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A POMDP Solution to Antenna Selection for PER
Minimization

Sinchu P., Reuben George Stephen, Chandra R. Murthy, and Marceau Coupechoux

Abstract—In this work, the problem of receive antenna se-
lection (AS) is considered, in a multiple antenna communication
system having a single radio frequency (RF) chain at the receiver.
The AS is performed on a per-packet basis, and AS decisions are
based on noisy estimates of the channel gains obtained using pilot
symbols embedded in the data packet for coherent demodulation,
along with the receiver’s knowledge of the time correlation of
the channel. The problem is posed as a partially observable
Markov decision process (POMDP) with the goal of minimizing
the average packet error rate (PER). The performance of a
myopic policy is compared with that of the POMDP solution, and
it is shown that the former is optimal under certain conditions. As
the POMDP approach requires the channel gains to be quantized
to a finite set of states, we also propose two heuristic AS schemes
that use the continuous-valued received pilot symbols to make AS
decisions, and thereby offer comparable or better performance
than the POMDP approach. Unlike previous work, the schemes
proposed here for AS do not require a lengthy AS training phase
to precede each data packet. The performance improvement
offered by the POMDP solution and the proposed heuristic
solutions relative to existing AS training-based approaches is
illustrated using Monte Carlo simulations.
Keywords—Antenna selection, POMDP, myopic policy, finite state
Markov chain

I. INTRODUCTION
Antenna selection (AS) is a technique that is widely

explored in both academia and the industry for reducing the
hardware complexity and cost of a multiple input multiple
output (MIMO) system [1]–[5]. With AS, only a subset of
the available antenna elements (AEs) is selected for transmis-
sion/reception, while maintaining the diversity order of the
full-complexity system. Some of the early research on AS
assumed perfect channel state information (CSI) at the receiver
[6]–[9]. In practice, the CSI is imperfect due to errors in
its estimation, which is typically done using a small number
of pilot symbols embedded in the packet. Surprisingly, the
diversity order achievable with perfect CSI is preserved even
with imperfect CSI [10], [11]. The focus of this work is on
AS for a multiple-antenna receiver with a single RF chain at
the receiver, where the selection is done on a per-packet basis.

In training based AS, the receiver requests for an AS
training phase, and the transmitter sends out L sets of N
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known training symbols to the receiver [12]. Here, L ≥ 1
is an integer and N is the number of receive antennas. The
time duration between consecutive pilots is Tp ! ηTs, where
Ts is the pilot symbol duration and η ≥ 21 [14]. Thus, the total
AS training duration is ηNLTs, which is repeated whenever
the channel estimates get outdated, imposing a non-trivial
overhead on the AS based system. When the CSI is noisy and
outdated, Kristem and Mehta [13] derive an optimal scheme
for weighting the channel gain estimates obtained in the AS
training phase, that minimizes the symbol error probability
(SEP). However, in their work, both AS and subsequent data
decoding are performed using the same channel state estimates
obtained during the AS training phase. In many practical
systems, there are additional pilots in the data phase also, viz.
demodulation reference signals (DM RS) which are used for
data decoding [5]. Saleh et al. [14] take these DM RS into
account, and propose an algorithm for AS, that maximizes
the post-processing SNR. However, they do not use the CSI
obtained from the data phase for making future AS decisions.
Stephen et al. [15] formulate AS in a decision theoretic
framework, with the aim of maximizing the throughput, again
assuming an AS training phase. Also, the channel is assumed
to remain constant over an entire frame which consists of the
AS training phase and a data packet, which may not hold when
the channel is fast-varying.

The studies mentioned above depend on frequent repetition
of the training phase for AS. This motivates the use of DM RS
for AS also, which would eliminate the dependence of the AS
process on lengthy training phases. Also, in a packet based
selection scheme, each data packet reveals some information
on the selected antenna via the DM RS, which can be used in
making future selection decisions. As the channel is correlated
in time, each selection not only affects the immediate packet
reception, but future receptions as well. Specifically, since the
channel states on the antennas are only partially observable
through the DM RS, and on only one antenna at a time, we cast
the problem in a partially observable Markov decision process
(POMDP) [16], [17] framework, with the goal of minimizing
the average packet error rate (PER).

The contributions of our work are as follows. We propose
an AS scheme which eliminates the need for an expensive AS
training phase at the start of each data packet. This is unlike
most of the past work on AS, which assumes the use of an AS
training phase between successive packets. We note that our
method can also exploit an AS training phase, when present.

We formulate the sequential AS problem as an infinite
1The pilot symbols are typically embedded in a training packet with a

physical layer header [13] and hence are spaced several symbols apart.



horizon POMDP. The optimal policy for an infinite horizon
problem is stationary [17]. Although finding an optimal policy
for a general POMDP is PSPACE hard [18], for the case
when the number of states per antenna is two, under the
assumption that the pilot symbols reveal the channel state
perfectly and the channel is positively correlated2, we show
that the optimal policy is myopic in nature3. We evaluate the
average PER performance of different AS policies via Monte
Carlo simulations, and show that, even when the number of
channel states is greater than two, and with finite pilot SNRs,
the myopic policy performs very close to the optimal solution.

We compare our results with the optimal weighting scheme
of Kristem and Mehta [13], which is based on AS training.
Another scheme that picks the antenna with the highest channel
gain in the AS training phase for receiving the subsequent
packets is also evaluated. We show that the proposed scheme
outperforms both these schemes.

In addition to the POMDP solution, we propose two
heuristic schemes for AS and evaluate their performance. The
performance comparison of these schemes, which are based on
continuous-valued channel gains, with that of the finite state
Markov chain (FSMC)-based POMDP solution, gives further
insights into the nature of the POMDP solution.

II. SYSTEM MODEL

We consider a communication system with a single antenna
transmitter and a receiver with N antenna elements (AE), but
one RF chain. The channels from the transmitter to the AEs
are frequency flat, Rayleigh faded and i.i.d. across the AEs.
AS is done on a per-packet basis. The goal is to select the
best AE out of the N , so that the average PER is minimized.
Each channel is time-correlated from packet to packet, with the
receiver having the knowledge of the correlation coefficient,
but is assumed to remain constant for a packet duration Tpkt. A
solid state switch achieves the connection between the selected
AE and the RF chain, which has switching speeds on the
order of a few hundreds of nanoseconds [14]. Hence, switching
delays are negligible.

The system operates in discrete time steps of duration Tpkt.
Each packet has D data symbols and a DM RS denoted by p.
At the beginning of each time step, the channels make a state
transition. The AE which is selected based on the information
available up to and including the previous time step, is used
to receive the current packet. The DM RS embedded in the
packet yields information on the channel state of the AE that
receives the packet. This information is used to decode the
data symbols in the packet, as well as to update the CSI of
the selected AE. With this additional information gained in the
current time step and the history of decisions and observations,
a new selection decision is made for the next time step, and
the process continues.

The POMDP formulation requires the states of the sys-
tem to be discrete-valued. Hence, we model the Rayleigh
2A 2-state channel is said to be positively correlated if the state transition

probabilities of the channel are such that the transition to the same state has
a higher probability than that to the other state. This is a very reasonable
assumption in practice.
3A myopic policy is one that ignores the effect of the current action on

future rewards, and hence is simpler to implement than a general optimal
policy.

faded time correlated channels as finite state Markov chains
(FSMCs), which is known to be accurate for packet-level
studies [19], [20]. We use the method of Zhang and Kas-
sam [21] to partition the instantaneous signal-to-noise ratios
(SNRs) on the receive AEs. The thresholds on the channel
gains that determine the states depend on the normalized
Doppler frequency. We emphasize that the instantaneous SNR
is discretized into a finite number of states only for the
purpose of defining the state space and solving the POMDP.
The underlying channel remains continuous-valued in the
implementation and evaluation of the policy prescribed by the
solution of the POMDP.

In a POMDP, due to the partial observability, the state of
the system is not fully revealed to the receiver. However, it
has been shown [22] that the statistical information of the
system at the time step t, given the entire history of actions
and observations, can be captured in a belief vector given by
b(t) = {bS(t)}S∈S , where S is the state space and bS(t) is
the conditional probability, given the history, that the system
is in state S at time t. The system starts with an initial belief
vector, b(1), that is updated at each state transition and with
each observation. In training based AS, b(1) is obtained from
the training phase. When there is no AS training phase, b(1)
can be set to the stationary probabilities of the Markov chains.
A policy for a POMDP maps the current belief vector into
an action, namely, the selection of an AE. Each policy has an
expected long term reward associated with it, and the optimal
policy is the one that maximizes this reward. Once the elements
of the POMDP are defined, one of the many available POMDP
solving algorithms can be used to find an optimal policy.

Let G = {1, 2, . . . ,κ} denote the state space of the
FSMC channel for a given normalized Doppler frequency
fmTpkt, where fm is the maximum Doppler frequency. Let
{γ1, γ2, . . . , γκ+1} denote the SNR thresholds corresponding
to the states in G, determined from earlier results [21]. At
time t, depending on the current belief vector, the optimal
policy gives the AE index to be selected for receiving the
next packet. Let h(t) be the complex valued channel gain of
the selected AE. Let γ0 denote the average per-symbol SNR.
Then, the instantaneous SNR is given by γ = |h(t)|2γ0. If
γj ≤ γ < γj+1, then the AE is said to be in state j. The
received DM RS on the selected AE, dropping the time index,
is given by

y = hp+ n, (1)

where p is the known pilot symbol and n is the additive white
Gaussian noise (AWGN) with zero mean and variance σ2

n. The
maximum likelihood (ML) estimate of the channel gain is

ĥ =
p∗

|p|2 y = h+ e, (2)

where e ! p∗

|p|2n. When perfect channel state information is
available on the selected antenna, ĥ = h. The estimate ĥ is
used to decode the packet, as well as to update the belief
vector. The optimal policy maps this new belief vector to the
index of the AE to be selected in the next time step. The next
section develops the POMDP formulation of the AS problem
for minimizing the average PER.



III. POMDP FORMULATION
The POMDP formulation of the AS problem consists of

the following components.
1) State Space: The state space of the system is represented

as S ! {1, 2, . . . ,κ}N . The ith state is given by the tuple
Si ∈ S, whose entries specify the channel states on each of the
N antennas. Since the channels are assumed to be independent,
the transition probability P (Sj |Si) is given by the product of
the state transition probabilities associated with each channel.

2) Action Space: The action space is given by A !
{1, 2, . . . , N} where the ith action corresponds to selecting the
ith AE for packet reception.

3) Observation Space: The observation on selecting an
antenna is the received signal corresponding to the DM RS
in the packet, which provides CSI for that antenna. Since this
CSI is continuous-valued, we need to discretize it into states
using the thresholds of the FSMC model. Then, the observation
space is O = {1, 2, . . . ,κ}. Let S(a) denote the state of the
selected antenna a when the system state is S. Then O(S, a, o)
is the probability of observing state o ∈ O on the selected
antenna, given its true state, S(a). This probability is derived
in Appendix A. It varies with the pilot SNR, and in the case of
perfect knowledge of the channel state on the selected antenna,
O(S, a, o) = 1 if o = S(a), and O(S, a, o) = 0 otherwise.

4) Reward: As we are interested in PER minimization,
we define our reward as unity when the packet is correctly
received, and zero otherwise. Thus, maximizing the long term
reward is equivalent to minimizing the expected average PER.
The expected immediate reward associated with the action
a ∈ A when the system state is S is given by

ϱ(a, S) =
κ
∑

j=1

P (o = j|S(a))Pcor(o = j, S(a)). (3)

Pcor(o, S(a)) gives the probability of correctly receiving the
packet when the true state is S(a) and the observed state is
o. Its value is assumed to be known here; it can be easily
calculated, for example, via simulations, for different true
states and observation states. It should be noted that, here,
the reward depends on both the true state and the observed
state, unlike a standard POMDP formulation. The DM RS
observation affects the reward as it is used for decoding the
data packet. The expected immediate reward can be expressed
as a function of the belief state, b, as follows:

R(a,b) =
∑

S∈S

bSϱ(a, S), (4)

where bS is the component of the belief vector b corresponding
to the state S.

5) Objective and the Optimal Policy: The objective is to
minimize the expected PER, over an infinite horizon. The
averaging is done in a discounted sense, i.e., the future rewards
are discounted by a factor β ∈ [0, 1). Let Jπ

β (b) denote the
expected total discounted reward associated with a policy π
starting from time step t = 1 and belief vector b. Then, the
optimal policy solves the following optimization problem

max
π

Jπ
β (b) = max

π
E

[

∞
∑

t=1

βt−1R(π(b(t)),b(t))|b(1) = b

]

,

(5)

where R(π(b(t)),b(t)) is the reward collected under belief
state b(t) when the AE π(b(t)) is selected

This completes the POMDP formulation of the AS
problem. There are several tools available for solving
POMDPs [23]–[25]. However, solving the POMDP is a non-
trivial problem, especially when the number of states of the
system under consideration is large. A usual practice is to
explore the effectiveness of a simpler policy for the problem,
which may not be optimal, such as the myopic policy. In the
sequel, we state that the myopic policy is indeed optimal for
the AS POMDP problem, under the assumptions of positively
correlated channels and full observability of the channel state
on the selected AE, for a 2-states-per-antenna model. Full
observability on the selected AE is equivalent to a scenario
where the DM RS has infinite SNR, and, hence, the channel
state of the selected AE is fully revealed.

Let Pc(s) denote the probability of correctly receiving a
packet when the channel state is s ∈ {0, 1}. Here, state 1
corresponds to a higher channel gain than state 0, and hence,
Pc(1) ≥ Pc(0). For a positively correlated 2-states channel, the
transition probabilities satisfy p11 ≥ p01, where pij denotes the
transition probability from state i to state j. The FSMC model
yields a positively correlated channel for normalized Doppler
frequencies as high as 0.2. Hence, the channels are positively
correlated for all practical purposes. We state the theorem of
the optimality of the myopic policy for the finite horizon case.
However, it can be extended to the infinite horizon case using
standard techniques [26].

Since there are only two states per antenna, the belief vector
can be written as Ω(t) ! [ω1(t),ω2(t), . . . ,ωN (t)], where
ωi(t) is the conditional probability that the channel i is in the
good state at time step t given all past actions and observations.
Ω(t) differs from b(t), since, in the former, the belief is on
each antenna, whereas in the latter, the belief is on the joint
state of the N antennas. Let a(t) denote the antenna selected,
and si the state of the ith antenna at time t. The belief vector
can be updated according to Bayes’ rule, as follows:

ωi(t+ 1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

p11 if a(t) = i, sa(t) = 1,

p01 if a(t) = i, sa(t) = 0,

τ(ωi(t)) if a(t) ̸= i,

(6)

where τ(ωi(t)) = ωi(t)p11 + (1 − ωi(t))p01 is the one-step
belief update when antenna i is not selected. The objective
is to maximize the total expected discounted reward over a
horizon of T . The optimal policy is then,

π∗ = argmax
π

Eπ

[

T
∑

t=1

βt−1R(πt(Ω(t)),Ω(t)) | Ω(1)

]

. (7)

Any admissible policy, π = [π1,π2, . . . ,πT ], is a vector, where
πt mapsΩ(t) to an action a(t), t = 1, 2, . . . , T . The time index
t is necessary here, as the optimal policy for a finite horizon
problem is, in general, non-stationary.

Let Vt(Ω(t)) denote the value function of the optimal
policy at time t, which is the expected sum of reward gained,
starting in belief vector Ω(t), from time t to T . The dynamic
programming formulation of the value function associated with



the optimal policy can be expressed as follows:4

VT (Ω) = max
a=1,...,N

E[R(a,Ω)] (8)

Vt(Ω) = max
a=1,...,N

E [R(a,Ω) + βVt+1(T (Ω))] (9)

where T (.) denotes the one-step update operator for the belief
vector Ω, and is as defined in (6). The expected immediate
reward collected is given by

R(a,Ω) = ωaPc(1) + (1− ωa)Pc(0) ! f(ωa). (10)

As Pc(1) ≥ Pc(0), f(ωa) increases linearly with ωa. A myopic
policy chooses that action which maximizes f(ωa), and hence
this is equivalent to choosing the antenna with the highest
belief state. Now, we state the theorem on the optimality of
the myopic policy.
Theorem 1. The myopic policy is optimal for the problem
stated in (8) and (9), for t = 1, 2, . . . , T , and ∀Ω =
[ω1, . . . ,ωN ] ∈ [0, 1]N under the assumption that p11 ≥ p01.

Proof: The proof proceeds by induction, and is based on
Lemma 2 in Ahmad et al. [26]. Details are omitted here due
to lack of space, and will be included in an extended version
of this work.

IV. DISCUSSION

In this work, we proposed an AS scheme that utilizes
the DM RS information from the data phase and exploits
the known time-correlation of the channel. We formulated the
problem as a POMDP and stated the optimality of the myopic
policy under certain conditions.

A. Existing Schemes

In Section V, we compare the performance of the proposed
scheme, with that of two existing schemes which are based
on AS training. The receiver obtains estimates of the channel
gains of each AE from the pilot symbols in the training
phase. These estimates are used in selecting AEs in the data
phase. It is assumed that the receiver occasionally requests
the transmitter for a training phase, for example, when the
resulting PER is below some acceptable level [12].

In subsection V-A, the performance of the POMDP so-
lution is compared with that of the weighting scheme [13]
and the Max picking scheme. In both these schemes, the
channel gain estimates obtained from the training phase are
used for AS as well as for data decoding. Max picking
compares the channel gain estimates of the AEs from the AS
training phase and selects the AE with the highest estimate
for receiving the packets in the data phase. In the weighting
scheme [13], the estimates from the AS training phase are lin-
early weighted, and the AE with the highest weighted estimate
is selected to receive a symbol. In order to compare the PER
performance of this scheme with that of the POMDP solution,
a per-packet selection is done. Both the above mentioned
schemes depend solely on the estimates from the training
phase for selecting AEs. We compare their performance with
that of our scheme that uses the DM RS information for
AS. The objective is to show that taking into account the
4For the ease of presentation, we drop the time index for Ω.

information obtained through the DM RS, improves the AS
performance significantly. Hence, we consider a fixed packet,
the 10th packet, for simulation purposes, and show the effect
of using the DM RS, on the PER performance, as opposed to
using only the AS training phase.

B. Heuristic schemes

The POMDP formulation requires the continuous-valued
channel gains estimated from the pilot symbols to be dis-
cretized into a finite number of states for the purpose of solving
the POMDP and determining the optimal policy. Hence, the
receiver is not using all the information available from the
received pilots5 This becomes evident in Figure 2, where the
other two schemes, explained above, outperform the POMDP
solution when the channel varies very slowly. This motivates
one to come up with an approach that does not require the
channel gains to be quantized, but nevertheless utilizes the
DM RS information for data decoding as well as for AS.

We present two heuristic schemes, by modifying the Max
picking and the weighting schemes so as to include the
information from the DM RS. The modification that we
propose for these schemes is as follows. In the Max picking
scheme, once an AE is used to receive a packet, we update the
CSI of this AE with the estimate obtained from the DM RS in
the packet. This new estimate is compared with the outdated
estimates of other AEs, while selecting the AE for receiving
the next packet. Similarly, in the modified weighting scheme,
for selecting the AE for the next packet, the weighting is done
on the updated estimate for the selected AE and the outdated
estimates of the rest of the AEs. The weight calculation takes
into account the delay in the estimates, in the same way as was
done in the original scheme. In addition to this, the channel
gain estimate from the DM RS is used to decode the data in the
packet, for both the modified schemes. In subsection V-B, we
present the simulation results for these modified schemes and
compare their performance with that of the POMDP solution.

V. SIMULATION RESULTS

In this section, we present Monte Carlo simulation results
to validate the claims in the previous sections.

A. Comparison with Existing Schemes

In order to compare our results with the existing AS
training based schemes, we assume there is an initial training
phase, which is followed by several data packets. For the
POMDP, the information from the training phase is used to
compute the initial belief vector. Each packet consists of ten
data symbols and one DM RS. The data symbols are drawn
uniformly from an 8-PSK constellation. We assume that there
are N = 4 AEs and κ = 4 states per channel. The POMDP
problem is formulated as in Section III. We find two solutions
for the POMDP problem: one, as given by a POMDP solver
tool, the Approximate POMDP Planning Toolkit [27], and the

5A way to overcome the loss of optimality in quantizing the channel into
discrete states is to increase the number of states on each antenna; however,
this drives up the complexity of finding the optimal solution. Also, a limitation
of the FSMC model [21] is that it restricts the state transitions to happen only
between adjacent channel states, and this affects the optimality of the policy
due to the inaccuracy of the model, when the number of states becomes large.
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Fig. 1. PER vs SNR for the 10th packet with κ = 4 and fmTpkt = 0.02.

other, the myopic policy. The performance of the POMDP
solution is plotted in two cases: when under full observability
of the channel state on the selected AE, and when the pilot
SNR is finite and is equal to the data SNR. We compare
the performance of the POMDP solution with the weighting
scheme [13], and Max picking, which picks the antenna
with the highest estimated channel gain in the AS training
phase, as explained in Section IV. No AS plots the PER in
case of a single AE, and Perfect CSI plots the PER of
a genie-aided receiver that has perfect CSI on all antennas.
Except for the POMDP, all the schemes deal with continuous-
valued channel gains.

In the next subsection, we present comparisons of the PER
performance of the different schemes as a function of the
data SNR and normalized Doppler frequency. Unless otherwise
mentioned, we plot the performance for the 10th packet, with
the normalized Doppler frequency, fmTpkt = 0.02 and AWGN
at the receiver. The pilot symbols are assumed to have the
same SNR as that of the data symbols. The channels are
Rayleigh faded with time correlation dictated by the Jakes’
spectrum [28], and are independent across AEs.

1) Variation of PER with SNR: Figure 1 shows that there
is a dramatic improvement in performance for the POMDP
schemes as compared to the others. This is mainly due to their
effective use of the DM RS for data decoding as well as for
AS decisions. Also, the myopic policy performs very close to
the optimal policy, suggesting that it may be optimal even for
channels with κ > 2 and with finite pilot SNR.

2) Variation of PER with Normalized Doppler Frequency:
Figure 2 shows that at lower normalized Doppler frequencies,
the weighting scheme and Max picking outperform the
POMDP solution, as these schemes have the advantage of com-
paring among the continuous-valued channel gains, whereas
the POMDP solution has to deal with the belief vector of
a finite state channel model. However, as fmTpkt increases,
other schemes fail to track the fast time-varying channel, and
therefore perform much worse than the POMDP solution. The
No AS scheme has only one AE, and hence, performs the
worst, even at lower normalized Doppler frequencies.

B. Comparison with Heuristic Methods

In this section, we present the performance of the heuristic
solutions for AS that were proposed in Section IV. Figure 3,
plots the PER as a function of normalized Doppler frequency
for the heuristic schemes. For the sake of simplicity, in case

10−3 10−2 10−110−4

10−3

10−2

10−1

100

Normalized Doppler frequency

PE
R 

of
 1

0th
 p

ac
ke

t

 

 

No AS
Weighting scheme in [15]
Max picking
Optimal policy
Myopic policy
Optimal (infinite pilot SNR)
Myopic (infinite pilot SNR)

Fig. 2. PER vs normalized Doppler frequency (fmTpkt) for the 10th packet
for 4-states channel model with data SNR = 20 dB.

10−3 10−2 10−1

10−2

10−1

Normalized Doppler frequency

PE
R 

of
 th

e 
10

th
 p

ac
ke

t

 

 
Mod. weighting scheme
Myopic (2−states)
Myopic (4−states)
Myopic (8−states)
Mod. max picking
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the 10th packet with data SNR = 20 dB.

of the POMDP, only the performance of the myopic policy
is shown. It can be seen that the overall performance of
both the modified schemes is better than that of the original
schemes. In fact, the modified Max picking (Mod. max
picking) scheme performs better than the POMDP solution
with the 2-states and 4-states channel model, at relatively lower
Doppler frequencies. This is because the POMDP discretizes
the channel gains. However, as we increase the number of
states to model the channel in the POMDP, the performance
is improved. For the 8-states channel model, the POMDP
solution performs as well as Mod. max picking. The per-
formance of modified weighting scheme (Mod. weighting
scheme) degrades faster than that of other schemes. The
reason is that in the original scheme [13], weighted channel
estimates are used for both data decoding and AS. In the
modified scheme, we use the weighted estimate for AS and
the new estimate from the DM RS for data decoding, which
outperforms the use of the outdated weighted estimate. In
Figure 3, as the channel varies faster, the 2-states model
outperforms the others. This is due to an limitation in the
model, which allows state transitions only between adjacent
states. Due to this, a channel model with fewer number of
states is more suited to representing a fast varying channel.

VI. CONCLUSION

In this work, we considered a wireless communication
system with the receiver having a single RF chain and N
AEs. We proposed an AS method that effectively utilizes the
DM RS in the data phase and exploits the knowledge of the



time correlation of the channel. We formulated the problem
as a POMDP, and found the optimal policy using a POMDP
solver tool. We stated the optimality of the computationally
simple myopic policy for the 2-state channel model under the
assumption of perfect channel observability on the selected AE
and positively correlated channels. Inspired by this result, we
explored the effectiveness of the myopic policy for the finite
pilot SNR case and for the 4-states channel model. Through
simulations, we showed that the performance of the myopic
policy is very close to that of the optimal policy obtained from
the POMDP solver. An advantage of our approach is that the
need for frequent lengthy AS training phases is eliminated.
Thus, the proposed scheme can provide a higher throughput
than schemes which depend on the AS training phase.

APPENDIX A
OBSERVATION PROBABILITY FOR THE FINITE SNR CASE

Multiplying y in (1) by p∗

|p|σn
gives y′ = √

γ + w′. where
γ is the instantaneous SNR as defined in Section II, and w′ ∼
CN (0, 1). An unbiased estimator of γ is γ̂ = |y′|2 − 1.

The probability that the estimated SNR is in state n ∈ G,
given the true state m ∈ G, is given by,
P (γn < γ̂ < γn+1|γm < γ < γm+1)

= P (αn < γ̃ < αn+1|γm < γ < γm+1)

=

∫ γm+1

γm

Q1(
√
γ,

√
αn)−Q1(

√
γ,

√
αn+1)

e
− γm

γ0 − e
−

γm+1
γ0

× e
− γ

γ0

γ0
dγ

(11)

where γ̃ = |y′|2, αn = γn+1, and Q1(a, b) is the Marcum Q-
function [29]. The integral in (11) can be evaluated in closed
form [15, Appendix B] to get the observation probability as

P (γn < γ̂ < γn+1|γm < γ < γm+1) =
F (αn)− F (αn+1)

e
− γm

γ0 − e
−

γm+1
γ0

(12)
for all n,m ∈ G, where

F (x) = e
−γm

γ0 Q1

(√
γm,

√
x
)

− e
−

γm+1
γ0 Q1

(√
γm+1,

√
x
)

+ e
− x

γ0(1+ 2
γ0

)

⎡

⎣Q1

⎛

⎝

√

γm+1(1 +
2

γ0
),

√

x

1 + 2
γ0

⎞

⎠

−Q1

⎛

⎝

√

γm(1 +
2

γ0
),

√

x

1 + 2
γ0

⎞

⎠

⎤

⎦ . (13)
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