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Abstract—Decentralized cognitive radio networks (CRN) re-
quire efficient channel access protocols to enable cognitive sec-
ondary users (SUs) to access the primary channels in an oppor-
tunistic way without any coordination. In this paper, we develop a
distributed retrospective spectrum access protocol that can orient
the network towards a socially efficient and fair equilibrium
state. With the developed protocol, each SU j chooses a channel
to select based on the experienced payoff in past Hj periods.
Each SU is thus supposed to be equipped with bounded memory
and should make its decision based on only local observations.
In that sense, the SUs behavioral rules are said to be payoff-
based. The protocol also models a natural human decision making
behavior of striking a balance between exploring a new choice
and retrospectively exploiting past successful choices. With both
analytical demonstration and numerical evaluation, we illustrate
the two noteworthy features of our solution: (1) the entirely
distributed implementation requiring only local observations and
(2) the guaranteed statistical convergence to the equilibrium state
within a bounded delay.

I. INTRODUCTION

In decentralized cognitive radio networks (CRN), a fun-

damental while challenging task is the design of distributed

spectrum (channel) access mechanisms enabling cognitive

secondary users (SUs) to access the primary channels in an

efficient way without any coordination. In this paper1, we

develop and analyze a framework of retrospective spectrum

access protocols that can orient the network towards a socially

efficient and fair equilibrium state. We further assume that

each SU is equipped with bounded memory. Our developed

retrospective spectrum access protocol has two noteworthy

features: (1) the entirely distributed implementation requiring

only local observations (a player doesn’t even know the

payoffs obtained by others) and (2) the guaranteed statistical

convergence to the equilibrium state within a bounded delay.

To analyze the performance of the developed protocol, we

apply the mistakes model introduced in [1], [2], [3], [4] and

establish the statistical convergence of dynamics to the system

equilibrium within a bounded latency Op1{ǫq. We would like

to emphasize that despite our focus on CRNs, the developed

learning protocol and the analysis methodology presented in

this paper also provide valuable insights on the design of

decentralized load balancing algorithms.

1This research is supported by the LIP6/LTCI project FERRARI and the
ANR project NETLEARN.

The paper is organized as follows. Section II is a short

literature study on distributed learning with particular focus on

CRNs. Section III defines the considered system model and

the related spectrum access game. Our protocol is presented

in Section IV. Convergence and performance are analyzed in

Sections V and VI.

II. RELATED WORK

The problem of distributed spectrum access in CRNs has

been widely addressed in the literature. A first set of papers

assumes that the number of SUs is smaller than the number

of channels. In this case, the problem is closely related to

the classical Multi-Armed Bandit (MAB) problem [5]. Some

recent work has investigated the issue of adapting traditional

MAB approaches to the CRN context, among which Anand-

kumar et al. proposed two algorithms with logarithmic regret,

where the number of SUs is known or estimated by each

SU [6]. Complementary, other works assume large population

of SUs and study the system dynamics under asymptotic

assumptions. In [7], the authors propose a distributed learning

procedure for spatial spectrum access which is proven to

converge to a Nash Equilibrium (NE) in the asymptotic case.

The analysis relies however on a random backoff mechanism,

which requires the modification of the SUs packet structure

for channel contention. In [8] the authors propose imitation

rules that are used by a large population of SUs to converge

to a Pure NE (PNE). In this paper, it is assumed that the SUs

are able to capture packets transmitted by any other SU in

the network. Contrary to this literature, the proposed protocol

is proven to converge to a PNE regardless of the number of

SUs in the system. Furthermore, it is completely distributed

and does not require any additional packet fields: it can be in

fact used with any decentralized random access MAC protocol

such as CSMA/CA.

While our model is presented in the specific context of

CRNs, we intend it more generically as a contribution to

the literature on bounded rationality and learning in games

with mutations, which thus far have been mostly explored

in biology and economics. Relying on the by now classi-

cal [1], [2], [3], [4] and on [9], Dieckmann analyzed the

evolution of conventions in a society with local interactions

and mobile players [10]. Friedman and Mezzetti investigated
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Fig. 1. Network model.

mistakes models that induce better and best reply dynamics

[11]. H.P. Young et al. proposed a series of payoff-based

rules2 (among them, [12], [13], [14], [15], [16]) possessing

several appealing properties. The version of Trial and Error

presented in [15], for instance, is able to converge to the PNE

maximizing the social welfare. Nevertheless, complexity is

high and convergence speed is very slow, as it has been shown

in [8]. The retrospective learning protocol that we propose

has a similar architecture to the learning procedures developed

in [12] and [17]. Our main contributions with respect to this

literature is the introduction of nontrivial memories and inertia,

as well as the results on convergence time.

III. SYSTEM MODEL AND GAME FORMULATION

In this paper, we consider the downlink of primary network

and SUs trying to opportunistically accessing the free spectrum

(Fig. 1). The primary spectrum consists of a set C of C

frequency channels, each with bandwidth B. The users in the

primary network are operated in a synchronous time-slotted

fashion. A set N of N SUs tries to opportunistically access

the channels when they are left free by PUs.

Each SU j has a finite memory containing the history

(strategies and payoffs) relative to the Hj past iterations. Let

Hj be the history recalled by SU j. Let ξipkq be the random

variable equal to 1 when channel i is unoccupied by the PU at

slot k and 0 otherwise. We assume that the process tξipkqu is

stationary and independent for each i and k. We also assume

that at each time slot, channel i is free with probability µi, i.e.,

Erξipkqs � µi. We define an iteration t as a block of PU-slots

of fixed duration T during which the SUs don’t change their

strategy (see Fig. 2). At the end of each iteration, SUs obtain

a payoff which corresponds to the achieved throughput.

In our work, each SU j is modeled as a rational decision

maker, aiming at load-balancing the total system throughput.

The instantaneous throughput it can achieve in terms of

packets per second, denoted as Tj , can be expressed as a

function of µsj and nsj , where sj denotes the channel which

j chooses, and nsj denotes the number of SUs choosing

channel sj . The expected value of Tj , which has to be intended

as the long-term throughput when T is very large, can be

written as: ErTjs � fpµsj , nsj q. In this paper, SUs imple-

ment a generic random access protocol to avoid collisions.

This yields: fpµsj , nsj q � Bµsjpjpnsj q, where pjpnsj q is

2An individual’s learning rule is payoff-based or completely uncoupled if
it does not depend directly on the actions or payoffs of anyone else.
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Fig. 2. SU operation on a channel i P C.

a decreasing function denoting the successful transmission

probability when nsj SUs are interfering with SU j on channel

sj . B is a constant standing for the available bandwidth per

channel. Without loss of generality, we will now assume that

B � 1.

We now formulate the channel selection problem as a

spectrum access game where the players are the SUs. The

game is defined formally as follows:

Definition 1 (Spectrum access game). The spectrum access

game G is a 3-tuple (N , C, tUjpsqu), where N is the

player set, C is the strategy set of each player. Let s
�j �

ts1, .., sj�1, sj�1, ..., sCu be the channels chosen by all users

except user j. When a player j chooses strategy sj P C, its
player-specific utility function Ujpsj , s�jq is defined as

Ujpsj , s�jq � ErTjs � µsjpjpnsj q.

The users struggle for maximizing their utility function and

a commonly accepted solution for the game is a PNE:

Definition 2 (Pure Nash Equilibrium). A PNE is a point s�

in the action profiles space, from which no user has incentive

to deviate unilaterally. Thus

s�j P argmax
sjPC

Ujpsj , s
�

�jq,�j P N . (1)

We can recognize that G is a congestion game with player-

specific payoff functions. It then follows from [18] and [8]

that G possesses at least one PNE in the general case.

IV. RETROSPECTIVE SPECTRUM ACCESS PROTOCOL

In this section, we propose a distributed retrospective spec-

trum access protocol (RSAP) that achieves a PNE of the

spectrum access game. We firstly provide some definitions we

shall need in the sequel analysis.

Define the state zptq of the system at iteration t

by zptq � tsjpt� hq, Ujpt� hqu
jPN ,hPHj

. Let λj �

argmaxhPHj
Ujpt � hq be the number of iterations passed

from the SU j highest remembered payoff. Furthermore, let ρj
denote the inertia, which is defined as a positive probability

that SU j is unable to adjust its strategy at each iteration. Note

that the concept of inertia has already been included in models

of evolution with noise (see, e.g. [19]). In those cases however,

inertia was defined as an exogenous parameter, while we see

it as an endogenous parameter.

Notations are summarized in Table I.

We now introduce the RSAP, as detailed in Algorithm 1.

At each iteration t, each user j applies the following revision

scheme. With probability p1�ǫptqq�p1�ρjq, SU j switches to
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TABLE I
NOTATIONS

Set of channels C � t1, .., i, .., Cu

History of SU j Hj � t0, .., h, .., Hju

Strategy profile at t sptq

SU j strategy at t sjptq

SU j payoff Uj

System state at t zptq

Migration Stable State (MSS) ω

Limit Set (LS) L

Union of LSs Ω

Union of all LSs in PNEs Ω�

Algorithm 1 RSAP: executed at each SU j

1: Initialization: Set ǫptq and ρj .

2: At t � 0, randomly choose a channel to stay, store the

payoff Ujp0q and set Ujpt�hq randomly �h P t1, .., Hju.

3: while at each iteration t ¥ 1 do

4: With probability 1� ǫptq do

5: if Ujpt� λjq ¡ Ujptq

6: Migrate to channel sjpt� λjq w. p. 1� ρj
7: Stay on the same channel w. p. ρj
8: else

9: Stay on the same channel

10: end if

11: With probability ǫptq switch to a random channel.

12: end while

channel sjpt�λjq if Ujpt�λjq ¡ Ujptq, and with probability

ǫptq selects for the next iteration a channel with uniform

distribution. To characterize the equilibrium state of RSAP,

we define a Migration Stable State (MSS) as follows.

Definition 3 (Migration Stable State). A migration stable state

ω is a state where no more migration is possible, i.e., Ujptq ¥

Ujpt� hq �h P Hj �j P N .

V. CONVERGENCE ANALYSIS

Foster and Young, with their pioneering work dated 1990

[1], were the first to argue that the Evolutionary Stable Strategy

(ESS) does not capture the notion of long-run stability when

the system is subjected to continual (rather than isolated)

stochastic perturbations. In this new context, it is possible to

identify a set of stochastically stable equilibria which consists

of the states attained almost surely by a dynamical system

when the noise level approaches zero. The identification of

such system states is particularly useful in games with multiple

equilibria as it permits to find out whether some outcomes are

much more likely than others when the noise vanishes. Our

protocol is characterized by stochastic perturbations and we

study the small noise limit by making use of the tools provided

in [9]. For the sake of a self-contained exposition, we include

here some definitions and results we shall need.

A. Model of Evolution with Noise

Definition 4 (Model of evolution with noise [9]). A model of

evolution with noise or mistakes model is a triple pZ,P, P pǫqq

where:

1) Z is the state space of a stochastic process X and is

supposed to be finite;

2) P � ppzz1q
pz,z1qPZ2 is a Markov transition matrix defined

on Z;

3) P pǫq � ppzz1pǫqq
pz,z1qPZ2 is a family of Markov transition

matrices on Z indexed by ǫ P r0, ǭq s.t.:

a) P pǫq is ergodic for ǫ ¡ 0;

b) P pǫq is continuous in ǫ and P p0q � P ;

c) there is a cost function c : Z2
Ñ R�

Y t8u s.t. for

any pair of states pz, z1q, limǫÑ0

pzz1 pǫq

ǫ
c
zz1

exists and is

strictly positive for czz1   8 and pzz1pǫq � 0 for small

ǫ if czz1 � 8.

Definition 5 (Unperturbed and perturbed Markov chain). In

a model of evolution with noise pZ,P, P pǫqq, pZ,P q is called

the unperturbed Markov chain and, for any ǫ, pZ,P pǫqq is

a perturbed Markov chain. The family of perturbed Markov

chains indexed by ǫ is called a regular perturbation.

Remark. The fact that P pǫq is ergodic ensures that from any

state z P Z, we can reach any state z1 P Z in a finite number of

steps with positive probability. The unperturbed Markov chain

is however not necessarily ergodic. If not, the Markov chain

pZ,P q has one or more limit sets.

Definition 6 (Limit set). A limit set (or recurrent class) L of

a Markov chain X � pZ,P q is a set of states of X such that

�z P L, P rXt�1 P L|Xt � zs � 1 and �z, z1 P L, there exists

τ ¡ 0 s.t. P rXt�τ � z1|Xt � zs ¡ 0.

The unperturbed Markov chain can be interpreted as the

evolution of the system when players follow a predefined rule

of evolution like Best Response. Noise ǫ can be interpreted

as a probability that players do not follow the rule of the

dynamics. For example, if the rule is Best Response, players

choose the best response strategy at the next iteration step with

probability 1�ǫ and choose any other strategy at random with

probability ǫ. When a player does not follow the predefined

rule, we say that there is a mutation by analogy with what

happens in species evolution.

Definition 7 (State transition cost). The cost or resistance

czz1 of the transition z Ñ z1 is the rate at which the transition

probability pzz1pǫq tends to zero as ǫ vanishes:

czz1 �

$

'

&

'

%

0 if Pzz1p0q ¡ 0

k if Pzz1pǫq � pazz1 � op1qqǫk

8 if Pzz1pǫq � 0 �ǫ P r0, ǭs

for some ǭ ¡ 0 and constants azz1 .

Let µpǫq be the stationary probability distribution of the

perturbed Markov chain pZ,P pǫqq.

Lemma 1 (Existence of limit distribution [3]). There exists a

limit distribution µ� � limǫÑ0 µpǫq.

Thus, µ� is a stationary probability of the unperturbed

Markov chain pZ,P q:

Lemma 2 ([9]). The set of stochastically stable states is

included in the limit sets of the unperturbed Markov chain

pZ,P q.
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Fig. 3. Illustration of the main concepts: basin of attraction DpΩq, radius
RpΩq, modified coradius C�pΩq, L1,...,Lr�1 are limit sets, x is a state that
maximizes the modified cost to Ω, z is a state in DpΩq.

Definition 8 (Long-run stochastically stable set). A state z P

Z is said to be long-run stochastically stable if and only if

µ�z ¡ 0.

Let Ω be a union of one or more limit sets of pZ,P q. We

now want to study the conditions for Ω to be stochastically

stable. We also want to know the speed at which Ω is reached.

For this purpose, [9] definesW px,Ω, ǫq to be the expected wait

until set Ω is reached knowing that we start in state x and that

the system follows the perturbed Markov chain pZ,P pǫqq. The

goal is to characterize maxxPZ W px,Ω, ǫq.

B. Radius and Coradius Theorem

We start with some definitions of concepts illustrated

in Fig. 3 before giving the main theorem. Define a path

pz1, z2, ..., zτ q as a sequence of states.

Definition 9 (Basin of attraction). Let Ω be a union of one or

more limit sets of pZ,P q and let pz1, z2, ..., zτ q be a sequence

of states. The basin of attraction DpΩq of Ω is the set of initial

states from which the unperturbed Markov chain converges to

Ω with probability 1, i.e.:

DpΩq � tz P Z|Pr rDβ s.t. �τ ¡ β, zβ P Ω|z0 � zs � 1u

Definition 10 (Path cost). For two sets X and Y , a path in Z

is a sequence of states pz1, z2, ..., zτ q with z1, z2, ... P X and

zτ P Y . The cost of the path is the sum

cpz1, z2, ..., zτ q �

τ�1̧

i�1

czi,zi�1
.

Let SpX,Y q be the set of all paths from X to Y and

CpX,Y q � min
pz1,...,zτ qPSpX,Y q

cpz1, ..., zτ q

be the set-to-set cost between X and Y . The radius of the

basin of attraction of Ω is defined as the minimum number of

mutations needed to leave DpΩq given that we start in Ω.

Definition 11 (Radius). The radius RpΩq of Ω is the minimum

cost of any path from Ω out of DpΩq, i.e.:

RpΩq � CpΩ, Z �DpΩqq.

Definition 12 (Coradius). The coradius CRpΩq of Ω is defined

by:

CRpΩq � max
xRΩ

min
pz1,...,zτ qPSpx,Ωq

cpz1, ..., zτ q.

In other words, the coradius is the minimum number of

mutations needed to reach Ω from the most unfavorable state.

Definition 13 (Modified path cost). Let pz1, ..., zτ q be a path

from x to Ω. Let L1, ..., Lr be a set of consecutive limit sets

with Lr � Ω and Li � Ω for all i   r, through which

the path passes. The modified cost of the pathis obtained by

substracting from the initial cost function the intermediate

radii of the limit sets Li:

c�pz1, ..., zτ q � cpz1, ..., zτ q �

ŗ

i�2

RpLiq. (2)

Definition 14 (modified coradius). The modified coradius of

the basin of attraction of Ω is defined as:

CR�

pΩq � max
xRΩ

min
pz1,...,zτ qPSpx,Ωq

c�pz1, ..., zτ q. (3)

wheremin
pz1,...,zτ qPSpx,Ωq c

�

pz1, ..., zτ q is the modified cost

between a state x and Ω.

The theorem proposed by Ellison in [9] is a sufficient

condition to identify a long-run stochastically stable set of

the system. It also gives an lower bound on convergence rate.

Theorem 1 (Convergence to long-run stochastically stable

set with modified cost [9]). Let pZ,P, P pǫqq be a model of

evolution with noise, and suppose that for some set Ω which

is a union of limit sets RpΩq ¡ CR�

pΩq. Then:

1) The long-run stochastically stable set of the model is

contained in Ω.

2) For any y R Ω, W py,Ω, ǫq � Opǫ�CR�

pΩq
q as ǫÑ 0.

In other words, if it is more difficult to leave Ω and its basin

of attraction than to come back to it, the long-run stochastically

stable set is contained in Ω.

C. Main Results

This section establishes the convergence of RSAP. To this

end, we first state the following definitions required in the

study of convergence.

Definition 15 (Single player improvement [11]). A strategy

profile s
1 is a single player improvement over the strategy

profile s if it coincides with s in every coordinate except one,

say coordinate j, and the payoff of player j is higher under

s
1 than under s.

Definition 16 (Weak finite improvement property [11]). A

game G has the weak finite improvement property (weak-FIP)

if from each strategy profile s there exists a finite sequence of

single-player improvements that ends in a PNE.

We then recall the following result from [18]:

Theorem 2 ([18]). Given a congestion game G with player-

specific decreasing payoff functions, the weak-FIP holds and

G admits at least one Pure Nash Equilibrium.

We now state the main results on the convergence of RSAP.

Proposition 1. Under RSAP, LS�MSS, i.e., all MSSs are limit

sets and all limit sets are made of a single state, which is MSS,

(a) in the general case with endogenous inertia ρj ¡ 0, or (b)

in the particular case Hj � 1 and ρj � 0, for all j P N .
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Proof: First note that every MSS is obviously a LS.

Second, a LS is either a MSS or a set of states among which

the unperturbed dynamics switches endlessly. We want to

show that the latter is not possible under the proposed RSAP.

Suppose by contradiction that the unperturbed dynamics is

captive between two or more states. Case (a): As ρj ¡ 0

for all j P N , there is a non-zero probability that all SUs

does not modify their strategy during maxj Hj consecutive

iterations. After such an event, the history of every SU j

contains Hj � 1 times the same strategy. In the unperturbed

dynamics, such a state is stable (MSS), i.e., the system is in an

absorbing state. This contradicts our assumption and concludes

the proof. Case (b): As Hj � 1, SU j evolves between at most

two strategies: the current (at t) and the last one (at t � 1).

If they are equal, j doesn’t migrate anymore (recall that we

study the unperturbed dynamics). Otherwise, as ρj � 0 and

following our assumption, j endlessly switches between two

distinct strategies. The number of SUs with a certain strategy at

the odd and even iterations is thus constant. Hence, the payoffs

experienced by the switching SUs must also be constant every

two iterations. This means that they are able to choose between

the two strategies and stay with the selected one for ever. This

contradicts our assumption and concludes the proof.

Remark. Every PNE includes a set of states of the system

that are MSSs, i.e., LSs. Let denote Ω� the union of all these

states corresponding to the PNEs.

Proposition 2. It holds that Rpωq � 1 �ω R Ω�, where Ω� is

the union of LSs at the PNEs and ω is a LS.

Proof: Suppose that at iteration t the system is in state

zptq R Ω� and that zptq is an MSS so that zptq � ω0. Thus,

in ω0: Ujpt � hq ¤ Ujptq �h P Hj ,�j P N (by definition of

MSS). Recall from Theorem 2 that G has the weak-FIP: there

exists at least one player, say j1, that can improve its utility by

selecting an action sj1pt � 1q � sj1ptq. Thus, if user j
1 plays

strategy sj1pt� 1q at iteration t� 1, then the system state will

move from state ω0 to state zpt�1q. It is easy to verify zpt�1q

is an MSS different from ω0 because Uj1pt� 1q ¡ Uj1ptq and

sjpt � 1q � sjptq �j � j1. Hence, if the weak-FIP property

holds, under RSAP a single mutation is enough to leave the

basin of attraction of any MSS ω not in Ω�.

Proposition 3. Ω� can be reached from any LS L R Ω� by

stepwise mutations.

Proof: Recall the definition of the weak-FIP property:

from each strategy profile there exists a sequence of single

player improvements that terminates at a PNE after a finite

number of steps. As shown in the proof of Proposition 2, every

intermediate state is a MSS, i.e., a LS. As G has the weak-FIP

(Theorem 2), then the proposition follows straightfully.

Lemma 3. It holds that CR�

pΩ�

q � 1.

Proof: It follows from Proposition 2, Proposition 3 and

the definition of the modified cost. From any state, we reach

a LS at zero cost and then, there is a path of LSs towards Ω�,

each with a radius of 1.

Lemma 4. It holds that RpΩ�

q ¡ 1.

Proof: We show that a single mutation is not sufficient to

leave the basin of attraction of Ω�. As in a LS at a PNE no user

has incentive to deviate unilaterally, any single mutation leads

to a decrease of payoff for the concerned player, say j. For j,

we thus have Ujpt� 1q ¥ Ujptq. Now, if Ujpt� 1q � Ujptq,

the system reaches a new PNE and is still in Ω�. Otherwise,

Ujpt� 1q   Ujptq and Uipt� 1q � Uiptq, �i � j. According

to RSAP, player j will come back to the initial strategy after

a finite number of iterations and the system will come back

to the initial PNE.

Theorem 3 (Convergence of RSAP and convergence rate). If

all SUs adopt the RSAP with exploration probability ǫ Ñ 0,

then the system dynamics converges a.s. to Ω�, i.e. to a PNE

of the game:

(a) in the general case with endogenous inertia ρj ¡ 0 for

all j;

(b) in the particular case where Hj � 1 and ρj � 0 for

all j.

The expected wait until a state in Ω� is reached, given that

the play in the ǫ-perturbed model begins in any state not in

Ω�, is Opǫ�1
q as ǫÑ 0.

Proof: It follows from Lemma 4 and Lemma 3 that

RpΩ�

q ¡ CR�

pΩ�

q. Conclusion comes from Theorem 1.

Remark. Our study can be readily extended to other games

possessing the weak-FIP. These include dominance solvable

games, quasi-acyclic games, power set graphical congestion

games and games with the finite improvement property (as

defined by Monderer and Shapley [20]).

VI. PERFORMANCE EVALUATION

We now conduct simulations to evaluate the performance of

the proposed protocol. We simulate a CRN ofN � 50 SUs and

C � 3 channels with availability probilities µ � r0.3, 0.5, 0.8s.

Each SU is characterized by a generic decreasing noise func-

tion ǫptq ÝÝÝÑ
tÑ8

0 and by a user-specific payoff function of the

following form: Ujp.q � wjfp.q, where fp.q is a decreasing

function common to all the SUs and wj is a user-specific

weight. We set Hj�3 and ρj�0.3 for all j.

For performance comparison, we also show the results

obtained by simulating the Distributed Learning Algorithm

(DLA) recently proposed in [21] and then applied to CRNs in

[7]. The idea behind DLA is the following: each player has a

prior perception of the payoff performance for each possible

strategy and makes a decision relying on this information.

The payoff of the chosen alternative is then observed and

used to update the perception for that strategy. For a user

i, at each iteration, only the perception Qi
jpt � 1q related

to the currently played strategy j is updated as follows:

Qi
jpt�1q � p1�θptqqQi

jptq�θptqUjpnsj q, where θptq P p0, 1q

are smoothing factors (we set θptq � 1{t as in [21] and).

Mapping from perceptions to mixed strategies is then given

by the Logit rule σi
jptq �

exppγQi
jptqq

ΣiPCexppγQ
i
j
ptqq

, where γ is the

temperature that controls the randomness of channel selec-

tions. For the analysis of the fairness of RSAP and DLA
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Fig. 4. Weighted fairness index of RSAP and the DLA algorithm proposed
in [21]. Each curve represents an average over 1000 independent realizations.
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Fig. 5. Weighted fairness index of RSAP and the DLA algorithm proposed
in [21]. Each curve represents one single realization of the two algorithms.

we choose a weighted version of the Jain’s fairness index

Υptq �
pΣjPNUjptq{wjq

2

N �ΣjPN pUjptq{wjq
2 , which takes into account the user-

specific weights and reaches the maximum of 1 when the

resource (the throughput in our case) is equally shared amongst

users [22].

Fig. 4 and Fig. 5 show RSAP and DLA convergence

trends as a function of the iteration period t. We observe

that RSAP convergence is slightly slower with respect to

DLA. Nevertheless, while RSAP always converges to a stable

NE as ǫptq Ñ 0 (i.e., within 90 iterations), DLA attained

equilibrium is not efficient (or, better, not stable as one can

infer from the one-realization plot in Fig. 5). This is due

to the fact that DLA converges in probability, meaning that

only a certain percentage of time at the NE is guaranteed. We

notice that although such permanence time increases with the

temperature, a too high γ (γ � 1 in Fig. 4) causes convergence

to come to an abrupt stop (at iteration 30 on the example)

and fairness starts to decrease. The reason behind this lies in

the fact that a high temperature reflects a low randomization,

meaning that perceptions are updated not enough often and

become obsolete.

VII. CONCLUSION

In this paper, we have developed and analyzed a distributed

spectrum access protocol called retrospective spectrum access

protocol. We have demonstrated that the developed protocol

can be implemented in a distributed fashion based on only

local observations and the network is guaranteed to converge

stochastically to an equilibrium state within a bounded delay.

For future research, we plan to extend our analysis in the paper

to the more generic multi-hop network paradigm and to the

challenging case of noise corrupted payoff evaluations.
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Payoff-Based Dynamics for Multiplayer Weakly Acyclic Games. SIAM
Journal on Control and Optimization, 48(1):373–396, January 2009.

[13] H. Peyton Young. Learning by trial and error. Games and Economic

Behavior, 65(2):626–643, March 2009.
[14] J.R. Marden, H.P. Young, and L.Y. Pao. Achieving pareto optimality

through distributed learning. In 2012 IEEE 51st Annual Conference on

Decision and Control (CDC), pages 7419–7424, 2012.
[15] Bary S.R. Pradelski and H. Peyton Young. Learning efficient Nash

equilibria in distributed systems. Games and Economic Behavior,
75(2):882–897, July 2012.

[16] Dean P. Foster, University of Pennsylvania Wharton School, H. Peyton
Young, Johns Hopkins University Oxford, and University of. Regret
testing: learning to play Nash equilibrium without knowing you have an
opponent. September 2006.

[17] Minghui Zhu and Sonia Martı́nez. Distributed Coverage Games for
Energy-Aware Mobile Sensor Networks. SIAM Journal on Control and

Optimization, 51(1):1–27, January 2013.
[18] I. Milchtaich. Congestion Games with Player-Specific Payoff Functions.

Games and Economic Behavior, 13(1):111–124, Mar. 1996.
[19] Carlos Alós-Ferrer. Learning, bounded memory, and inertia. Economics

Letters, 101(2):134–136, 2008.
[20] Dov Monderer and Lloyd S. Shapley. Potential Games. Games and

Economic Behavior, 14(1):124–143, May 1996.
[21] Roberto Cominetti, Emerson Melo, and Sylvain Sorin. A payoff-based

learning procedure and its application to traffic games. Games and

Economic Behavior, 70(1):71–83, September 2010.
[22] R. Jain, D. Chiu, and W. Hawe. A Quantitative Measure of Fairness and

Discrimination for Resource Allocation in Shared Computer Systems.
Research Report TR-301, DEC, 1984.


