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Load Balancing in Heterogeneous Networks Based
on Distributed Learning in Potential Games

Mohd. Shabbir Ali, Pierre Coucheney, and Marceau Coupechoux

Abstract—We present a novel approach for distributive load
balancing in heterogeneous networks that use cell range expan-
sion (CRE) for user association. First, we formulate the problem
as a minimisation of an α−fairness objective function. Depending
on α, different objectives in terms of network performance or
fairness can be achieved. Next, we model the interactions among
the base stations for load balancing as a potential game, in which
the potential function is the α−fairness function. The optimal
Nash equilibrium of the game is found by using distributed
learning algorithms. We use log-linear and binary log-linear
learning algorithms for complete and partial information settings,
respectively. By running extensive simulations, we show that the
proposed algorithms converge within a few tens of iterations.
The convergence speed in the case of partial information setting
is comparable to that of the complete information setting. We
also show that the best response algorithm does not necessarily
converge to the optimal Nash equilibrium.

I. INTRODUCTION

Due to the ever increasing demand for improved quality of
service in terms of higher data rates and improved coverage,
the conventional cellular networks are becoming heteroge-
neous [1]–[25]. Heterogeneous networks consist of macro base
stations (BSs) and small BSs that transmit with high and low
power, respectively. Conventional user association rule is such
that the users select a BS that provides the highest received
power. This may however result in an imbalance between BSs
loads because the macro BS transmits at higher power and thus
associates with more users. This creates overload situation at
the macro BSs and at the same time under-utilised resources
at the small BSs. Therefore, a natural problem that arises is
how to associate users to BSs such that the network resources
are utilised efficiently and the load is shared among the BSs.

Load balancing has been extensively studied in the literature
using various approaches. An overview can be found in [4],
[26]. These can be broadly classified as centralised [15], [16],
[27], [28] and decentralised optimisation approaches [14],
[17], [18], [29], [30]. Centralised user association rules along
with inter-cell interference avoidance for load balancing are
proposed in [27], [28]. Basic idea is to schedule users across
the BSs in the network so that the users do not severely
interfere with each other. Similar approaches where the user
association decisions are modelled as Markov decision pro-
cess (MDP) are presented in [15], [16]. However, centralised
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solutions are computationally intensive, require huge informa-
tion exchange overhead, and are not scalable. To overcome
these limitations, decentralised approaches are followed. A
distributed algorithm is proposed for the load balancing, which
is formulated as a convex optimisation problem in [29].
A decentralised solution for convex optimisation approach
for joint cell association and resource allocation problem is
undertaken for the load balancing in [14]. In [30], an online
algorithm for access points association in wireless local area
network (WLAN) based on the Lp norm of the loads on access
points in proximity is proposed. Game theoretical approaches
are also proposed for decentralised solutions [17], [30]. Also
heuristic approaches are studied in the literature. For example,
in [31], an algorithm is proposed to find the optimal beacon
power that minimises the load of the most congested access
point (AP) in WLAN.

Another important approach for load balancing that has
attracted lot of interest in the literature is user association
using cell range expansion (CRE) [3]–[13]. According to CRE
technique the users associate with a BS that provides the
highest biased received power. Bias value for small BSs is
greater than or equal to one and for macro BSs it is equal to
one. This results into increase in the coverage regions of the
small BSs and thereby associating more users to them.

However, there are several challenges for using CRE tech-
nique. One of the challenges is to avoid high co-channel inter-
cell interference in downlink from the macro BSs experienced
by the small BSs’ cell edge users. To address this problem ad-
vanced interference management techniques have been studied
in the literature [3], [8], [11]. Resource partitioning is one of
the techniques, in which the macro and the small BSs transmit
in orthogonal time/frequency slots. Thereby, reducing the co-
channel interference. Particularly, small BSs transmissions are
scheduled in the almost blank subframe (ABS), in which
macro BS transmit with lower power or do not transmit [11].
The advantage of using advanced interference cancellation
receiver in conjunction with CRE technique is shown in [8].

Another challenge, which is the focus of our work, is to
determine the optimal CRE bias values for a desired optimal
performance of the network. For example, the same bias values
are not optimal for both rate-optimal and delay-optimal perfor-
mance of the network. A set of papers determines the optimal
range of bias values by simulations and experimentations for
a specific performance requirement of the network [4], [12],
[19]. In [4], the authors show that bias range of 5 − 10 dB
is rate-optimal when both small and macro BSs use the same
frequency band. When ABS is used in conjunction with CRE



the optimal bias range increases to 15−20 dB. In [12], authors
show that CRE bias values above 6 dB have a negative impact
on the handover failure rate. In [19], authors implemented a
testbed to show that CRE increases uplink bit rates at the price
of little reduction of the throughput on the downlink.

Another set of papers determines optimal bias by applying
heuristic, learning algorithms, and optimisation [20]–[24].
In [20], the bias is set according to the feedback from
the network performance, which is maximisation of resource
utilisation and improvement in quality of service for cell edge
users. In [21], the authors propose an adaptive CRE scheme
in which users choose among two biases depending on their
signal-to-interference-plus-noise ratio (SINR). They showed
through simulations that cell edge user throughput is improved
while maintaining the average user throughput performance.
In [25], a Q-learning based algorithm is used by all users
to determine the optimal bias value by minimising the cost,
which is the number of users in outage, broadcasted by the
small BSs. In [22], a dynamic programming and a greedy
approach are proposed to associate users to small and macro
BSs with the goal to achieve a global proportional fairness.
In [24], the load balancing problem is formulated as an integer
optimisation problem aiming at maximising the Jain’s fairness
index. In [23], a simple heuristic method is proposed to
adapt the bias values. According to the relative utilities of the
macro and the pico-cell the bias value is stepwise increased
or decreased.

In all the above papers the optimal bias values are de-
termined for a specific optimal performance requirement of
the network. However, there is no general framework for
determining the optimal biases for different optimal perfor-
mance requirements of the network. This is the focus of our
work. We address this problem by considering an α−fairness
objective function that captures various aspects of the network
performance and fairness for different α values. For α = 0 it
gives the rate-optimal policy, for α = 1 gives the proportional
fair policy, for α = 2 gives the delay-optimal policy, and
as α → ∞ it gives the min-max load policy. We present a
novel approach, according to which the BSs learn their optimal
bias values given α. In contrast to the related load balancing
literature our approach is unique. Although an α−fairness
function is also considered for load balancing in [29], our
approach is entirely different in terms of the user association
rule, game framework, and distributed learning algorithms.
We solve an optimisation problem considering a generalised
objective function that is not convex unlike in [14], [29]. It is
network centric, which gives full control to the network opera-
tor, as opposed to the user centric and hybrid approaches using
MDP [15], [16]. It is guaranteed to converge to the optimal
Nash equilibrium (NE) rather than a sub-optimal NE when
compared to [17], [18]. Compared to simulations/testbeds our
approach is generic, i.e. not specific to a single scenario. Its
distributive nature favours ease of implementation, scalability
of network, and robustness to node failures.

Another distinctive feature of our approach is the use of
distributed learning algorithms for solving a non-convex opti-

misation problem of load balancing. Our approach is general
and can be used to distributively solve other optimisation
problems. The idea is to enforce the potential game structure
so that the objective function is exactly the potential function.

A. Contributions

We summarise our main contributions below.
• We present a novel approach for load balancing in het-

erogeneous networks that uses CRE for user association.
Our approach is to distributedly minimise an α−fairness
objective function that captures various performance and
fairness criteria for different α.

• We prove that for α = 0 the objective function captures
rate-optimal policy of the network. For α→∞, we prove
that it results in the min-max load policy. We extend
the classical result derived in [32] by considering a non-
convex α−fairness function.

• We solve the load balancing problem using distributed
learning algorithms, where BSs learn the optimal CRE
bias values. First, interactions between BSs are modelled
as a potential game using wonderful life utility (WLU)
structure. However, the WLU structures works only when
the neighbourhood of the BSs is static. We propose a
technique that allows to use the WLU structure with
a time-varying neighbourhood. Next, the optimal NE
of the game is determined by using log-linear learning
algorithms. We consider two different settings: complete
and partial information. In the former setting, we use
classical log-linear learning algorithm (LLLA), whereas
in the latter setting, we use binary log-linear learning
algorithm (BLLLA). To the best of our knowledge, this
is a novel approach in the load balancing literature.

• By running extensive simulations, we show that the pro-
posed algorithms converge within a few tens of iterations
to the optimal NE. The convergence speed of the BLLLA
is comparable to that of the LLLA, meaning that partial
information is sufficient in practical implementations. We
also show that the classical best response (BR) algorithm
does not necessarily converge to the optimal NE, although
it necessitates complete information.

This paper is organised as follows. In Section II, the de-
scription of system model and problem formation is given. In
Section III, a potential game framework solution is presented.
The various distributed algorithms that are considered in
this paper are described in Section IV. In Section V, our
approach is validated using extensive simulations. Finally, the
conclusions and future work are given in Section VI.

II. SYSTEM MODEL

A. Network Model

We consider a cellular network (typically a LTE-Advanced
network) consisting of Be eNodes-B (eNB) or BSs and Bs
small BSs in a two dimensional region L. The set of all stations
is denoted S , Be ∪ Bs. Every small BS maintains and can
vary a parameter called CRE bias, denoted as cj for j ∈ Bs.
The CRE vector is c̄ =

[
c1, c2, . . . , c|S|

]
, where ci is BS i’s



CRE bias, which for practical purposes takes discrete values
from 1 to cmax. The CRE biases for macro eNBs are fixed
to unity, i.e., ck = 1,∀k ∈ Be. This leads to no bias in the
received power from a macro eNB.

1) Channel Model: The received power at location x from
BS i is Pigi(x), where Pi is the transmit power and gi(x) is
the channel gain, which captures the effect of path-loss. The
effect of small-scale fading is not considered because the time
for user association procedure is assumed to be much larger
than the channel coherence time [29]. Inclusion of shadow
fading increases the complexity of model and is thus left to
future work. Formally, these assumptions related to channel
model are summarised below.

Assumption 1: [Deterministic propagation model] The chan-
nel gain gi : R2 → R is a deterministic function of the
distance between BS i and a user.

The SINR γi(x) at location x provided by the BS i is a
random variable defined as:

γi(x) =
Pigi(x)∑

j∈S δjPjgj(x) +N0
, (1)

where N0 is thermal noise power and δj is a random variable
which is one when station j is active (i.e. transmitting) and
0 otherwise. To get more insights without much complexity
due to random variable δ, we make use of the following
assumption.

Assumption 2: [Worst case interference] The variables δj are
deterministic and equal to 1 for all j. This provides an upper
bound on the interference, which is the worst case interference.
The consequence of assumptions 1 and 2 is that γi(x) is
deterministic.

2) CRE User Association Rule: A user association rule us-
ing CRE is commonly used in the heterogeneous networks [3]–
[13]. According to this rule, a user located at x is served by
the BS that provides the highest biased received power and
the SINR provided by it is greater than the minimum required
SINR (γmin). The region Di(c̄) served by BS i is defined as:

Di(c̄)={x|∀j∈S, Pigi(x)ci≥Pjgj(x)cj , γi(x)≥γmin} . (2)

Note that Di(c̄) is a bounded region because of γmin. Accord-
ing to assumptions 1 and 2, the association rule should be
understood for a given realisation of the shadowing mask and
averaged over fast fading variations.

3) Physical Data Rate: The physical data rate received by a
user served by BS i with SINR γi is denoted as νi (γi), which
is a non-negative and a non-decreasing function of SINR.

4) Traffic Model: Users are assumed to arrive in the system
according to a spatial random process, download a file of
random size and leave the system when the download is over.
This is referred to as elastic traffic. At location x, the arrival
rate is denoted λ(x) [arrivals/s/m2] and the average file size is
1/µ(x) [bits]. If x is associated to BS i, the load generated by
x on i is %i(x) , λ(x)

µ(x)νi(γi)
. Following [29], [33], we model

every BS i as a M/G/1/PS queue of load:

ρi(c̄) =

∫
x∈Di(c̄)

%i(x)dx. (3)

BS i is stable if and only if 0 ≤ ρi < 1. In this work, only
stable network is considered. The flow throughput of users
is defined as the ratio of the mean file size to the mean file
download duration [33].

Assumption 3: [Time-scale separation] The process of up-
dating the CRE parameters is supposed to be long with respect
to the traffic variations. The M/G/1/PS queues describing the
BSs traffic are thus supposed to have reached their stationary
regime before any new change of the CRE parameters.

B. Problem Formulation and Objective Function

Following [29], we intend to minimize an α−fairness func-
tion φα (c̄) over the feasible set F , which are given below.

φα(c̄) =

{∑
i∈S

(1−ρi(c̄))1−α

α−1 , α ≥ 0, α 6= 1,

−
∑
i∈S log (1− ρi(c̄)) , α = 1,

(4)

F = {ρ|0 ≤ ρi(c̄) < 1, ci ∈ [1, cmax] ,∀i ∈ S}. (5)

The function φα(c̄) is in general non-convex and even if it
is convex the set F is non-convex because c̄ takes discrete
values. The function φα(c̄) captures various aspects of fairness
and so of load balancing of the network for different values
of α, which are described below.

(α = 0) Rate-optimal policy: Minimising φ0(c̄) gives a
rate-optimal policy. See Appendix A for the proof.

(α = 1) Proportional fair policy: In this case, φ1(c̄)
captures the proportional fairness of the network [32].

(α = 2) Delay-optimal policy: It can be shown that min-
imising φ2(c̄) corresponds to minimising the average number
of flows of the network. Little’s law says that minimising
the average number of flows is equivalent to minimising
the average delay experienced by a typical flow. Therefore,
minimising φ2(c̄) is equivalent to minimising the average
delay of the network. For more detailed discussion refer
to [29].

(α → ∞) Minmax policy: As α → ∞ the minimiser of
φα(c̄) tends to the min-max load vector. It is a standard result
with convex objective functions [29], [32], [34]. We prove this
result for our non-convex objective function in Theorem 1.

Definition 1: [Min-max load vector [34]] Let all the vectors
in F be sorted in increasing order. A vector ρ ∈ F is min-max
if ρ is lexicographically not greater than any vector in F . The
vector ρ is lexicographically lower than y, denoted ρ ≺ y, if
the first non-zero component of ρ−y is negative. We say that
ρ is not greater than y, denoted by ρ � y, if ρ ≺ y or ρ = y.

Let ri(c̄) = 1 − ρi(c̄),∀i ∈ S. Let X ={
r ∈ R|S||∃c̄ : ρ(c̄) ∈ F , r(c̄) = r

}
. Load vector ρ∗ is a min-

max if and only if r∗ is max-min vector.
Theorem 1: Let rα∈argmax

r∈X

∑
i∈S

r1−α
i

1−α . Then, any accu-

mulation vector of the trajectory {rα}α>1 is max-min in X .

Proof The proof is given in Appendix B.

In Fig. 1, we show an example of set F obtained with 2 BSs
having different transmit powers located on a two-dimensional
region. It is clear from the figure that even if the CRE set
were continuous, F would not be convex. We also show the
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Fig. 1: Feasible set F for 2 BSs.

optimal loads obtained for different α values. All the optimal
load points are located on the Pareto frontier. The point for
α ≥ 200 in Fig. 1 is the min-max load point because a point of
equal coordinates on the Pareto frontier is the min-max point.

III. POTENTIAL GAME FRAMEWORK

In this section, we present an approach using potential
game framework for distributed optimisation of the objective
function. We do not aim to describe and analyse selfish nature
of the BSs that aim to minimise their costs. Rather, our goal is
to achieve the global objective of load balancing by prescribing
a cost function to the BSs. For this context, potential games
provide a good framework because players of such a game
distributively optimise the potential function.

We model the problem as a game, where the BSs are
players and allowed CRE bias values are their strategies.
Formally, a CRE game is defined by the tuple Γ ={
S, {Xi}i∈S , {Ui}i∈S

}
, where S is the set of BSs, X =

X1 ×X2 × . . . ×X|S| is a strategy set or an action set, and
Ui : X → R is a cost function. Xi is a discrete set of CRE
bias values ranging from 1 to cmax. The BSs play the CRE
game with the objective of minimising their costs. A pure NE
(PNE) of the game is reached when no player can benefit by
changing its strategy unilaterally.

Definition 2: [Pure Nash equilibrium] A PNE is a vector
c̄∗ of bias values in strategy set X . Given the other BSs’
equilibrium strategies c∗−i the PNE strategy of BS i is c∗i if
and only if c∗i ∈ arg minci∈Xi Ui(ci, c

∗
−i),∀i ∈ S.

Definition 3: [Exact potential game [35]] If there is a
function called potential function P : X → R such that
∀i ∈ S, ∀ci, c′i ∈ Xi and ∀c−i ∈ X−i,

Ui(ci, c−i)− Ui(c′i, c−i) = P (ci, c−i)− P (c′i, c−i), (6)

then the game is an exact potential game.
An exact potential game has at least one PNE and local opti-
misers of the potential function are PNEs [35]. Furthermore,
there exist several distributed learning algorithms that converge
to a PNE when the game has a potential (see next Section). In
our problem, we intend to turn our objective function (4) into
a potential function by designing cost functions of the BSs.

Two ways of achieving it are by using identical interest utility
(IIU) and WLU [36].

Identical interest utility: In this structure, the cost function
Ui(c̄) is completely aligned with the potential function, i.e.,
Ui(c̄) = φα(c̄), ∀i ∈ S. However, it requires the BS i to
know the loads of all the other BSs in order to compute Ui(c̄).

Wonderful life utility: With the WLU, a BS needs only to
know the loads of its neighbour BSs. The WLU structure of
the individual BSs is defined as

Ui(ci, c−i) =
∑
j∈Ni

(1− ρj(ci, c−i))1−α

α− 1
, (7)

where Ni is the neighbour set of BS i,

Ni =
⋃
c̄

{j ∈ S|∃x ∈ Di(c̄), Pigi(x)ci = Pjgj(x)cj} . (8)

A neighbour set Ni is all possible BSs that share boundary
with BS i for at least one possible bias value. The motivation
behind WLU is that the action of the BS i only affects its
neighbour BSs.

Lemma 1: The WLU cost function (7) leads to an exact
potential game.

Proof: Consider the strategy profiles a = (ci, c−i) and
b = (c′i, c−i). From the objective function (4) we have

φα(a)−φα(b)=
∑
j∈S

(1−ρj(a))1−α

α− 1
−
∑
j∈S

(1−ρj(b))1−α

α− 1
, (9)

=
∑
j∈Ni

(1−ρj(a))1−α

α−1
−
∑
j∈Ni

(1−ρj(b))1−α

α− 1
.(10)

The second equation above is true because the CRE bias of the
BS i will only affect its neighbour BSs. Hence, the utility of
the BS i is aligned with the potential function and the resultant
game is an exact potential game.

IV. DISTRIBUTED LEARNING ALGORITHMS

Recall that the potential function property enables finding a
PNE through distributed learning algorithms. In this section,
we introduce distributed learning algorithms that are used
to find the PNE of the CRE game. First, we present the
BR algorithm and the LLLA for the complete information
setting. Next, the BLLLA for the partial information setting
is described.

A. Best Response Algorithm

Best response algorithm is an asynchronous algorithm
where at any given time only a single BS updates its strategy.
Assume a time-varying random process with which a BS is
chosen to revise its strategy1. At any time step t the selected
player i chooses a strategy ci that minimises his cost, given
the strategies c−i of other players. In other words, player i
chooses a strategy from his best response set Bi,

Bi (c−i) = arg min
ci

Ui (ci, c−i) . (11)

1Uniform probability or stationarity of the process is not required, it is only
required that the probability of selecting any player is positive.



Note that the BR algorithm requires complete information,
in which the effects of choosing all the other strategies are
known, and it is not guaranteed to converge to the optimal
NE [35].

B. Log-linear Learning Algorithm

LLLA is a generalisation of BR. It is summarised in
Algorithm 1. At each step the LLLA deviates from BR with
a probability that tends to zero as the parameter τ goes
to zero. However, as τ tends to infinity the LLLA selects
actions randomly with uniform probability. It guarantees the
convergence to the optimal NE with probability that tends to
one as τ goes to zero [37]. However, for this algorithm the BSs
require again the complete information. For example, given
the strategies of others, the BS has to know the cost function
value for all its strategies. With this information, it selects
a strategy to play according to a probability distribution. In
general, acquiring this amount of information is not feasible.
To overcome this difficulty in the next subsection we propose
to use BLLLA.

Algorithm 1 Log-linear Learning Algorithm [37]

1: Initialisation: Arbitrary set CRE bias ci ∀i ∈ S.
2: Set parameter τ .
3: While t ≥ 1 do
4: Randomly select a BS i.
5: Select its CRE ci(t) from Xi with probability pcii (t),

pcii (t) =
exp

(
− 1
τUi (ci, c−i(t− 1))

)∑
c′i∈Xi

exp
(
− 1
τUi (c′i, c−i(t− 1))

) . (12)

6: All the other BSs must repeat their previous actions, i.e.,
c−i(t) = c−i(t− 1).

C. Binary Log-linear Learning Algorithm

The BLLLA works even if only partial information about
the game is available to the players. Partial information is the
information that a player has about its current strategy. Unlike
complete information the effect of choosing any other strategy
is not known to the player. As LLLA the BLLLA is also an
asynchronous algorithm. In this algorithm, whenever the BS
updates its strategy it does it in two steps. In the first step, the
BS tries a strategy from its strategy set to obtain its payoff.
In the second step, the BS randomly chooses among the two
strategies (present strategy and trial strategy) as summarised
in Algorithm 2.

D. Effect of time-varying neighbours

For all the above algorithms, the BS i needs to know its
neighbours Ni to calculate its cost using the WLU structure.
For a given CRE bias vector, providing to every BS the
neighbours set is a standard task for network operators. This
task can be performed automatically e.g., using automated
neighbour relation (ANR) standardised by 3GPP [1]. The
difficulty here is to deal with time-varying neighbourhood.
If neighbourhood is changing then WLU doesn’t lead to a

Algorithm 2 Binary Log-linear Learning Algorithm [37]

1: Initialisation: Arbitrary set CRE bias ci ∀i ∈ S.
2: Set parameter τ .
3: While t ≥ 1 do
4: Randomly select a BS i.
5: Select a trial action ĉi ∈ Xi with uniform probability. Play
ĉi and observe its cost.

6: Play the action ci(t) ∈ {ci(t− 1), ĉi} as given below.

ci(t)=


ci(t− 1), w.p. e−

1
τ
Ui(c̄(t−1))

e−
1
τ
Ui(c̄(t−1))+e−

1
τ
Ui(ĉi,c−i(t−1)))

,

ĉi, w.p. e−
1
τ
Ui(ĉi,c−i(t−1)))

e−
1
τ
Ui(c̄(t−1))+e−

1
τ
Ui(ĉi,c−i(t−1)))

.

(13)
7: All the other BSs must repeat their previous actions, i.e.,
c−i(t) = c−i(t− 1).

TABLE I: Simulation parameters.

Parameter Variable Value
Number of BSs Ns 8
Transmit power of macro BS Pmacro 46 dBm
Transmit power of small BS Psmall 24 dBm
Average file size 1

µ
0.5 Mbytes

Average traffic load density λ
µ

64 bits/s/m2

System bandwidth W 20 MHz
Noise power N0 -174+10log(W) dBm
Minimum SINR γmin -10 dB
Path-loss exponent η 3.5
CRE bias set ci {1, 1.1, 1.2, . . . , 16}

potential game. To address this problem, we propose the
following technique.

The algorithms above can use the WLU structure without
knowing any neighbour set at the start of the algorithm. In
the process of learning, whenever BS i updates its strategy if
it finds new neighbours then it should remember and include
them in Ni. As the CRE bias set is finite, there is a time instant
after which all neighbourhood sets Ni,∀i, are constant. Thus,
from this time instant, the game becomes a potential game and
the above algorithms will converge to the optimal PNE.

V. SIMULATION RESULTS

In this section, we show simulation results considering
standard parameters as adopted in 3GPP [2]. These parameters
are listed in Table I. The region L considered is a square of
side 1000 m. Among the 8 BSs located in L, BS 1 at the center
is a macro BS that transmits with Pmacro and the rest are small
BSs that transmit with Psmall. The user traffic is fixed in time
but varies with location across an average traffic density of 64
bits/s/m2. There are two hotspots where the traffic is 5 times
the average traffic, which can be seen in Fig. 2.

The following channel model is used in the simulations [38].

gi(x) = min
{

1,K |xi − x|−η
}
, (14)

where K is a constant, |xi − x| is the distance between the
location xi of the BS i and the location x of the user, and η is
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Fig. 2: The variations of the coverage regions of BSs obtained using the optimal CRE for different α. Varying traffic, which
is normalised with the average traffic of 64 Kbits/s/m2, is shown using varying intensity of colours.

the path-loss exponent. We use the classical Shannon formula
for calculating channel capacity νi (γi) at any location x.

The BSs play CRE game and learn the optimal NE using the
proposed learning algorithms. The optimal coverage regions
obtained using the optimal CRE bias values for different α
are shown in Fig. 2. The corresponding optimal bias values
and loads are shown in Table II. In Fig. 2a, the rate-optimal
policy, which is obtained for α = 0, is shown. The optimal
CRE bias values of all the small BSs is close to one. This is
intuitive because for rate-optimal policy the bias values should
be equal to one. If we take more iterations of the algorithms
then the optimal bias values are guaranteed to converge to
one. Therefore, this case corresponds to the classical user
association without the use of CRE bias leading to a heavy
load imbalance. We can observe that the load of the macro
BS 1 is 92%, which is near an overload. On the other hand,
the loads of all the small BSs are less than 12%, which is a
heavy under-utilisation. This case serves as a benchmark for
other cases of α to compare for load balancing.

In Fig. 2b, the coverage regions for delay-optimal policy,
which is obtained for α = 2, is shown. As α increases to 2
the coverage regions of all small BSs increase and that of the
macro BS decreases. This happens due to the increase in the
optimal bias values. The load of the macro BS is decreased
to 62% and the utilisation of small BSs is increased.

In Fig. 2c, the coverage regions for the min-max policy,
which is obtained for α = 200, is shown. When α increases
to higher value, here α = 200, the load of the macro BS 1
is further reduced to 42%. It can be observed that the loads
of all the BSs are equalised except for BS 3 and 7. The
utilisation of these BSs cannot be increased further because
these BSs are near to the macro BS 1 that causes heavy
downlink interference to their users.

The evolution of the optimal CRE biases and optimal loads
for α values ranging from 0 to 200 is shown in Fig. 3. The
figure shows how the optimality changes from rate-optimal to
min-max optimal as α increases from 0 to 200. Therefore,
initially at α = 0, the optimal bias of all BSs is close to one
and correspondingly there is a heavy load imbalance. As α
increases, the load of the macro BS decreases and that of

TABLE II: Comparison of optimal CRE, optimal loads of BSs
for different α.

α = 0 α = 2 α→ ∞
BS i c∗i ρ∗i% c∗i ρ∗i% c∗i ρ∗i%

1 1 92 1 62 1 42
2 1.1 9 3.1 20 16 51
3 1 4 3.6 11 16 21
4 1 7 2.8 17 14.8 49
5 1.1 12 3.4 23 7.7 42
6 1.1 8 3.4 20 7.7 41
7 1.1 5 3.5 12 16 25
8 1 6 3.2 18 7.2 42
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Fig. 3: Evolution of optimal CRE and optimal load with α.
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Fig. 4: Convergence of BR, LLLA, and BLLLA.

the small BSs increases. At around α = 50 the min-max
load policy is reached. It is observed that different BSs have
different optimal bias values for different α.

The evolution of the objective function for different algo-
rithms is shown in Fig. 4. In all the cases, we know that
the LLLA and the BLLLA converge to the global minimum.
In Fig. 4a, we observe that BR converges much faster than
the LLLA and the BLLLA, whereas it requires complete
information. On the other hand, the BLLLA requires only
partial information, which is an advantage for practical imple-
mentations but does not loose much in terms of convergence
speed. The figure also shows that smaller values of τ result in
faster convergence for the LLLA and the BLLLA.

In Fig. 4b, we see that the BR does not converge to the
global minimum because the LLLA for τ = 0.01 sometimes
achieves lower values of potential. Also, the LLLA for τ =
0.001 converges to the same local minimum as BR because for
smaller τ the LLLA behaviour is similar to the BR. However,
the LLLA and the BLLLA for τ = 0.01 converge to the global
minimum. In Fig. 4c, it is clear that the BR and the LLLA
for τ = 0.001 converge to a local minimum, whereas both the
LLLA and the BLLLA for τ = 0.01 converge to the global
minimum.

VI. CONCLUSIONS

In this paper, a novel approach for load balancing using CRE
association technique is presented. Our approach exploits the
potential game structure and distributed learning algorithms.
By running extensive simulations in two settings, which are
complete and partial information settings, we show that the
proposed algorithms converge within a few tens of iterations
to the optimal NE, which is also a minimiser of a α−fairness
function of the network. The convergence speed of the BLLLA
that uses partial information is comparable to the LLLA that
uses complete information, meaning that partial information is
sufficient in practical implementations. We also show that the
classical BR algorithm does not necessarily converge to the
optimal NE, although it necessitates complete information. As
future work we intend to extend our work for the following:
1) noisy estimation of the BSs utilities, 2) admission control
policies to overcome the overload situation, 3) effect of using
advanced interference management techniques in conjunction

with CRE association, and 4) adaption of the algorithms to
varying traffic.
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APPENDIX

A. Proof of Rate-optimal Policy

It can be shown that the minimiser of φα(c) is same as
the minimiser of the arithmetic mean of the BSs loads, i.e.,∑
i∈|S| ρi(c̄). We will prove that minimising φ0(c) is indeed

rate optimal policy by contradiction. Consider that at the
minimum φ∗0 a location x0 is associated with a BS j with
rate rj(x0), which is not the maximum. Then, there exist a

BS k that provides the maximum rate rk(x0). Let φk0 be the
value of the objective function when the UE at location x0 is
associated with BS k. The difference of the objective function
due to the loads of BSs j and k is

φk0 − φ∗0 =
λ(x0)

µ(x0)

(
1

rk(x0)
− 1

rj(x0)

)
< 0, (15)

which is a contradiction that φ∗0 is the minimum. Therefore,
we conclude that at φ∗0 all the locations will be served by the
BS that provide the highest rate.

B. Proof of Theorem 1

The proof is divided into the following two lemmas.
Lemma 2 gives the property that is required for proving the
Lemma 3, which concludes the proof of the Theorem 1.

Lemma 2: Let fα(r) =
∑
i∈S

r1−α
i

1−α . If r � y then there is
A > 0 large enough such that for all α ≥ A, fα(r) > fα(y).

Proof: Let α > 1. Without loss of generality, assume that
r and y are sorted in increasing order and that r1 > y1. Let
δ = r1 − y1. Then

(1− α)(fα(r)− fα(y)) =
∑
i=1...n

(
r1−α
i − y1−α

i

)
(16)

≤ r1−α
1 − y1−α

1 +
∑
i=2...n

(
r1−α
i − y1−α

i

)
(17)

≤ r1−α
1 − (r1 − δ)1−α + (n− 1)r1−α

1 −
∑
i=2...n

y1−α
i (18)

≤ nr1−α
1 − (r1 − δ)1−α. (19)

Then we have fα(r) > fα(y) if and only if

nr1−α
1 − (r1 − δ)1−α ≤ 0 (20)

⇔ log(n)

log
(
r1−δ
r1

) ≥ 1− α (21)

⇔1 +
log(n)

log(r1)− log(r1 − δ)
≤ α. (22)

Lemma 3: Let X be a compact subset of R|S|. Consider
the set

S =
⋂
A>1

⋃
α≥A

argmax
x∈X

fα(x).

Then S is non-empty and is made of max-min vectors in X .
Proof:

Let SA =
⋃
α≥A argmax

x∈X
fα(x). It is a decreasing nested

sequence of non-empty compact sets. By Cantor’s intersection
theorem, it is not empty and compact.

Let x∗ ∈
⋂
A>1 SA. There is an increasing sequence α(n)

and xα(n) ∈ argmax
x∈X

fα(n)(x) with xα(n) → x∗. Assume

there is y � x∗. Then, by Prop. 2, there is N such that,
for every n ≥ N , fα(n)(y) > fα(n)(x

∗). But, by definition of
xα(n), fα(n)(xα(n)) ≥ fα(n)(y), which is a contradiction with
the fact that fα(n)(xα(n)) → fα(n)(x

∗), which is ensured by
Berge maximum theorem.


