is the
minimum of K and of a geometric random variable with
parameter p. The problem be formulated as a finite horizon
MDP with horizon length K. For any given
ðm;nÞ; JKðm;nÞ;K P 2 is obtained recursively:

JKðm;nÞ ¼minfcpðm;nÞ; cnpðm;nÞg ¼minfkþ dðm; nÞ

þ ð1� pÞqJK�1ð1;0Þ þ pqdð1Þ

þ ð1� pÞð1� qÞJK�1ð0;1Þ

þ pð1� qÞdð1Þ; ð1� pÞqJK�1ðmþ 1; nÞ

þ pqdðmþ 1;nÞ þ ð1� pÞð1� qÞJK�1ðm;nþ 1Þ

þ pð1� qÞdðm; nþ 1Þg:

For K ¼ 1, since the source must be placed at the next step,
we have J1ðm;nÞ ¼minfkþ dðm;nÞ þ dð1Þ; qdðmþ 1;nÞþ
ð1� qÞdðm;nþ 1Þg. Therefore,

H1ðm;nÞ :¼ J1ðm;nÞ � dðm;nÞ
¼minfkþ dð1Þ; qD1ðm; nÞ þ ð1� qÞD2ðm;nÞg:

From Lemma 2, it follows that H1ðm;nÞ is non-decreasing
in both m and n. Now we make the induction hypothesis
and assume that HK�1ðm;nÞ is non-decreasing in m and n.
We have:
HKðm;nÞ ¼ JKðm;nÞ � dðm;nÞ ¼minfkþ ð1� pÞqJK�1ð1;0Þ

þ pqdð1Þ þ ð1� pÞð1� qÞJK�1ð0;1Þ

þ pð1� qÞdð1Þ; ð1� pÞðqHK�1ðmþ 1;nÞ

þ ð1� qÞHK�1ðm;nþ 1ÞÞ þ qD1ðm;nÞ

þ ð1� qÞD2ðm;nÞg:

By the induction hypothesis and Lemma 2, it follows that
HKðm;nÞ is non-decreasing in both m and n. The proof is
complete by taking the limit as K !1.

We are now ready to prove Theorem 1.

Proof of Theorem. 1 Referring to (B.1), utilizing Lemma 7
and the Lemma 2, it follows that for a fixed n 2 Zþ, the LHS
(Left Hand Side) of (B.1), describing the placement set Pk is
an increasing function of m, while the RHS (Right Hand
Side) is a finite constant. Also, because of the assumed
properties of the function dð:Þ;D1ðm;nÞ ! 1 as m!1, for
any fixed n. Hence it follows that there exists an
m�ðnÞ 2 Zþ such that ðm;nÞ 2 Pk8m P m�ðnÞ. Hence we
may write Pk ¼

S
n2Zþfðm;nÞjm P m�ðnÞg. The second char-

acterization follows by similar arguments.
Appendix C. Proof of Theorem 3

We require the following lemmas to prove Theorem 3.

Lemma 8. Pk � Pk
Proof. Suppose that ðm;nÞ 2 Pk. Then from (10)
ðmþ 1;nÞ 2 Pk and from (11), ðm;nþ 1Þ 2 Pk. Since
ðm;nÞ 2 Pk, we have from (7)–(9) that

kþ dðm;nÞ þ ð1� pÞqJkð1;0Þ þ pqdð1Þ þ ð1� pÞð1� qÞ

	 Jkð0;1Þ þ pð1� qÞdð1Þ 6 ð1� pÞqJkðmþ 1;nÞ

þ pq	 dðmþ 1;nÞ þ ð1� pÞð1� qÞJkðm;nþ 1Þ

þ pð1� qÞdðm;nþ 1Þ: ðC:1Þ

Also we may argue that at the state ð0;0Þ, it is optimal not
to place. Indeed, if it had been optimal to place at the state
ð0;0Þ, at the next step, we return to the same state, viz.,
ð0;0Þ. Now, because of the stationarity of the optimal pol-
icy, we would keep placing relays at the same point, and
since ‘‘relay-cost’’ k > 0 and dð0;0Þ > 0, the expected cost
for this policy would be 1. Hence,

Jkð0;0Þ ¼ ð1� pÞqJkð1;0Þ þ pqdð1Þ þ ð1� pÞð1� qÞJkð0;1Þ
þ pð1� qÞdð1Þ: ðC:2Þ

Since ðmþ 1;nÞ 2 Pk and ðm;nþ 1Þ 2 Pk, we have (noticing
that it is optimal to place at these points and utilizing (7)
and (C.2)),

Jkðmþ 1;nÞ ¼ kþ dðmþ 1;nÞ þ Jkð0;0Þ ðC:3Þ
Jkðm;nþ 1Þ ¼ kþ dðm;nþ 1Þ þ Jkð0;0Þ: ðC:4Þ

Now, using (C.2), (C.3) and (C.4) in (C.1), we obtain:
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pðkþ Jkð0;0ÞÞ 6 qD1ðm;nÞ þ ð1� qÞD2ðm;nÞ: ðC:5Þ

This proves that ðm;nÞ 2 �Pk and hence Pk � Pk h

Using the above Lemma and from 10, 11, 13, 14 we can
conclude that:

n�ðmÞP nðmÞ 8m 2 Zþ ðC:6Þ
m�ðnÞP mðnÞ 8n 2 Zþ: ðC:7Þ

Lemma 9. If ðm;nÞ 2 Pk is such that ðm;nþ 1Þ 2 Pk and
ðmþ 1;nÞ 2 Pk, then ðm;nÞ 2 Pk
Proof. Since ðm;nÞ 2 �Pk, we have from (12),

pðkþ Jkð0;0ÞÞ 6 qD1ðm;nÞ þ ð1� qÞD2ðm;nÞ: ðC:8Þ

Now ðm;nþ 1Þ 2 Pk, and ðmþ 1;nÞ 2 Pk, hence we have
from (C.3) and (C.4):

Jkðmþ 1;nÞ ¼ kþ dðmþ 1;nÞ þ Jkð0;0Þ
Jkðm;nþ 1Þ ¼ kþ dðm;nþ 1Þ þ Jkð0;0Þ:

The expression (C.2) is always true. Now using (C.2) and
the above two equations in inequality (C.8), we obtain
(C.1), which proves that ðm;nÞ 2 Pk. h
Lemma 10. If ðm;nÞ 2 Pk (resp. Pk), then ðmþ k;nÞ 2 Pk

(resp. Pk) and ðm;nþ kÞ 2 Pk (resp. Pk) for any k 2 Zþ.
Proof. The proof follows easily because the LHS of (B.1) is
increasing in both m and n while the RHS is a constant.
Similarly, the RHS of (12) is increasing in both m and n
while the LHS is a constant.

We can now prove the main theorem.

Proof of Theorem. 3 We need to show that inequalities in
(C.6) and (C.7) are equalities. For any m 2 Zþ, suppose that
in (C.6) n�ðmÞ > n�ðmÞ � 1 P �nðmÞ. Then we have the
following inclusions:

ðm;n�ðmÞÞ 2 Pk

ðm;n�ðmÞ � 1Þ 2 Pk

ðm;n�ðmÞ � 1Þ R Pk: ðC:9Þ

Let us index the collection of lattice-points
ðmþ i;n�ðmÞ � 1Þ by Ni; i 2 Zþ. Since ðm;n�ðmÞ � 1Þ 2 Pk,
from Lemma 10, it follows that Ni 2 Pk. From (C.9),
N0 R Pk.

Then, the optimal policy being a threshold policy, we
know that there exists a finite k > 0, s.t. Nk 2 Pk, i.e.,

ðmþ k;n�ðmÞ � 1Þ 2 Pk: ðC:10Þ

Again from Lemma 10, since ðm;n�ðmÞÞ 2 Pk, we have for
any k > 0:

ðmþ k� 1;n�ðmÞÞ 2 Pk: ðC:11Þ

Now we see that for the point Nk�1, the conditions of
Lemma 9 are satisfied. Hence Nk�1 2 Pk. If k ¼ 1, we
already have a contradiction since N0 R Pk. Otherwise for
k > 1, using Lemma 10 and Nk�1 2 Pk, we can show that
Nk�2 is subject to the conditions of Lemma 9 implying that
Nk�2 2 Pk. By iteration, we finally obtain that N0 2 Pk,
which contradicts (C.9) and proves the result.
Appendix D. Proof of Lemma 3

We start by proving the following lemma.

Lemma 11. For any placement set PðhÞ of the form in (15),
we have:X
ðm;nÞ2PcðhÞ

rðm;nÞ Dqðm;nÞ � pðkþ gðhÞÞ
� 	

þ dð0;0Þ þ k ¼ 0;

ðD:1Þ

where rðm;nÞ ¼ ð1� pÞmþn mþ n
m

� �
qmð1� qÞn.

Proof. We first introduce some notations and definitions.
Let us define a path r as a possible realization of the

corridor, starting from ð0;0Þ and let PðrÞ be the probability
of such a path. The set of all paths is denoted by R. Let Rmn

denote the set of all paths that end at ðm;nÞ 2 PcðhÞ [ BðhÞ
and RmnðcÞ the set of all paths that hit ðm;nÞ 2 BðhÞ and
continue.

Let us denote the set of edges whose both end vertices
belong to the set PcðhÞ [ BðhÞ by E. A path r is completely
characterized by its edge set Er.

The reaching probability, rðm;nÞ, of a point ðm;nÞ is
defined as the probability that a random path r reaches the
point ðm;nÞ and continues for at least one step. Hence,

rðm;nÞ ¼ ð1� pÞmþn mþ n
m

� �
qmð1� qÞn.

The incremental cost function d : E�!Rþ is defined as
follows:

dðeÞ ¼

dðmþ 1;nÞ � dðm;nÞ ¼ D1ðm;nÞ
if e ¼ fðm;nÞ; ðmþ 1;nÞg

dðm;nþ 1Þ � dðm;nÞ ¼ D2ðm;nÞ
if e ¼ fðm;nÞ; ðm;nþ 1Þg:

8>>><
>>>:

ðD:2Þ

For ðm; nÞ 2 r, the incremental cost function allows us to
write:

dðm;nÞ ¼
X

e2Er\E

dðeÞ þ dð0;0Þ: ðD:3Þ

Now considerX
PcðhÞ[BðhÞ

Pððm;nÞ; eÞdðm;nÞ þ
X
BðhÞ

Pððm;nÞ; cÞdðm;nÞ

¼
X

PcðhÞ[BðhÞ

X
r2Rmn

PðrÞ
X
e2Er

dðeÞ þ dð0;0Þ
 !

þ
X
BðhÞ

X
r2RmnðcÞ

PðrÞ
X

e2Er\E

dðeÞ þ dð0;0Þ
 !

¼
X
e2E

dðeÞ
X

r2R:e2Er

PðrÞ þ dð0;0Þ

¼
X
e2E

dðeÞtðeÞ þ dð0;0Þ; ðD:4Þ

where by tðeÞ we denote the probability that a random
path goes through the edge e 2 E.
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Now if e is horizontal, i.e., e ¼ fðm;nÞ; ðmþ 1;nÞg;
ðm;nÞ 2 PcðhÞ, we have tðeÞ ¼ qrðm;nÞ and dðeÞ ¼D1ðm;nÞ.
Similarly if e is vertical, i.e., e ¼ fðm;nÞ; ðm; nþ 1Þg;
ðm;nÞ 2 PcðhÞ, we have tðeÞ ¼ ð1� qÞrðm;nÞ and
dðeÞ ¼ D2ðm;nÞ. Using these relations, we may rewrite
(D.4) as follows:X
Pc ðhÞ

rðm;nÞ qD1ðm;nÞ þ ð1� qÞD2ðm; nÞð Þ þ dð0;0Þ

¼
X
PcðhÞ

rðm;nÞDqðm;nÞ þ dð0;0Þ: ðD:5Þ

Now consider the probability
P
ðm;nÞ2BðhÞPððm;nÞ; cÞ. It is the

probability that a random path continues beyond the
boundary BðhÞ. Hence we may writeX
BðhÞ

Pððm;nÞ;cÞ ¼ 1�
X

Pc ðhÞ[BðhÞ
Pððm;nÞ; eÞ ¼ 1�

X
Pc ðhÞ

rðm;nÞp: ðD:6Þ

Using (D.5) and (D.6) in (18) and simplifying, we obtain the
result. h
Proof of Lemma. 3
We recall the definition of PcðhÞ.

PcðhÞ ¼ fðm;nÞ 2 Z2
þ : pðkþ hÞ > Dqðm;nÞg: ðD:7Þ

Since h > g�, we immediately conclude that Pc
k � PcðhÞ.

From (D.1) in Lemma 11, we may write for the optimal
placement set Pk:X
Pc

k

rðm;nÞDqðm;nÞ ¼ pðkþ g�Þ
X
Pc

k

rðm;nÞ � ðdð0;0Þ þ kÞ: ðD:8Þ

We may similarly write for the placement set PðhÞ:X
Pc ðhÞ

rðm;nÞDqðm;nÞ ¼ pðkþ gðhÞÞ
X
PcðhÞ

rðm;nÞ � ðdð0;0Þ þ kÞ: ðD:9Þ

Now, since Pc
k � PcðhÞ, we may expand the LHS of (D.9) as

follows:X
Pc ðhÞ

rðm;nÞDqðm;nÞ ¼
X
Pc

k

rðm;nÞDqðm; nÞ þ
X

Pc ðhÞnPc
k

rðm; nÞDqðm;nÞ

<
X
Pc

k

rðm;nÞDqðm;nÞ þ pðkþ hÞ
X

Pc ðhÞnPc
k

rðm;nÞ

¼ pðkþ g�Þ
X
Pc

k

rðm;nÞ � ðdð0;0Þ þ kÞ

þ pðkþ hÞ
X

Pc ðhÞnPc
k

rðm;nÞ; ðD:10Þ

where, for the inequality, we used (D.7) and for (D.10), we
have substituted the value for the quantity from (D.8). We
may alternatively write the RHS of (D.9) as:

pðkþ gðhÞÞ
X
PcðhÞ

rðm;nÞ � ðdð0;0Þ þ kÞ

¼ pðkþ gðhÞÞ
X
Pc

k

rðm;nÞ þ
X

PcðhÞnPc
k

rðm; nÞ

0
@

1
A

� ðdð0;0Þ þ kÞ: ðD:11Þ

Now comparing (D.10) and (D.11) and rearranging, we may
write:

pðgðhÞ � g�Þ
X
Pc

k

rðm;nÞ < pðh� gðhÞÞ
X

PcðhÞnPc
k

rðm;nÞ: ðD:12Þ
Now
P
PcðhÞnPc

k
rðm;nÞ ¼ 0 if and only if PcðhÞ n Pc

k ¼£, i.e.,
PðhÞ ¼ Pk. In this case we get gðhÞ ¼ g� < h. On the other
hand, if

P
PcðhÞnPc

k
rðm;nÞ > 0, since g� 6 gðhÞ, from the

inequality (D.12), we conclude that h > gðhÞ.
Appendix E. Proof of Lemma 5
Proof. (1) Note first that hðkÞ P g� for k P 1 because

hðkÞ ¼ gðhðk�1ÞÞP g�. Then, for k P 1, we have either

hðkÞ ¼ g� or hðkÞ > g�. In the first case hðkþ1Þ ¼ gðhðkÞÞ ¼
gðg�Þ ¼ g� ¼ hðkÞ and we can stop, whereas in the second

case, from Lemma 3 we have hðkþ1Þ ¼ gðhðkÞÞ < hðkÞ.

(2) From (15), h2 > h1 implies Pcðh1Þ#Pcðh2Þ. Hence, as

fhðkÞgkP1 is non-increasing (from Part 1), fPcðhðkÞÞgkP1 is
also non-increasing.

Suppose Pcðhðkþ1ÞÞ ¼ PcðhðkÞÞ then gðhðkþ1ÞÞ ¼ gðhðkÞÞ ¼
hðkþ1Þ (second equality is by the definition of fhðkÞg), which

implies hðkþ1Þ ¼ g� (since gð�Þ has a unique fixed point, see

Lemma 4). Thus, Pcðhðkþ1ÞÞ ¼ Pc
k. h
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