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Retrospective Spectrum Access Protocol: A Payoff-based Learning Algorithm for Cognitive Radio Networks

Decentralized cognitive radio networks (CRN) require efficient channel access protocols to enable cognitive secondary users (SUs) to access the primary channels in an opportunistic way without any coordination. In this paper, we develop a distributed retrospective spectrum access protocol that can orient the network towards a socially efficient and fair equilibrium state. With the developed protocol, each SU j chooses a channel to select based on the experienced payoff in past Hj periods. Each SU is thus supposed to be equipped with bounded memory and should make its decision based on only local observations. In that sense, the SUs behavioral rules are said to be payoffbased. The protocol also models a natural human decision making behavior of striking a balance between exploring a new choice and retrospectively exploiting past successful choices. With both analytical demonstration and numerical evaluation, we illustrate the two noteworthy features of our solution: (1) the entirely distributed implementation requiring only local observations and (2) the guaranteed statistical convergence to the equilibrium state within a bounded delay.

I. INTRODUCTION

In decentralized cognitive radio networks (CRN), a fundamental while challenging task is the design of distributed spectrum (channel) access mechanisms enabling cognitive secondary users (SUs) to access the primary channels in an efficient way without any coordination. In this paper 1 , we develop and analyze a framework of retrospective spectrum access protocols that can orient the network towards a socially efficient and fair equilibrium state. We further assume that each SU is equipped with bounded memory. Our developed retrospective spectrum access protocol has two noteworthy features: [START_REF] Foster | Stochastic evolutionary game dynamics[END_REF] the entirely distributed implementation requiring only local observations (a player doesn't even know the payoffs obtained by others) and ( 2) the guaranteed statistical convergence to the equilibrium state within a bounded delay.

To analyze the performance of the developed protocol, we apply the mistakes model introduced in [START_REF] Foster | Stochastic evolutionary game dynamics[END_REF], [START_REF] Kandori | Learning, Mutation, and Long Run Equilibria in Games[END_REF], [START_REF] Young | The Evolution of Conventions[END_REF], [START_REF] Kandori | Evolution of Equilibria in the Long Run: A General Theory and Applications[END_REF] and establish the statistical convergence of dynamics to the system equilibrium within a bounded latency OÔ1ßǫÕ. We would like to emphasize that despite our focus on CRNs, the developed learning protocol and the analysis methodology presented in this paper also provide valuable insights on the design of decentralized load balancing algorithms.

The paper is organized as follows. Section II is a short literature study on distributed learning with particular focus on CRNs. Section III defines the considered system model and the related spectrum access game. Our protocol is presented in Section IV. Convergence and performance are analyzed in Sections V and VI.

II. RELATED WORK

The problem of distributed spectrum access in CRNs has been widely addressed in the literature. A first set of papers assumes that the number of SUs is smaller than the number of channels. In this case, the problem is closely related to the classical Multi-Armed Bandit (MAB) problem [START_REF] Mahajan | Foundations and Applications of Sensor Management, chapter Multi-armed Bandit Problems[END_REF]. Some recent work has investigated the issue of adapting traditional MAB approaches to the CRN context, among which Anandkumar et al. proposed two algorithms with logarithmic regret, where the number of SUs is known or estimated by each SU [START_REF] Anandkumar | Opportunistic Spectrum Access with Multiple Users: Learning under Competition[END_REF]. Complementary, other works assume large population of SUs and study the system dynamics under asymptotic assumptions. In [START_REF] Chen | Spatial spectrum access game: nash equilibria and distributed learning[END_REF], the authors propose a distributed learning procedure for spatial spectrum access which is proven to converge to a Nash Equilibrium (NE) in the asymptotic case. The analysis relies however on a random backoff mechanism, which requires the modification of the SUs packet structure for channel contention. In [START_REF] Iellamo | Proportional and double imitation rules for spectrum access in cognitive radio networks[END_REF] the authors propose imitation rules that are used by a large population of SUs to converge to a Pure NE (PNE). In this paper, it is assumed that the SUs are able to capture packets transmitted by any other SU in the network. Contrary to this literature, the proposed protocol is proven to converge to a PNE regardless of the number of SUs in the system. Furthermore, it is completely distributed and does not require any additional packet fields: it can be in fact used with any decentralized random access MAC protocol such as CSMA/CA.

While our model is presented in the specific context of CRNs, we intend it more generically as a contribution to the literature on bounded rationality and learning in games with mutations, which thus far have been mostly explored in biology and economics. Relying on the by now classical [START_REF] Foster | Stochastic evolutionary game dynamics[END_REF], [START_REF] Kandori | Learning, Mutation, and Long Run Equilibria in Games[END_REF], [START_REF] Young | The Evolution of Conventions[END_REF], [START_REF] Kandori | Evolution of Equilibria in the Long Run: A General Theory and Applications[END_REF] and on [START_REF] Ellison | Basins of Attraction, Long-Run Stochastic Stability, and the Speed of Step-by-Step Evolution[END_REF], Dieckmann analyzed the evolution of conventions in a society with local interactions and mobile players [START_REF] Dieckmann | The evolution of conventions with mobile players[END_REF]. Friedman and Mezzetti investigated mistakes models that induce better and best reply dynamics [START_REF] Friedman | Learning in Games by Random Sampling[END_REF]. H.P. Young et al. proposed a series of payoff-based rules2 (among them, [START_REF] Marden | Payoff-Based Dynamics for Multiplayer Weakly Acyclic Games[END_REF], [START_REF] Young | Learning by trial and error[END_REF], [START_REF] Marden | Achieving pareto optimality through distributed learning[END_REF], [START_REF] Bary | Learning efficient Nash equilibria in distributed systems[END_REF], [START_REF] Foster | Regret testing: learning to play Nash equilibrium without knowing you have an opponent[END_REF]) possessing several appealing properties. The version of Trial and Error presented in [START_REF] Bary | Learning efficient Nash equilibria in distributed systems[END_REF], for instance, is able to converge to the PNE maximizing the social welfare. Nevertheless, complexity is high and convergence speed is very slow, as it has been shown in [START_REF] Iellamo | Proportional and double imitation rules for spectrum access in cognitive radio networks[END_REF]. The retrospective learning protocol that we propose has a similar architecture to the learning procedures developed in [START_REF] Marden | Payoff-Based Dynamics for Multiplayer Weakly Acyclic Games[END_REF] and [START_REF] Zhu | Distributed Coverage Games for Energy-Aware Mobile Sensor Networks[END_REF]. Our main contributions with respect to this literature is the introduction of nontrivial memories and inertia, as well as the results on convergence time.

III. SYSTEM MODEL AND GAME FORMULATION

In this paper, we consider the downlink of primary network and SUs trying to opportunistically accessing the free spectrum (Fig. 1). The primary spectrum consists of a set C of C frequency channels, each with bandwidth B. The users in the primary network are operated in a synchronous time-slotted fashion. A set N of N SUs tries to opportunistically access the channels when they are left free by PUs.

Each SU j has a finite memory containing the history (strategies and payoffs) relative to the H j past iterations. Let H j be the history recalled by SU j. Let ξ i ÔkÕ be the random variable equal to 1 when channel i is unoccupied by the PU at slot k and 0 otherwise. We assume that the process Øξ i ÔkÕÙ is stationary and independent for each i and k. We also assume that at each time slot, channel i is free with probability µ i , i.e., EÖξ i ÔkÕ× µ i . We define an iteration t as a block of PU-slots of fixed duration T during which the SUs don't change their strategy (see Fig. 2). At the end of each iteration, SUs obtain a payoff which corresponds to the achieved throughput.

In our work, each SU j is modeled as a rational decision maker, aiming at load-balancing the total system throughput. The instantaneous throughput it can achieve in terms of packets per second, denoted as T j , can be expressed as a function of µ sj and n sj , where s j denotes the channel which j chooses, and n sj denotes the number of SUs choosing channel s j . The expected value of T j , which has to be intended as the long-term throughput when T is very large, can be written as: EÖT j × f Ôµ sj , n sj Õ. a decreasing function denoting the successful transmission probability when n sj SUs are interfering with SU j on channel s j . B is a constant standing for the available bandwidth per channel. Without loss of generality, we will now assume that B 1.

We now formulate the channel selection problem as a spectrum access game where the players are the SUs. The game is defined formally as follows:

Definition 1 (Spectrum access game). The spectrum access game G is a 3-tuple (N , C, ØU j ÔsÕÙ), where N is the player set, C is the strategy set of each player. Let s ¡j Øs 1 , .., s j¡1 , s j 1 , ..., s C Ù be the channels chosen by all users except user j. When a player j chooses strategy s j È C, its player-specific utility function U j Ôs j , s ¡j Õ is defined as

U j Ôs j , s ¡j Õ EÖT j × µ sj p j Ôn sj Õ.
The users struggle for maximizing their utility function and a commonly accepted solution for the game is a PNE:

Definition 2 (Pure Nash Equilibrium). A PNE is a point s ¦
in the action profiles space, from which no user has incentive to deviate unilaterally. Thus

s ¦ j È argmax sj ÈC U j Ôs j , s ¦ ¡j Õ, j È N . (1) 
We can recognize that G is a congestion game with playerspecific payoff functions. It then follows from [START_REF] Milchtaich | Congestion Games with Player-Specific Payoff Functions[END_REF] and [START_REF] Iellamo | Proportional and double imitation rules for spectrum access in cognitive radio networks[END_REF] that G possesses at least one PNE in the general case.

IV. RETROSPECTIVE SPECTRUM ACCESS PROTOCOL

In this section, we propose a distributed retrospective spectrum access protocol (RSAP) that achieves a PNE of the spectrum access game. We firstly provide some definitions we shall need in the sequel analysis.

Define the state zÔtÕ of the system at iteration t by zÔtÕ Øs j Ôt ¡ hÕ, U j Ôt ¡ hÕÙ jÈN ,hÈHj . Let λ j argmax hÈHj U j Ôt ¡ hÕ be the number of iterations passed from the SU j highest remembered payoff. Furthermore, let ρ j denote the inertia, which is defined as a positive probability that SU j is unable to adjust its strategy at each iteration. Note that the concept of inertia has already been included in models of evolution with noise (see, e.g. [START_REF] Alós-Ferrer | Learning, bounded memory, and inertia[END_REF]). In those cases however, inertia was defined as an exogenous parameter, while we see it as an endogenous parameter. Notations are summarized in Table I.

We now introduce the RSAP, as detailed in Algorithm 1. At each iteration t, each user j applies the following revision scheme. With probability Ô1¡ǫÔtÕÕ¤Ô1¡ρ j Õ, SU j switches to With probability ǫÔtÕ switch to a random channel. 12: end while channel s j Ôt¡λ j Õ if U j Ôt¡λ j Õ U j ÔtÕ, and with probability ǫÔtÕ selects for the next iteration a channel with uniform distribution. To characterize the equilibrium state of RSAP, we define a Migration Stable State (MSS) as follows.

Definition 3 (Migration Stable State). A migration stable state

ω is a state where no more migration is possible, i.e., U j ÔtÕ U j Ôt ¡ hÕ h È H j j È N .

V. CONVERGENCE ANALYSIS Foster and Young, with their pioneering work dated 1990 [START_REF] Foster | Stochastic evolutionary game dynamics[END_REF], were the first to argue that the Evolutionary Stable Strategy (ESS) does not capture the notion of long-run stability when the system is subjected to continual (rather than isolated) stochastic perturbations. In this new context, it is possible to identify a set of stochastically stable equilibria which consists of the states attained almost surely by a dynamical system when the noise level approaches zero. The identification of such system states is particularly useful in games with multiple equilibria as it permits to find out whether some outcomes are much more likely than others when the noise vanishes. Our protocol is characterized by stochastic perturbations and we study the small noise limit by making use of the tools provided in [START_REF] Ellison | Basins of Attraction, Long-Run Stochastic Stability, and the Speed of Step-by-Step Evolution[END_REF]. For the sake of a self-contained exposition, we include here some definitions and results we shall need.

A. Model of Evolution with Noise

Definition 4 (Model of evolution with noise [START_REF] Ellison | Basins of Attraction, Long-Run Stochastic Stability, and the Speed of Step-by-Step Evolution[END_REF]). A model of evolution with noise or mistakes model is a triple ÔZ, P, P ÔǫÕÕ where:

1) Z is the state space of a stochastic process X and is supposed to be finite;

2) P Ôp zz ½Õ Ôz,z ½ ÕÈZ 2 is a Markov transition matrix defined on Z;

3) P ÔǫÕ Ôp zz ½ÔǫÕÕ Ôz,z ½ ÕÈZ The unperturbed Markov chain can be interpreted as the evolution of the system when players follow a predefined rule of evolution like Best Response. Noise ǫ can be interpreted as a probability that players do not follow the rule of the dynamics. For example, if the rule is Best Response, players choose the best response strategy at the next iteration step with probability 1¡ǫ and choose any other strategy at random with probability ǫ. When a player does not follow the predefined rule, we say that there is a mutation by analogy with what happens in species evolution.

Definition 7 (State transition cost).

The cost or resistance c zz ½ of the transition z z ½ is the rate at which the transition probability p zz ½ÔǫÕ tends to zero as ǫ vanishes:

c zz ½ °³ ² ³ ± 0 if P zz ½Ô0Õ 0 k if P zz ½ÔǫÕ Ôa zz ½ oÔ1ÕÕǫ k if P zz ½ÔǫÕ 0 ǫ È Ö0, ǭ×
for some ǭ 0 and constants a zz ½.

Let µÔǫÕ be the stationary probability distribution of the perturbed Markov chain ÔZ, P ÔǫÕÕ.

Lemma 1 (Existence of limit distribution [START_REF] Young | The Evolution of Conventions[END_REF]). There exists a limit distribution µ ¦ lim ǫ 0 µÔǫÕ. Thus, µ ¦ is a stationary probability of the unperturbed Markov chain ÔZ, P Õ:

Lemma 2 ([9]
). The set of stochastically stable states is included in the limit sets of the unperturbed Markov chain ÔZ, P Õ. Let Ω be a union of one or more limit sets of ÔZ, P Õ. We now want to study the conditions for Ω to be stochastically stable. We also want to know the speed at which Ω is reached.

For this purpose, [START_REF] Ellison | Basins of Attraction, Long-Run Stochastic Stability, and the Speed of Step-by-Step Evolution[END_REF] defines W Ôx, Ω, ǫÕ to be the expected wait until set Ω is reached knowing that we start in state x and that the system follows the perturbed Markov chain ÔZ, P ÔǫÕÕ. The goal is to characterize max xÈZ W Ôx, Ω, ǫÕ.

B. Radius and Coradius Theorem

We start with some definitions of concepts illustrated in Fig. 3 before giving the main theorem. Define a path Ôz 1 , z 2 , ..., z τ Õ as a sequence of states.

Definition 9 (Basin of attraction).

Let Ω be a union of one or more limit sets of ÔZ, P Õ and let Ôz 1 , z 2 , ..., z τ Õ be a sequence of states. The basin of attraction DÔΩÕ of Ω is the set of initial states from which the unperturbed Markov chain converges to Ω with probability 1, i.e.:

DÔΩÕ Øz È Z P r Ö β s.t. τ β, z β È Ω z 0 z× 1Ù Definition 10 (Path cost). For two sets X and Y , a path in Z is a sequence of states Ôz 1 , z 2 , ..., z τ Õ with z 1 , z 2 , ... È X and z τ È Y . The cost of the path is the sum

cÔz 1 , z 2 , ..., z τ Õ τ ¡1 ô i 1 c zi,zi 1 .
Let SÔX, Y Õ be the set of all paths from X to Y and CÔX, Y Õ min Ôz1,...,zτÕÈSÔX,Y Õ cÔz 1 , ..., z τ Õ be the set-to-set cost between X and Y . The radius of the basin of attraction of Ω is defined as the minimum number of mutations needed to leave DÔΩÕ given that we start in Ω. In other words, the coradius is the minimum number of mutations needed to reach Ω from the most unfavorable state.

Definition 13 (Modified path cost). Let Ôz 1 , ..., z τ Õ be a path from x to Ω. Let L 1 , ..., L r be a set of consecutive limit sets with L r Ω and L i Ω for all i r, through which the path passes. The modified cost of the pathis obtained by substracting from the initial cost function the intermediate radii of the limit sets L i : (

c ¦ Ôz 1 , ..., z τ Õ cÔz 1 , ..., z τ Õ ¡ r ô i 2 RÔL i Õ.
) 3 
where min Ôz1,...,zτÕÈSÔx,ΩÕ c ¦ Ôz 1 , ..., z τ Õ is the modified cost between a state x and Ω.

theorem proposed by Ellison in [START_REF] Ellison | Basins of Attraction, Long-Run Stochastic Stability, and the Speed of Step-by-Step Evolution[END_REF] is a sufficient condition to identify a long-run stochastically stable set of the system. It also gives an lower bound on convergence rate.

Theorem 1 (Convergence to long-run stochastically stable set with modified cost [START_REF] Ellison | Basins of Attraction, Long-Run Stochastic Stability, and the Speed of Step-by-Step Evolution[END_REF]). Let ÔZ, P, P ÔǫÕÕ be a model of evolution with noise, and suppose that for some set Ω which is a union of limit sets RÔΩÕ CR ¦ ÔΩÕ. Then:

1) The long-run stochastically stable set of the model is contained in Ω.

2) For any y Ê Ω, W Ôy, Ω, ǫÕ OÔǫ ¡CR ¦ ÔΩÕ Õ as ǫ 0.

In other words, if it is more difficult to leave Ω and its basin of attraction than to come back to it, the long-run stochastically stable set is contained in Ω.

C. Main Results

This section establishes the convergence of RSAP. To this end, we first state the following definitions required in the study of convergence.

Definition 15 (Single player improvement [START_REF] Friedman | Learning in Games by Random Sampling[END_REF]). A strategy profile s ½ is a single player improvement over the strategy profile s if it coincides with s in every coordinate except one, say coordinate j, and the payoff of player j is higher under s ½ than under s.

Definition 16 (Weak finite improvement property [11]). A game G has the weak finite improvement property (weak-FIP) if from each strategy profile s there exists a finite sequence of single-player improvements that ends in a PNE.

We then recall the following result from [START_REF] Milchtaich | Congestion Games with Player-Specific Payoff Functions[END_REF]: Theorem 2 ([18]). Given a congestion game G with playerspecific decreasing payoff functions, the weak-FIP holds and G admits at least one Pure Nash Equilibrium.

We now state the main results on the convergence of RSAP. Proposition 1. Under RSAP, LS MSS, i.e., all MSSs are limit sets and all limit sets are made of a single state, which is MSS, (a) in the general case with endogenous inertia ρ j 0, or (b) in the particular case H j 1 and ρ j 0, for all j È N .

Proof: First note that every MSS is obviously a LS. Second, a LS is either a MSS or a set of states among which the unperturbed dynamics switches endlessly. We want to show that the latter is not possible under the proposed RSAP. Suppose by contradiction that the unperturbed dynamics is captive between two or more states. Case (a): As ρ j 0 for all j È N , there is a non-zero probability that all SUs does not modify their strategy during max j H j consecutive iterations. After such an event, the history of every SU j contains H j 1 times the same strategy. In the unperturbed dynamics, such a state is stable (MSS), i.e., the system is in an absorbing state. This contradicts our assumption and concludes the proof. Case (b): As H j 1, SU j evolves between at most two strategies: the current (at t) and the last one (at t ¡ 1).

If they are equal, j doesn't migrate anymore (recall that we study the unperturbed dynamics). Otherwise, as ρ j 0 and following our assumption, j endlessly switches between two distinct strategies. The number of SUs with a certain strategy at the odd and even iterations is thus constant. Hence, the payoffs experienced by the switching SUs must also be constant every two iterations. This means that they are able to choose between the two strategies and stay with the selected one for ever. This contradicts our assumption and concludes the proof. Remark. Every PNE includes a set of states of the system that are MSSs, i.e., LSs. Let denote Ω ¦ the union of all these states corresponding to the PNEs. Proposition 2. It holds that RÔωÕ 1 ω Ê Ω ¦ , where Ω ¦ is the union of LSs at the PNEs and is a LS. Proof: Suppose that at iteration t the system is in state zÔtÕ Ê Ω ¦ and that zÔtÕ is an MSS so that zÔtÕ ω 0 . Thus, in ω 0 : U j Ôt ¡ hÕ U j ÔtÕ h È H j , j È N (by definition of MSS). Recall from Theorem 2 that G has the weak-FIP: there exists at least one player, say j ½ , that can improve its utility by selecting an action s j ½Ôt 1Õ s j ½ÔtÕ. Thus, if user j ½ plays strategy s j ½Ôt 1Õ at iteration t 1, then the system state will move from state ω 0 to state zÔt 1Õ. It is easy to verify zÔt 1Õ is an MSS different from ω 0 because U j ½Ôt 1Õ U j ½ÔtÕ and s j Ôt 1Õ s j ÔtÕ j j ½ . Hence, if the weak-FIP property holds, under RSAP a single mutation is enough to leave the basin of attraction of any MSS ω not in Ω ¦ . Proof: We show that a single mutation is not sufficient to leave the basin of attraction of Ω ¦ . As in a LS at a PNE no user has incentive to deviate unilaterally, any single mutation leads to a decrease of payoff for the concerned player, say j. For j, we thus have U j Ôt ¡ 1Õ U j ÔtÕ. Now, if U j Ôt ¡ 1Õ U j ÔtÕ, the system reaches a new PNE and is still in Ω ¦ . Otherwise, U j Ôt ¡ 1Õ U j ÔtÕ and U i Ôt ¡ 1Õ U i ÔtÕ, i j. According to RSAP, player j will come back to the initial strategy after a finite number of iterations and the system will come back to the initial PNE. Remark. study can be readily extended to other games possessing the weak-FIP. These include dominance solvable games, quasi-acyclic games, power set graphical congestion games and games with the finite improvement property (as defined by Monderer and Shapley [START_REF] Monderer | Potential Games[END_REF]).

VI. PERFORMANCE EVALUATION

We now conduct simulations to evaluate the performance of the proposed protocol. We simulate a CRN of N 50 SUs and C 3 channels with availability probilities µ Ö0.3, 0.5, 0.8×.

Each SU is characterized by a generic decreasing noise function ǫÔtÕ t 0 and by a user-specific payoff function of the following form: U j Ô.Õ w j f Ô.Õ, where f Ô.Õ is a decreasing function common to all the SUs and w j is a user-specific weight. We set H j 3 and ρ j 0.3 for all j.

For performance comparison, we also show the results obtained by simulating the Distributed Learning Algorithm (DLA) recently proposed in [START_REF] Cominetti | A payoff-based learning procedure and its application to traffic games[END_REF] and then applied to CRNs in [START_REF] Chen | Spatial spectrum access game: nash equilibria and distributed learning[END_REF]. The idea behind DLA is the following: each player has a prior perception of the payoff performance for each possible strategy and makes a decision relying on this information. The payoff of the chosen alternative is then observed and used to update the perception for that strategy. For a user i, at each iteration, only the perception Q i j Ôt 1Õ related to the currently played strategy j is updated as follows: Q i j Ôt 1Õ Ô1¡θÔtÕÕQ i j ÔtÕ θÔtÕU j Ôn sj Õ, where θÔtÕ È Ô0, 1Õ

are smoothing factors (we set θÔtÕ 1ßt as in [START_REF] Cominetti | A payoff-based learning procedure and its application to traffic games[END_REF] and). Mapping from perceptions to mixed strategies is then given by the Logit rule σ i j ÔtÕ expÔγQ i j ÔtÕÕ ΣiÈCexpÔγQ i j ÔtÕÕ , where γ is the temperature that controls the randomness of channel selections. For the analysis of the fairness of RSAP and DLA we choose a weighted version of the Jain's fairness index ΥÔtÕ ÔΣjÈN Uj ÔtÕßwjÕ 2 N ¤ΣjÈN ÔUjÔtÕßwjÕ 2 , which takes into account the user- specific weights and reaches the maximum of 1 when the resource (the throughput in our case) is equally shared amongst users [START_REF] Jain | A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Computer Systems[END_REF].

Fig. 4 and Fig. 5 show RSAP and DLA convergence trends as a function of the iteration period t. We observe that RSAP convergence is slightly slower with respect to DLA. Nevertheless, while RSAP always converges to a stable NE as ǫÔtÕ 0 (i.e., within 90 iterations), DLA attained equilibrium is not efficient (or, better, not stable as one can infer from the one-realization plot in Fig. 5). This is due to the fact that DLA converges in probability, meaning that only a certain percentage of time at the NE is guaranteed. We notice that although such permanence time increases with the temperature, a too high γ (γ 1 in Fig. 4) causes convergence to come to an abrupt stop (at iteration 30 on the example) and fairness starts to decrease. The reason behind this lies in the fact that a high temperature reflects a low randomization, meaning that perceptions are updated not enough often and become obsolete.

VII. CONCLUSION

In this paper, we have developed and analyzed a distributed spectrum access protocol called retrospective spectrum access protocol. We have demonstrated that the developed protocol can be implemented in a distributed fashion based on only local observations and the network is guaranteed to converge stochastically to an equilibrium state within a bounded delay. For future research, we plan to extend our analysis in the paper to the more generic multi-hop network paradigm and to the challenging case of noise corrupted payoff evaluations.
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	In this paper, SUs imple-ment a generic random access protocol to avoid collisions. This yields: f block t		block t+1

TABLE I NOTATIONS

 I Set of channels C Ø1, .., i, .., CÙ History of SU j H j Ø0, .., h, .., H j Ù Set ǫÔtÕ and ρ j . 2: At t 0, randomly choose a channel to stay, store the payoff U j Ô0Õ and set U j Ôt¡hÕ randomly h È Ø1, .., H j Ù. Ôt ¡ λ j Õ U j ÔtÕ Migrate to channel s j Ôt ¡ λ j Õ w. p. 1 ¡ ρ j

		Strategy profile at t	sÔtÕ
		SU j strategy at t	s j ÔtÕ
		SU j payoff	U j
		System state at t	zÔtÕ
		Migration Stable State (MSS)	ω
		Limit Set (LS)	L
		Union of LSs Union of all LSs in PNEs	Ω Ω ¦
	Algorithm 1 RSAP: executed at each SU j
	4:	With probability 1 ¡ ǫÔtÕ do
	5: if U j 6:
	7:	Stay on the same channel w. p. ρ j
	8:	else
	9:	Stay on the same channel
	10:	end if
	11:	

1: Initialization:

3: while at each iteration t 1 do

  2 is a family of Markov transition matrices on Z indexed by ǫ È Ö0, ǭÕ s.t.: a) P ÔǫÕ is ergodic for ǫ 0; b) P ÔǫÕ is continuous in ǫ and P Ô0Õ P ; c) there is a cost function c : Z 2 R Ø Ù s.t. for any pair of states Ôz, z ½ Õ, lim ǫ 0 p zz ½ÔǫÕ ǫ c zz ½ exists and is strictly positive for c zz ½ and p zz ½ÔǫÕ 0 for small ǫ if c zz ½ . Definition 5 (Unperturbed and perturbed Markov chain). In a model of evolution with noise ÔZ, P, P ÔǫÕÕ, ÔZ, P Õ is called the unperturbed Markov chain and, for any ǫ, ÔZ, P ÔǫÕÕ is a perturbed Markov chain. The family of perturbed Markov chains indexed by ǫ is called a regular perturbation. Remark. The fact that P ÔǫÕ is ergodic ensures that from any state z È Z, we can reach any state z ½ È Z in a finite number of steps with positive probability. The unperturbed Markov chain is however not necessarily ergodic. If not, the Markov chain ÔZ, P Õ has one or more limit sets.

Definition 6 (Limit set). A limit set (or recurrent class) L of a Markov chain X ÔZ, P Õ is a set of states of X such that z È L, P ÖX t 1 È L X t z× 1 and z, z ½ È L, there exists τ 0 s.t. P ÖX t τ z ½ X t z× 0.

  The expected wait until a state in Ω ¦ is reached, given that the play in the ǫ-perturbed model begins in any state not in Ω ¦ , is OÔǫ ¡1 Õ as ǫ 0. It follows from Lemma 4 and Lemma 3 that RÔΩ ¦ Õ CR ¦ ÔΩ ¦ Õ. Conclusion comes from Theorem 1.

	Theorem 3 (Convergence of RSAP and convergence rate). If
	all SUs adopt the RSAP with exploration probability ǫ then the system dynamics converges a.s. to Ω ¦ , i.e. to a PNE 0,
	of the game:		
	(a) in the general case with endogenous inertia ρ j	0 for
	all j;		
	(b) in the particular case where H j	1 and ρ j	0 for
	all j.		
	Proof:		
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An individual's learning rule is payoff-based or completely uncoupled if it does not depend directly on the actions or payoffs of anyone else.