
HAL Id: hal-01117117
https://imt.hal.science/hal-01117117

Submitted on 1 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Jacobians and Hessians of Mean Value Coordinates for
Closed Triangular Meshes

Jean-Marc Thiery, Julien Tierny, Tamy Boubekeur

To cite this version:
Jean-Marc Thiery, Julien Tierny, Tamy Boubekeur. Jacobians and Hessians of Mean Value Coordi-
nates for Closed Triangular Meshes. The Visual Computer, 2013, 30, pp.981-995. �hal-01117117�

https://imt.hal.science/hal-01117117
https://hal.archives-ouvertes.fr

The Visual Computer manuscript No.
(will be inserted by the editor)

Jacobians and Hessians of Mean Value Coordinates for Closed
Triangular Meshes

Jean-Marc Thiery · Julien Tierny · Tamy Boubekeur

Received: date / Accepted: date

Abstract Mean Value Coordinates provide an efficient
mechanism for the interpolation of scalar functions de-

fined on orientable domains with non-convex bound-

ary. They present several interesting features, including

the simplicity and speed that yield from their closed-

form expression. In several applications though, it is
desirable to enforce additional constraints involving the

partial derivatives of the interpolated function, as done

in the case of the Green Coordinates approximation

scheme [2] for interactive 3D model deformation.

In this paper, we introduce the analytic expressions
of the Jacobian and the Hessian of functions interpo-

lated throughMean Value Coordinates.We provide these

expressions both for the 2D and 3D case. We also pro-

vide a thorough analysis of their degenerate configura-
tions along with accurate approximations of the partial

derivatives in these configurations. Extensive numeri-

cal experiments show the accuracy of our derivation. In

particular, we illustrate the improvements of our formu-

lae over a variety of Finite Difference schemes in terms
of precision and usability. We demonstrate the utility of

this derivation in several applications, including cage-

based implicit 3D model deformations (i.e. Variational

MVC deformations). This technique allows for easy and
interactive model deformations with sparse positional,

rotational and smoothness constraints. Moreover, the

cages produced by the algorithm can be directly re-used

J.-M. Thiery
Telecom-ParisTech – CNRS / LTCI, 43 rue Barrault, 75013
Paris, France
E-mail: thiery@telecom-paristech.fr

J. Tierny
Telecom-ParisTech – CNRS / LTCI

T. Boubekeur
Telecom-ParisTech – CNRS / LTCI

for further manipulations, which makes our framework
directly compatible with existing software supporting

Mean Value Coordinates based deformations.

Keywords Cage coordinates · Mean Value Coor-

dinates · Constrained interpolation · Implicit cage
deformation

1 Introduction

Boundary value interpolation is a common problem in

computer-aided design, simulation, visualization, com-

puter graphics and geometry processing. Given a polyg-
onal domain with prescribed scalar values on its bound-

ary vertices, barycentric coordinate schemes enable to

compute a smooth interpolation of the boundary val-

ues at any point of the Euclidean space located in the
interior (and possibly the exterior) of the domain. Such

interpolations are efficiently obtained through a linear

combination involving a weight (or coordinate) for each

boundary vertex. These weights can be obtained by

solving a system of linear equations [16] or, more ef-
ficiently, through a closed-form expression [12, 17].

However, in several applications, it may be desirable

to enforce additional constraints on the interpolation, in

particular constraints involving the partial derivatives

of the interpolated function. Derivative constraints have

been shown to provide additional flexibility to the inter-
polation problem and many optimization tasks can ben-

efit from them. In the context of approximation schemes

based on Green Coordinates [20], constraints on the

Jacobian and the Hessian have been used for implicit
cage-based deformations [2]. In such a setting, given

some sparse user constraints, an optimization process

automatically retrieves an embedding of the polygonal

2 Jean-Marc Thiery et al.

Fig. 1 “Kicking Demon”. Red points indicate positional constraints; blue points indicate unknown rotational constraints.
This pose was obtained by specifying only 14 positional constraints.
The derivation of the Jacobian and Hessian of the MVC coordinates makes it possible to induce variational MVC deformations
(implicit cage deformation based on sparse user constraints, with rotation and smoothness enforcement).

domain (the cage) such that the transformation of the
interior space is locally close to a rotation.

In order to achieve acceptable precision and time ef-

ficiency, such an optimization process requires a closed-

form expression of the Jacobian and the Hessian of the
interpolated function. While such closed-form expres-

sions are known for approximation schemes (in partic-

ular for Green Coordinates [2, 26]), this is not the case

for interpolation schemes. Moreover, these formulations
are specific to the context of space deformation and it

is not clear how to extend them to arbitrary functions.

In this paper, we bridge this gap by deriving the
closed-form expressions of the Jacobians and the Hes-

sians of functions interpolated with Mean Value Coor-

dinates (MVC) [12, 17], both for the 2D and 3D case.

We also provide a complete analysis of their degenerate

configurations (on the support of the simplices of the
cage [17]) along with accurate approximations of the

derivatives for these configurations. We show the accu-

racy of this derivation with extensive numerical exper-

iments.

We demonstrate the utility of this derivation for

several applications, including cage-based implicit 3D

model deformations (i.e. Variational MVC deformations).
This technique allows for easy and interactive model de-

formations with sparse positional, rotational and smooth-

ness constraints.

The cages produced by our algorithm can be di-
rectly re-used for further manipulations, which makes

our framework directly compatible with existing soft-

ware supporting MVC-based deformations. In addition,

we provide as supplemental material a lightweight C++
implementation of our derivation, enabling its usage in

further optimization problems involving constrained in-

terpolation.

1.1 Related work

Boundary value interpolation through barycentric co-

ordinates has been widely studied in the case of con-

vex domains, first in 2D [4, 5, 22], and more recently in

higher dimensions [27, 28]. Several techniques have been

proposed to extend these interpolants to non-convex 2D
domains [9, 10, 11, 14, 21]. In particular, Floater in-

troduced a coordinate system motivated by the Mean

Value Theorem, that smoothly interpolates function val-

ues defined on concave 2D polygons [11].

The generalization of these techniques to non-convex

3D domains has been motivated mostly by computer

graphics applications, in particular interactive shape
deformation. In this setting, a 3D shape (in the form

of a triangle soup, point cloud or volumetric mesh) is

enclosed by a closed triangle surface called a cage, from

which barycentric coordinates are computed. A defor-

mation of the cage yields a transformation of its em-
bedding functions fx, fy and fz. These functions can

be interpolated efficiently and smoothly in the interior

space enclosed by the cage, providing a mean to inter-

actively deform the interior 3D shape. Mean Value Co-
ordinates (MVC) have been generalized independently

to non-convex 3D domains by Floater [12], Ju et al.

[17] and further by Langer et al. [18], with applications

to boundary value interpolation, volumetric texturing,

shape deformation and speed-up of deformations based
on non-linear systems [15]. To overcome artifacts oc-

curring in highly concave portions of the cage, Joshi

et al. [16] introduced the Harmonic Coordinates (HC).

However, these coordinates do not admit a closed form
expression and require a numerical solver for their com-

putation. Lipman et al. [20] introduced the Green Co-

ordinates (GC), which induce near-conformal (detail

MVC derivatives on triangular meshes 3

preserving) transformations and which admit a closed

form expression. However, these coordinates define an

approximation scheme, not an interpolation one.

Among the existing barycentric coordinate systems

which support non-convex 3D domains and which ad-

mit closed-form expressions (MVC and GC), the ex-
pressions of the Jacobian and the Hessian are only known

for the Green Coordinates [2, 26]. In particular, Ben

Chen et al. [2] proposed an implicit cage-based defor-

mation technique called Variational Harmonic Maps

(VHM), where the target embedding of the cage is au-
tomatically optimized from sparse user-imposed posi-

tional constraints with rotational and smoothness con-

straints respectively involving the Jacobian and the Hes-

sian of the deformation. As the 3D values attributed to
the normals of the cage triangles are de-correlated from

the 3D values attributed to its vertex positions in their

optimization process, the cage cannot be manipulated

in a post process for further detail editing. In this work,

we introduce these expressions for functions interpo-
lated with Mean Value Coordinates. We also develop

an application to implicit cage-based transformations

similar to VHM [2]. In contrast to VHM, the solution

of the optimization process does not involve the nor-
mals of the cage triangles, hence the cages generated

by this technique cannot be exploited in a consistent

manner for post-processing tasks. On the contrary, the

cages produced by our algorithm can be directly re-used

for further manipulations, which makes our framework
directly compatible with existing software supporting

MVC-based deformations.

1.2 Contributions

This paper makes the following contributions:

1. the closed-form expressions of the Jacobian and the

Hessian of Mean Value Coordinates, both in 2D and
3D – these expressions are more accurate than a

variety of experimented Finite Difference schemes

and they are not prone to numerical instability;

2. a thorough analysis of the degenerate configurations

of these expressions, along with accurate alternate
approximations for these configurations;

3. an implicit cage-based transformation technique us-

ing Mean Value Coordinates, calledVariational MVC

Deformation, which interactively optimizes the tar-
get cage embedding given sparse user positional con-

straints, while respecting smoothness and rotational

constraints;

1.3 Overview

We first review Mean Value Coordinates in Sec. 2. The

core contribution of our work, the derivation of the Ja-

cobian and Hessian, is presented in Sec. 3 through 6. In

particular, Sec. 4 and 5 provide the specific results for

the 2D and 3D cases respectively.
As the derivation of the Jacobian and the Hessian

is relatively involved, for the reader’s convenience, we

highlighted the final expressions with rectangular boxes ,

whereas the final expressions for degenerate cases are
highlighted with a

✞✝ ☎✆ellipsoidal box . Note, that the deriva-

tion details are given in Appendix, provided as supple-

mental material.

Experimental evidence of the accuracy of our deriva-

tion is presented in Sec. 7.
Finally we present applications demonstrating the

utility of our contributions in Sec. 8.

2 Background

In this section, we review the formulation of Mean Value
Coordinates in 2D and 3D [17].

2.1 Mean Value Coordinates

Similar to [17], we note p[x] a parameterization of a
closed (d−1)-manifold mesh (the cage) M embedded in

R
d, where x is a (d− 1)-dimensional parameter, and nx

the unit outward normal at x. Let η be a point in R
d

expressed as a linear combination of the positions pi of

the vertices of the cage M :

η =

∑

i wipi
∑

i wi

=
∑

i

λipi

where λi is the barycentric coordinate of η with respect

to the vertex i.

Let φi[x] be the linear function on M which maps

the vertex i to 1 and all other vertices to 0.
The definition of the coordinates λi should guaran-

tee linear precision (i.e. η =
∑

i λipi).

Similar to [17], we note Bη(M) the projection of the

manifold M onto the unit sphere centered around η,
and dSη(x) the infinitesimal element of surface on this

sphere at the projected point (dSη(x) =
(p[x]−η)t·nx

|p[x]−η|3
dx in

3D)

Since
∫

Bη(M)

p[x]−η

|p[x]−η|
dSη(x) = 0 (the integral of the

unit outward normal onto the unit sphere is 0 in any

dimension d ≥ 2), the following equation holds:

η =

∫

Bη(M)

p[x]
|p[x]−η|

dSη(x)
∫

Bη(M)
1

|p[x]−η|
dSη(x)

4 Jean-Marc Thiery et al.

By writing p[x] =
∑

i φi[x]pi ∀x, with
∑

i φi[x] = 1, we

have:

η =

∑

i

∫

Bη(M)

φi[x]

|p[x]−η|
dSη(x)pi

∫

Bη(M)
1

|p[x]−η|
dSη(x)

The coordinates λi are then given by:

λi =

∫

Bη(M)

φi[x]

|p[x]−η|
dSη(x)

∫

Bη(M)
1

|p[x]−η|
dSη(x)

and the weights wi such that λi =
wi∑
i wi

are given by:

wi =

∫

Bη(M)

φi[x]

|p[x]− η|
dSη(x) (1)

This definition guarantees linear precision [17]. It also

provides a linear interpolation of the function prescribed
at the vertices of the cage onto its simplices and it

smoothly extends it to the entire space. This construc-

tion of Mean Value Coordinates is valid in any dimen-

sion d ≥ 2. In the following, we present their computa-

tion in 2D and in 3D, as they were introduced in [17].

2.2 3D Mean Value Coordinates computation

The support of the function φi[x] is only composed of
the adjacent triangles to the vertex i (noted N1(i)).

Eq. 1 can be re-written as wi =
∑

T∈N1(i) w
T
i , with

wT
i =

∫

Bη(T)

φi[x]

|p[x]− η|
dSη(x) (2)

Given a triangle T with vertices t1, t2, t3, the following

equation holds:

∑

j

wT
tj
(ptj − η) =

∫

Bη(T)

∑

j φtj
[x](ptj − η)

|p[x]− η|
dSη(x)

=

∫

Bη(T)

p[x]− η

|p[x]− η|
dSη(x) , mT

(3)

The latter integral is the integral of the unit outward

normal on the spherical triangle T = Bη(T) (see Fig. 2).

By noting the unit normal as nT
i =

NT
i

|NT
i

|
, with

NT
i , (pti+1 − η) ∧ (pti+2 − η) (see Fig.2), mT is given by

(since the integral of the unit normal on a closed surface
is always 0):

mT =
∑

i

1

2
θTi n

T
i (4)

As suggested in [17], the weights wT
tj

can be obtained

by noting AT the 3x3 matrix {pt1 − η, pt2 − η, pt3 − η}

(where t denotes the transpose):

{wT
t1
, wT

t2
, wT

t3
}t = AT−1

·mT

Fig. 2 Spherical edge Ē (left) and triangle T̄(right).

Since NT
i

t
· (ptj − η) = 0 ∀i 6= j and NT

i

t
· (pti − η) =

det(AT) ∀i, the final expression for the weights is given

by:

wT
ti

=
NT

i

t
·mT

NT
i

t
· (pti − η)

=
NT

i

t
·mT

det(AT)
∀η /∈ Support(T) (5)

where Support(T) denotes the support plane of T , i. e.

Support(T) = {η ∈ R3|det(AT)(η) = 0}.

2.3 2D Mean Value Coordinates computation

Let I2 be the 2× 2 identity matrix and Rπ
2
the rotation

matrix
[

0 −1
1 0

]

.

In 2D, the orientation of an edge E =

e0e1 of a closed polygon is defined by

the normal nE :

nE =
Rπ

2
(pe1 − pe0)

|pe1 − pe0 |

It defines consistently the interior and

the exterior of the closed polygon. Then, similarly to
the 3D case:

∑

j

wE
ej

· (pej − η) = mE =
∑

j

nE
j (6)

with:

nE
j =

NE
j

|NE
j |

, NE
0 = Rπ

2
(η − pe0), NE

1 = −Rπ
2
(η − pe1)

Therefore:

mE = Rπ
2
(
η − pe0
|η − pe0 |

−
η − pe1
|η − pe1 |

) (7)

Since (pej − η)t ·NE
j = 0 (Fig.2), we obtain wE

i with:

wE
ei

=
mEt

·NE
i+1

(pei − η)t ·NE
i+1

(8)

MVC derivatives on triangular meshes 5

3 Derivation Overview

In the following, we present the main contribution of the
paper: the derivation of the Jacobians and the Hessians

of Mean Value Coordinates. In this section, we briefly

give an overview of the derivation.

Let f : M → R
d be a piecewise linear field defined on

M (in 2D, M is a closed polygon, in 3D, M is a closed

triangular mesh). As reviewed in the previous section,
f can be smoothly interpolated with Mean Value Co-

ordinates for any point η of the Euclidean space:

f(η) =
∑

i

λi · f(pi)

Then, the Jacobian and the Hessian of f , respec-

tively noted Jf and Hf , are expressed as the linear

tensor product of the values f(pi) with the gradient
−→
▽λi

and the Hessian Hλi of the coordinates respectively:
{

Jf =
∑

i f(pi) ·
−→
▽λi

t

Hf =
∑

i f(pi) ·Hλi

Since λi =
wi∑
j wj

,

−→
▽λi =

−→
▽wi
∑

j wj

−
wi ·

∑

j

−→
▽wj

(
∑

j wj)2
(9)

Then, the Hessian can be obtained with the following

equations

Hλi =
Hwi
∑

j wj

−
wi

∑

j Hwj

(
∑

j wj)2

−

−→
▽wi ·

∑

j

−→
▽(wj)

t +
∑

j

−→
▽(wj) ·

−→
▽wi

t

(
∑

j wj)2

+
2wi(

∑

j

−→
▽wj) · (

∑

j

−→
▽wj)

t

(
∑

j wj)3

(10)

The above expressions are general and valid for the 2D

and 3D cases. Thus, in order to derive a closed-form

expression of the gradient and the Hessian of the Mean

Value Coordinates λi, one needs to derive the expres-
sions of

−→
▽wi (Eq. 9) and Hwi (Eq. 10). The expressions

of these terms are derived in Sec. 4.1 and Sec. 4.2 re-

spectively for the 2D case and in Sec. 5.1 and Sec. 5.2

for the 3D case.

3.1 Properties

Functions interpolated by means of Mean Value Coor-

dinates as previously described have the following prop-

erties:

1. they are interpolant on M

2. they are defined everywhere in R
d

3. they are C∞ everywhere not on M

4. they are C0 on the edges (resp. vertices) of M in 3D

(resp. in 2D)

Since these are interpolant of piecewise linear func-

tions defined on a piecewise linear domain, they cannot

be differentiable on the edges of the triangles (resp. the

vertices of the edges) of the cage in 3D (resp. in 2D).
Although, as they are continuous everywhere, they may

admit in these cases directional derivatives like al-

most all continuous functions do. Recall that the di-

rectional derivative of the function f in the direction

u is the value ∂fu(η) = limǫ→0+
f(η+ǫ·u)−f(η)

ǫ
, with u ∈

R
3, ||u|| = 1, ǫ ∈ R, which strongly depends on the ori-

entation of the vector u where the limit is considered.

These derivatives cannot be used to evaluate nor con-

strain the function around the point in general with
a single gradient (or Jacobian if the function is multi-

dimensional).

In this paper, we provide formulae for the 1st and

2nd order derivatives of the Mean Value Coordinates

everywhere in space but on the cage.

4 MV-Gradients and Hessians in 2D

For conciseness, the details of this derivation are given

in Appendix (additional material) and only the final
expressions are given here.

In the following, we note (pq) the line going through

the points p and q, and [pq] the line segment between

them.

4.1 Expression of the MV-gradients

Given an edge E = e0e1, in the general case where

(pei − η)t ·NE
i+1 6= 0(η /∈ (pe0pe1)), the gradient of the weights

is given by the following expression:

−→
▽wE

ei
=

JmEt
·NE

i+1

(pei − η)t ·NE
i+1

+

∑

j w
E
ej
NE

i+1

(pei − η)t ·NE
i+1

(11)

∀η /∈ (pe0pe1)

with

JmE = Rπ
2
(

I2
|η − pe0 |

−
I2

|η − pe1 |

−
(η − pe0) · (η − pe0)

t

|η − pe0 |
3

+
(η − pe1) · (η − pe1)

t

|η − pe1 |
3

)

(12)

6 Jean-Marc Thiery et al.

Special case: η ∈ (pe0pe1), /∈ [pe0pe1]✗
✖

✔
✕

−→
▽wE

ei
= (
∑

j

NE
j

t
·NE

i+1

2|E||NE
j |3

+
(−1)i+j

|E||NE
j |

)nE (13)

∀η ∈ (pe0pe1), /∈ [pe0pe1]

4.2 Expression of the MV-Hessians

We define δx =

(

1
0

)

and δy =

(

0
1

)

.

HwE
ei

=

(

∂x(
−→
▽wE

ei
)t

∂y(
−→
▽wE

ei
)t

)

(14)

∀η /∈ (pe0pe1)

with















∂x(
−→
▽wE

ei
) =

CE
x

t
·NE

i+1

(pei−η)t·NE
i+1

∂y(
−→
▽wE

ei
) =

CE
y

t
·NE

i+1

(pei−η)t·NE
i+1















∀η /∈ (e0e1).

and

{

CE
x =

∑

i δx ·
−→
▽wE

ei

t
+ ∂x(Jm

E) +
∑

i ∂x(w
E
ei
) · I2

CE
y =

∑

i δy ·
−→
▽wE

ei

t
+ ∂y(Jm

E) +
∑

i ∂y(w
E
ei
) · I2

and

∂c(Jm
E) =Rπ

2
· (

(η − pe1)(c)I2

|η − pe1 |
3

−
(η − pe0)(c)I2

|η − pe0 |
3

−
δc · (η − pe0)

t + (η − pe0) · δc
t

|η − pe0 |
3

+
3(η − pe0)(c)(η − pe0) · (η − pe0)

t

|η − pe0 |
5

+
δc · (η − pe1)

t + (η − pe1) · δc
t

|η − pe1 |
3

−
3(η − pe1)(c)(η − pe1) · (η − pe1)

t

|η − pe1 |
5

)

Special case: η ∈ (pe0pe1), /∈ [pe0pe1]✎
✍

☞
✌

HwE
ei

=
−→
▽(dwE

ei
) · nt

E + nE ·
−→
▽(dwE

ei
)t

∀η ∈ (pe0pe1), /∈ [pe0pe1] (15)

with

−→
▽(dwE

ei
) = Rπ

2
·
∑

j

3(−1)i+1NE
j + (−1)jNE

i+1

2|E||NE
j |3

+Rπ
2
·
∑

j

3(−1)j+1(NE
j

t
·NE

i+1)N
E
j

2|E||NE
j |5

5 MV-Gradients and Hessians in 3D

For conciseness, the details of this derivation are given

in Appendix (additional material) and only the final

expressions are given here.

In the following, we note ei(x) a set of functions
that are well-defined functions on]0, π[and admit well-

controlled Taylor expansions around 0. These Taylor

expansions are given in Appendix (additional mate-

rial). Note, that the functions ei(x) are not defined
in 0 and that we make use of the Taylor expansions

to estimate their values near 0 as well as in 0. The

reason these terms appear in the final expressions is,

that we organized the terms in order to provide for-

mulae whose evaluation converges everywhere, avoid-
ing the typical 0/0 and +∞ + −∞ cases for example.

To simplify the expressions,

we translate all 3D quanti-

ties to the origin (i. e. p̂ :=

p−η). We also note uij = −→ei
t·

−→ej the dot product between

edges i and j, mi = (pti+2 +

pti+1)/2 the midpoint of the

edge i of the triangle, and
Jij = JNT

i ·NT
j the vectorial

product between edge i of the triangle and the normal

of the triangle supported by the edge j (see inset). From

the expression of NT
j , we obtain that its jacobian equals

JNT
j = −→ej [∧] (16)

, where k[∧] is the skew 3× 3 matrix (i.e. k[∧]
t = −k[∧])

such that k[∧] · u = k ∧ u ∀k, u ∈ R
3.

5.1 Expression of the MV-Gradients

−→
▽wT

ti
=

JmT t
·NT

i

det(AT)
+

∑

j w
T
tj
NT

i

det(AT)
(17)

∀η /∈ Support(T)

with

JmT = −
∑

j

e1(θ
T
j)N

T
j · Jjj

t

2(| ˆptj+2 || ˆptj+1 |)
3

(18)

+
∑

j

NT
j · m̂j

t

(| ˆptj+2
|| ˆptj+1

|)2
+
∑

j

e2(θ
T
j)JN

T
j

2| ˆptj+2
|| ˆptj+1

|

where e1(x) =
cos(x) sin(x)−x

sin(x)3
and e2(x) =

x
sin(x)

.

Special case: η ∈ Support(T), /∈ T

MVC derivatives on triangular meshes 7✬

✫

✩

✪

−→
▽wT

ti
= −

∑

j

e2(θ
T
j)uij

4|T || ˆptj+2
|| ˆptj+1

|
nT

−
∑

j

e1(θ
T
j)ujjN

T
i

t
·NT

j

8|T |(| ˆptj+2 || ˆptj+1 |)
3
nT

+
∑

j

NT
i

t
·NT

j

4|T |(| ˆptj+2 || ˆptj+1 |)
2
nT

∀η ∈ Support(T), /∈ T

5.2 Expression of the MV-Hessians

We define δx =





1
0
0



, δy =





0
1
0



, and δz =





0
0
1



.

HwT
ti

=
1

det(AT)







NT
i

t
· ∂x(Jm

T)

NT
i

t
· ∂y(Jm

T)

NT
i

t
· ∂z(Jm

T)






(19)

+
1

det(AT)
(NT

i · (
∑

j

−→
▽wT

tj
)t +

∑

j

−→
▽wT

tj
·NT

i

t
)

with

∂c(Jm
T) =

∑

j

e3(θ
T
j)(Jjj)(c)N

T
j · Jjj

t

2(| ˆptj+2 || ˆptj+1 |)
5

−
∑

j

e4(θ
T
j)(m̂j)(c)N

T
j · Jjj

t

(| ˆptj+2 || ˆptj+1 |)
4

−
∑

j

e1(θ
T
j)(∂c(N

T
j) ·NT

j

t
+NT

j · ∂c(N
T
j)

t
) · JNT

j

2(| ˆptj+2
|| ˆptj+1

|)3

+
∑

j

∂c(N
T
j) · (m̂j)

t

(| ˆptj+2 || ˆptj+1 |)
2
−
∑

j

e5(θ
T
j)(Jjj)(c)JN

T
j

2(| ˆptj+2 || ˆptj+1 |)
3

+
∑

j

e6(θ
T
j)(m̂j)(c)JN

T
j

(| ˆptj+2 || ˆptj+1 |)
2

−
∑

j

NT
j · δct

(| ˆptj+2 || ˆptj+1 |)
2

−
∑

j

3e1(θ
T
j)N

T
j · Jjj

t

2(| ˆptj+2 || ˆptj+1 |)
3

(

(ˆptj+1
)(c)

| ˆptj+1 |
2

+
(ˆptj+2

)(c)

| ˆptj+2 |
2

)

+
∑

j

2NT
j · m̂j

t

(| ˆptj+2 || ˆptj+1 |)
2

(

(ˆptj+1)(c)

| ˆptj+1 |
2

+
(ˆptj+2)(c)

| ˆptj+2 |
2

)

+
∑

j

e2(θ
T
j)JN

T
j

2| ˆptj+2 || ˆptj+1 |

(

(ˆptj+1
)(c)

| ˆptj+1 |
2

+
(ˆptj+2

)(c)

| ˆptj+2 |
2

)

∀c ∈ {x, y, z}

where (noting c := cos(x) and s := sin(x))
e3(x) = (3c(cx− s) + cs3)/s5, e4(x) = (3(cx− s) + s3)/s3,

e5(x) = (s− xc)c/s3, and e6(x) = (s− xc)/s.

Special case: η ∈ Support(T), /∈ T✎
✍

☞
✌

HwT
ti

=
−→
▽dwT

i · nt
T+nT ·

−→
▽dwT

i

t

∀η ∈ Support(T), /∈ T (20)

with

− 2|T |
−→
▽dwT

i = −
∑

j

e1(θ
T
j)uijJjj

2(| ˆptj+2
|| ˆptj+1

|)3

+
∑

j

uijm̂j

(| ˆptj+2 || ˆptj+1 |)
2
+
∑

j

e7(θ
T
j)ujj(N

T
i

t
·NT

j)Jjj

4(| ˆptj+2 || ˆptj+1 |)
5

−
∑

j

ujj(N
T
i

t
·NT

j)m̂j

(| ˆptj+2 || ˆptj+1 |)
4

−
∑

j

e1(θ
T
j)ujj(Jji + Jij)

4(| ˆptj+2 || ˆptj+1 |)
3

−
∑

j

(NT
i

t
·NT

j)Jjj

(| ˆptj+2 || ˆptj+1 |)
4
−
∑

j

2 cos(θTj)(N
T
i

t
·NT

j)m̂j

(| ˆptj+2 || ˆptj+1 |)
3

+
∑

j

(Jji + Jij)

2(| ˆptj+2
|| ˆptj+1

|)2

where e7(x) =
2 cos(x) sin(x)3+3(sin(x) cos(x)−x)

sin(x)5
.

6 Continuity between the general case and the

special case

We obtained the formulae for the gradient and the Hes-

sian of wT
i (η) in the general case, when the point of in-

terest η does not lie on the triangle T , and in the special

case when η lies on it.

As MVC are C∞ everywhere not on M, these for-
mulae are guaranteed to converge, since in particular,

the gradient and the Hessian are continuous functions

everywhere not on M.

The same holds in 2D where the distinction is made

for the computation of wE
i (η) whether η lies on the line

supported by the edge E or not.

7 Experimental Analysis

In this section, we present experimental evidence of the

numerical accuracy of our derivation and provide com-

putation timings.

7.1 Complexity

For each point η, computing the MVC, the MVC gra-

dients and the MVC Hessians is linear in the number

of vertices and edges (faces in 3D) of the cage.

7.2 C++ Implementation

We implemented the computation of the Mean Value

Coordinates derivatives in C++, following the layout
described in Sec. 4 and 5. This C++ implemen-

tation is provided as additional material [25].

As it only requires simple matrix-vector products, no

8 Jean-Marc Thiery et al.

Fig. 3 Validation based on a manufactured solution (group
of rigid transformations) for the 2D case. The histograms
show the violation of the correctness conditions associated
with the manufactured solution (95% most relevant samples).
Top: simple floating point precision (output precision: 10−5).
Bottom row: double precision (output precision: 10−14). Size
of the diagonal of the domain: ∼ 1000.

third-party library is needed. To implement the applica-

tions discussed later in the paper, matrix Singular Value

Decomposition needs to be performed, for instance to

project Jacobian matrices onto the space of 2D/3D ro-
tations. We used the GNU Scientific Library for that

purpose.

7.3 Global validation with a manufactured solution

We first inspect the numerical accuracy of our deriva-

tion using the Method of Manufactured Solution (MMS),

a popular technique in code verification [1, 6, 7]. Such
a verification approach consists in designing an input

configuration such that the resulting solution is known

a priori. Then the actual verification procedure aims

at assessing that the solution provided by the program

conforms to the manufactured solution. In other words,
MMS verification consists in designing exact ground-

truths for accuracy measurement. However, note that

this verification is not general, as it only assesses cor-

rectness for the set of manufactured solutions.

Manufactured solution: As Mean Value Coordinates

provide smooth interpolations, a global rigid transfor-

mation of the cage pi = T + R · pi should infer a global

rigid transformation of the entire Euclidean space. In
particular, the Jacobians of the embedding function f

of the transformed cage (f : R3 → R
3, f(pi) = pi) should

be equal to R everywhere, and its Hessian should be

Fig. 4 Validation based on a manufactured solution (group
of rigid transformations) for the 3D case. The violation of
the correctness conditions (from transparent blue, low values,
to opaque red, high value) is measured on each vertex of a
1003 voxel grid. The full value range (FR) is given below
each image while only the 99% most significant samples are
displayed (DI). Size of the diagonal of the domain: ∼600.

exactly 0. Then our manufactured configuration is the
space of global rigid transformations and our manufac-

tured solution is defined by Jf = R and Hf = 0.

Given this manufactured solution, we can derive cor-

rectness conditions for the Jacobian evaluation from the
following expression:

Jf =
∑

i

f(pi) ·
−→
▽λi

t = R ·
∑

i

pi ·
−→
▽λi

t + T ·
∑

i

−→
▽λi

t

Thus, to conform to the manufactured solution Jf = R,

the following equations should be satisfied:
{

∑

i

−→
▽λi

t = (0, 0, 0)
∑

i pi ·
−→
▽λi

t = I3
(21)

As for the Hessian evaluation, we can derive similar
correctness conditions:

Hfc =
∑

i

fc(pi)Hλi

=
∑

∀d∈{x,y,z}

Rcd

∑

i

pi(d)Hλi + Tc

∑

i

Hλi ∀c = {x, y, z}

where Tx, Ty and Tz are the first, second and third coor-
dinate of the vector T respectively (similarly for Rcd).

Thus, to conform to the manufactured solutionHf =

0, the following equations should be satisfied:


















∑

i Hλi = 03
∑

i pi(x)Hλi = 03
∑

i pi(y)Hλi = 03
∑

i pi(z)Hλi = 03

(22)

Note that both the Jacobian and Hessian correctness
conditions (Eq. 21 and 22) are not functions of the rigid

transformation parameters; they also correspond to the

constant and linear precision properties of the MVC.

MVC derivatives on triangular meshes 9

These properties remain valid for arbitrary translations

and rotations and thus cover the entire group of rigid

transformations.

Fig. 3 shows numerical evaluations of these correct-

ness conditions for different cages, at random points (in

grey) of a 2D domain. In particular, the histograms plot

the entries of the left-hand term (a vector or a matrix)

of each of these equations, which should all be zero
(for the second Jacobian condition, the entries of the

matrix
∑

i pi ·
−→
▽λi

t − I2 are shown). As shown in this

experiment, the error induced by the violation of the

correctness conditions is close to the actual precision
of the data structure employed for real numbers (float

or double). Also, the error slightly increases when the

cage is denser. Indeed, with dense cages, it is more likely

that the randomly selected samples lie in the vicinity

of the support of the cage edges. These configurations
correspond to the special cases discussed earlier and for

which Taylor expansions are employed.

Fig. 4 shows a similar experiment in 3D, with a
coarse cage (black lines). Similarly, most of the errors

are located on the tangent planes of the triangles (spe-

cial cases). Note, that an important part of the error

yields from the samples which are located in the vicin-
ity of the cage triangle, a configuration for which we

do not provide a closed-form expression, as discussed

in Sec. 3. Interestingly, the errors on the correctness

conditions for the Jacobian and the Hessian are com-

parable to the errors induced by the actual computa-
tion of the Mean Value Coordinates λi. In the example

shown in Fig. 4, the error range of the positional re-

construction on the grid (i. e. the violation of the linear

precision property of the MVC) is [0, 1.08 10−5], which
is larger than the error ranges observed in two of the

six correctness condition evaluations of the derivatives.

7.4 Taylor approximations behavior

Validation based on manufactured solutions enables as-

sessing the accuracy of a numerical computation on a

sub-set of pre-defined configurations. However, in our

setting, designing manufactured solutions correspond-

ing to other configurations than rigid transformations
is highly involved.

Thus, to extend our analysis to arbitrary configura-

tions, we present in this paragraph an analysis of the
Taylor approximations of MVC-functions based on our

derivation.

In contrast to manufactured solutions, this analysis
is not meant to validate our results, but simply analyse

how functions expressed by MVC behave in the local

neighborhood of a point.

Fig. 5 Red curve: Linear approximation. Blue curve:
Quadratic approximation. Plots show on a logarithmic
scale the radial function defined as the average of the ab-
solute error on the sphere of radius r (r ∈ [0, 1]). The evalu-
ation points η were taken on the skeleton shown in the orig-
inal cage (here are displayed the evaluations for the points
#0,#1,#2,#3,#4,#5, but these are representative of the
curves we have for all locations). For each plot, the spheres on
the top show the linear approximation error from two points
of view (red box), the others show the quadratic approxima-
tion error from the same two points of view (blue box). From
the tangent, we can assess the quadratic convergence of the
linear approximation scheme and the cubic convergence of the
quadratic approximation scheme.

For regular functions, function values in the neigh-

borhood of a point can be approximated up to several

orders of precision, using Taylor approximations:

f(η + dη) = f(η) +
−→
▽f t

η · dη + o(||dη||)

f(η + dη) = f(η) +
−→
▽f t

η · dη +
1

2
dηt ·Hfη · dη + o(||dη||2)

In the following, we use these approximations to analyze

the behavior of our derivation for arbitrary configura-

tions. In particular, we evaluate the following errors:

E1 = ||f(η + dη)− f(η)−
−→
▽f t

η · dη||

E2 = ||f(η + dη)− f(η)−
−→
▽f t

η · dη −
1

2
dηt ·Hfη · dη||

As the evaluation neighborhood shrinks to a point, these

errors should tend to zero, with a horizontal tangent.

Fig. 5 shows plots of these errors (logarithmic scale)

on an arbitrary deformation function defined by user
interactions:

– On regular functions, the derivatives of the MVC

characterize the interpolated function correctly: the
maximum error is 7. 10−3 (for a bounding diago-

nal of 316). Note, that the radius r ∈ [0, 1] of the

evaluation neighborhood where they can be used to

10 Jean-Marc Thiery et al.

Fig. 6 Comparison with Finite Differences: the domain
are the same as described previously in Fig. 5, and the eval-
uations are performed on point 0. x axis: size of the stencil
for Finite Differences. y axis: difference between Finite Dif-
ferences approximations of the derivatives and our formulae.
Axes of the plots are in logarithmic scale. The functions that

are plotted are
−→
▽λerr(r) =

√

∑

i
||
−→
▽λi −

−→
▽λi

FD(r)||2 and

Hλerr(r) =
√

∑

i ||Hλi −Hλi
FD(r)||2.

approximate the function is not too small. There-
fore, our derivative formulation provides enough ac-

curacy to enforce sparse derivative constraints on

local neighborhoods such as those expressed in the

applications described in Sec. 8.
– The linear approximation can sometimes produce

more accurate approximations in average than the

quadratic approximation on a large neighborhood,

while the quadratic approximation provides results

which are less direction-dependant.
– The induced errors indeed tend to zero when the

neighborhood shrinks to a point and the tangent of

the curves in logarithmic scale illustrates that the

error conforms to the expected form (O(||dη||2) for
the linear approximation,O(||dη||3) for the quadratic

approximation). Indeed, remember, that if y = λ·xn,

then log(y) = log(λ) + n · log(x).

7.5 Comparison with Finite Difference schemes

In this section we use Finite Differences schemes to de-

rive the gradient and the Hessian of the MVC, to com-

pare with the expressions we obtained.

A conventional scheme for approximations of first

and second order derivatives at point (x, y, z) is the fol-

lowing:
fx ≃ f(x+h,y,z)−f(x−h,y,z)

2h

fxx ≃ f(x+h,y,z)−2f(x,y,z)+f(x−h,y,z)

h2

fxy ≃ f(x+h,y+h,z)−f(x+h,y−h,z)−f(x−h,y+h,z)+f(x−h,y−h,z)

4h2

. . .

This scheme requires 19 evaluations of the function

in total. Results of convergence of Finite Differences

(FD) of the Mean Value Coordinates derivatives us-

ing this scheme are presented on an example in Fig. 6,

using double precision and 256 bits precision (using
mpfrc++, which is a c++ wrapper of the GNU mul-

tiple precision floating point library (mpfr)). The do-

main is the same as described previously in Fig. 5,

and the plots correspond here to the evaluation made
in point 0. The error functions that are plotted are
−→
▽λerr(r) =

√

∑

i ||
−→
▽λi −

−→
▽λi

FD(r)||2 and Hλerr(r) =
√

∑

i ||Hλi −Hλi
FD(r)||2. Note, that these plots are rep-

resentative of all the experiments we made (i. e. with
other cages, at other locations, etc.).

These results validate empirically our formulae, as
the Finite Differences scheme converges to our formulae

when the size of the stencil tends to 0 (Fig. 6, using 256

bits precision). It also indicates that Finite Differences

schemes are not suited to evaluate MVC derivatives in

real life applications (see Fig. 11 for example), as these
schemes diverge near 0 when using double precision only

(Fig. 6 blue and red curves). Note, that this behavior

is not typical of Mean Value Coordinates, but rather of

finite differences schemes. The choice of the size of the
stencil is a typical difficulty in finite difference schemes.

Choosing a size which is too small may introduce large

rounding errors [8, 24]. Finding the smallest size which

minimizes rounding error is both machine dependent

and application dependent (in our case ≃ 0.01 on the
example of Fig. 6). Moreover, its has been shown that

all finite difference formulae are ill-conditioned [13] and

suffer from this drawback. We used different schemes

to approximate the derivatives using Finite Differences
methods (9 points evaluation + linear system inversion,

19 points evaluation on a 3×3×3-stencil, tricubic inter-

polation on a 4×4×4-stencil), and that they all diverge

in the same manner when using double precision.

The error curves are also similar when looking at the

deviation of the gradients and Hessians of the function

itself that is interpolated (e. g. the deformation func-

tion in Fig. 5), instead of the gradients and Hessians of
the weights themselves.

7.6 Comparison with Automatic Differentiation

Along with Finite Differences, Automatic Differenti-

ation (AD) is also a popular class of techniques for

the numerical evaluation of derivatives of functions ex-

pressed by a computer program. In this sub-section,
we compare for the 3D case our formulae to an eval-

uation provided by an AD software, the C++ library

ADOL-C. As expected, in practice, the computation of

MVC derivatives on triangular meshes 11

Input Cage Model Coord. Only Coord. + Deriv. Coord. + Deriv. Coord. + Deriv.
(#V / #T) (ms) [Analytic] (ms) [FD] (ms) [TriC] (ms)

Beetle (32 / 60) 0.060 0.781 1.157 4.196
Beetle (130 / 256) 0.256 3.261 4.881 17.625
Beetle (514 / 1024) 1.027 13.171 19.620 70.768
Armadillo (164 / 324) 0.324 4.130 6.174 22.428
Monster (128 / 252) 0.252 3.212 4.809 17.503
Monster (506 / 1008) 1.013 12.860 19.389 69.900

Table 1 Performance of the computation of the 3D Mean Value Coordinates and their gradients and Hessians at a single point.
Tests were performed on 1000 points and average timings are presented. For the sake of completeness, we present timings of
classical Finite Differences (FD) methods that require 19 evaluations in total, and tricubic approximations (TriC) that require
65 evaluations in total.

��������

��������

�� �� ��

Fig. 7 Comparison with Automatic Differentiation
tools. a) Histogram of errors (x axis is logarithmic) of the
computation of the gradients of the weights by ADOL-C (on
1000 points randomly distributed in the model’s bounding
box). b) Histogram of errors (x axis is logarithmic) of the
computation of the Hessians of the weights by ADOL-C on
the same set. c) Error of the computation of the derivatives
by ADOL-C on the special case of the points lying on the
support of the cage’s triangles (x axis represents the distance
to the support plane).

the Jacobian and Hessian with AD is slower than the
evaluation with our formulae (20 times slower in aver-

age). A more problematic drawback of AD is its nu-

merical stability, especially in regions nearby the sup-

port of the cage triangles, where the MVC are forced

to zero (they are only defined by continuity and Eq.
5 is not defined in these positions). To the best of

our knowledge, this subtlety cannot be captured effi-

ciently by AD tools. Fig. 7 (a,b) shows histograms

of errors (ie. absolute difference between our formu-
lae and the AD evaluation, |

−→
▽λi(η)−

−→
▽ADλi(η)| and

|Hλi(η)−HADλi(η)|), obtained on a set of 1000 points

randomly distributed in the bounding box of the cage

model (the cage is the Armadillo cage of Fig. 5). Fig. 7

(c) shows the convergence of the values computed by
ADOL-C in the vicinity of the support of the cage tri-

angles (i. e. |
−→
▽wT

ti
(η)−

−→
▽ADwT

ti
(η + ǫnT)| and |HwT

ti
(η)−

HADwT
ti
(η + ǫnT)|). This plot shows that, as the evalu-

ation point gets closer to the support plane, the AD
evaluation diverges. Moreover, in practice, when it lies

exactly on the support plane, the value returned by

ADOL-C is undefined (NaN, Not a Number).

7.7 Timings

Table 1 shows average computation times of the evalu-
ation of the Mean Value Coordinates and their deriva-

tives for several input cages. As the cost of the eval-

uation depends on the occurence of the special cases

(point lying on the support plane of the triangles of
the cage), we performed the computation on a set of

1000 points that were randomly distributed inside the

bounding box of the model, and the average time is

presented. As shown in this table, these computations

take only a few milliseconds, which allows their usage
in interactive contexts. Also, note that in the applica-

tions discussed in the following section, the derivatives

are only evaluated on a very small set of points for con-

straint enforcement.

8 Applications

In this section, we review the applications presented in
the original paper [17], and illustrate the utility of our

contribution for all of them.

8.1 MVC derivatives visualization

In the context of function design/editing/visualization,

the derivatives of the function can be of use to the user,

as they have very often an intuitive meaning.

Fig. 8 Visualization of rotations on the shape skeleton.

12 Jean-Marc Thiery et al.

Fig. 9 Flexible volumetric scalar field design with MVC gradient constraints. Left: Scalar constraints (spheres in the cage).
Right: Gradient constraints (arrows in the cage). Blue and red colors respectively correspond to low and high value/gradient.
In contrast to simple scalar constraints (left), gradient constraints (right) enable to intuitively interact with the shape and the
velocity of the level lines.

For example, in the context of 2D or 3D deforma-

tion, the Jacobian of the transformation J(η) can be
put in the form J(η) = R(η) · B(η) · Σ(η) · B(η)t using

Singular Value Decomposition. These different matri-

ces represent the scales of the transformation (Σ) in

the basis given by B, and the rotation that is applied
afterwards (R) – which can be represented easily as a

vector and an angle (see Fig. 8). In the context of color

interpolation, the gradients of the different channels can

be displayed. In general, the norm of the Hessian pro-

vides the information of how locally rigid the function
is around the point of interest. Using our formulation,

one can obtain these informations at any scale with the

same precision, to the contrary of what finite differences

schemes would provide.

8.2 Flexible volumetric scalar field design

As shown in [17], Mean Value Coordinates can be used
to solve the boundary value interpolation problem for
the definition of volumetric scalar fields, given an in-
put field prescribed on a closed surface. Our deriva-
tion of the MVC gradients and Hessians enables to ex-
tend this application to more flexible volumetric scalar
field designs, in particular by enforcing the gradient
of the interpolated function. Such flexible scalar fields
contribute to volumetric texturing [17] and meshing
[23]. Fig. 9 illustrates this application where the user
sketched gradient constraints inside the volume. To com-
pute a function which satisfies these constraints, a lin-
ear system is solved, where the unknowns are the scalar
field values on the cage. In particular the following en-
ergy is minimized:

E =
∑

vi∈V

wP
i ||
∑

j

λj(vi)fj − fi||
2

+
∑

vi∈M

|| △ fi||
2 +

∑

vi∈G

wG
i ||
∑

j

−→
▽λj(vi) · fj − gi||

2

where V is a set of points where hard constraints are

applied on function values, △fi denotes the cotangent

Laplacian of the function at the vertex ci of the cage,

and G is the set of points where the gradient constraints
are specified. Such an optimization procedure generates

a smooth function on the cage (by minimizing its Lapla-

cian) as well as in the interior volume (thanks to the

MVC) with enforced gradient constraints. As shown in
Fig. 9, the gradient constraints enable interacting with

the shape and the velocity of the level sets of the de-

signed function.

8.3 Implicit Cage Manipulation with Variational MVC

As shown in [2], intuitive, low distortion, volumetric de-

formations can be obtained through a variational frame-

work. In this context, the space of allowed transforma-
tions is explicitly described and the cage deformation

is automatically optimized to satisfy positional con-

straints, while respecting the allowed transformations.

Since our derivation enables to express the Jacobian

and Hessian of the transformation at any point in space
as a linear combination of the cage vertices, the user can

specify rigidity constraints (by minimizing the norm of

the Hessian) or rotational constraints (by setting the

Jacobian to the corresponding value).

The solution to this optimization problem is a 3D
field f : R

3 → R
3, defined everywhere in space using

MVC, which interpolates the transformation of the cage

vertices.

Let P be the set of positional constraints of the
transformation (∀vi ∈ P, f(vi) = vi), J the set of Ja-
cobian constraints (∀vi ∈ J, Jf(vi) = Ji), and H the set
of Hessian constraints (∀vi ∈ H,Hfx(vi) = Hfy(vi) =
Hfz(vi) = 03). The solution is given by minimizing the

MVC derivatives on triangular meshes 13

Fig. 10 Implicit Cage Manipulation with Variational MVC. Red points indicate positional constraints; blue points indicate
unknown rotational constraints. The quality of the produced cages allows the user to edit small details manually by switching
from an implicit manipulation to an explicit manipulation. The same cannot be done with a Green Coordinates solver.

following energy:

E =
∑

vi∈P

(wP
i ||
∑

j

λj(vi)cj − vi||
2)

+
∑

vi∈J

(wJ
i ||
∑

j

cj ·
−→
▽λj

t(vi)− Ji||
2)

+
∑

vi∈H

(wH
i ||

∑

j

Hλj(vi) · cj(x)||
2)

+
∑

vi∈H

(wH
i ||

∑

j

Hλj(vi) · cj(y)||
2)

+
∑

vi∈H

(wH
i ||

∑

j

Hλj(vi) · cj(z)||
2)

where wP , wJ , and wH are weights for the positional, Ja-

cobian, and Hessian constraints respectively. Similarly
to [2], the transformation can be constrained locally to

be a pure rotation. Then, in prescribed locations, the

following property should hold:

Jf(vi)
t · Jf(vi) = I3 ∀vi ∈ J

Note, that the actual values of these Jacobian con-

straints are now unknowns which can be obtained through

an iterative optimization, as described in [2]. Due to the

non-local nature of Mean Value Coordinates (in com-

parison to Green Coordinates), we constrain pure rota-
tions to a subset of the enclosed surface vertices (blue

spheres in Fig. 1 and 10) instead of constraining them

to the medial axis.

Fig. 1 and 10 illustrate the algorithm, where the in-

put surface is shown on the left in its enclosing cage.

In these examples, rotational constraints have been dis-

tributed evenly on the surface (blue points) and only 14
positional constraints have been specified and edited by

the user. As showcased in the accompanying video, the

interactions required by our system are limited and in-

tuitive and our resolution of this optimization process

is fast enough to provide interactive feedback despite a
CPU-only implementation.

Fig. 11 shows a comparison with the results one can

obtain using a Finite Differences scheme in the context
of shape deformation. Using Finite Differences requires

to tune the size of the stencil used for computation of

the MVC derivatives case by case, and it can be difficult

to set it up correctly, resulting in poor reconstructions.

Discussion

Other techniques have been proposed in the past for as-

rigid-as-possible (ARAP) cage-driven shape deforma-

tions. For instance, Borosán et al. [3] presented a tech-

nique which solves for ARAP transformations on the
cage, while interpolating the results in the interior with

MVC. However, as discussed earlier, MVC coordinates

exhibit a very global behavior. Thus, ARAP transfor-

mations on the cage do not necessarily imply ARAP

transformations in the interior. Reciprocally, it is of-
ten necessary to generate non-ARAP transformations

of the cage in order to yield ARAP transformations

in the interior. Instead, our technique enforces ARAP

constraints directly on the enclosed shape.

Variational Harmonic Maps (VHM) [2] use Green

Coordinates as the underlying machinery for deform-
ing shapes in an implicit fashion. Note however, that

the triangle normals are unknowns of the system in

VHM, they can therefore take values arbitrarily far

from the actual normals dictated by the normalization

of the Euclidean cross product of face edges. Hence, the
cages generated by this technique cannot be exploited

in a consistent manner for post-processing tasks. For

instance, loading these cages in a modeling software

supporting Green Coordinates would fail to correctly
reconstruct the enclosed shape if the traditional Eu-

clidean normals were used. Even if the normal solu-

tions provided by the VHM system were used for this

Fig. 11 Comparison with Finite Differences schemes (step:
10−3) in the context of Variational MVC Deformations. The
parameters for the linear system are strictly the same.

14 Jean-Marc Thiery et al.

initial reconstruction, it would be not clear how to up-

date them consistently given some explicit user defor-

mation of the cage. The same remark goes for other

post-processing tasks, such as cage-driven shape inter-

polation, for animation generation based on key-frames
provided by implicit cage manipulation.

On the contrary, our technique (variational MVC)

does not suffer from this drawback as only cage ver-

tex positions are unknowns. Thus, the cages produced
by our algorithm can be manipulated and re-used di-

rectly and consistently with existing software support-

ing MVC based deformations in various post-processing

tasks. Also, as demonstrated in the accompanying video,

our technique allows the user to switch at any time from
implicit to explicit cage manipulation for small detail

tuning, which cannot be done with a solver based on

Green Coordinates. Note however, that it is not clear

how to go from an explicit manipulation to an implicit
manipulation, as the constraints enforced by our sys-

tem are not respected when moving each cage’s vertex

independently from the others. Thus, implicit manip-

ulation of the cage using our system can only be done

before an explicit manipulation, or this editing phase
will be discarded by the system.

9 Conclusion and Future Work

In this paper we have presented the closed form ex-
pressions of the derivatives of Mean Value Coordinates

for piecewise linear cages, both in 2D and 3D. To our

knowledge, this is the first work that provides deriva-

tives of interpolant barycentric coordinates, which can
be used for interpolation of arbitrary functions pre-

scribed on cage vertices. Similar formulae have been

proposed for Green Coordinates already, but they are

limited to the context of shape deformation, and they

are not an interpolant. A full numerical analysis of
the derivation has been carried out and both its accu-

racy and reliability has been demonstrated experimen-

tally. Furthermore, applications involving optimization

problems benefiting from MVC derivative constraint
enforcement have been presented and the utility of our

contribution has been demonstrated.

In future work, we would like to investigate the

possibility of expressing derivatives for Positive Mean

Value Coordinates (PMVC) [19]. The possible negativ-
ity of MVC coordinates has often been discussed as a

drawback in certain contexts. Note however, that this

particular property makes them the only barycentric

coordinates which allow the definition of coordinates
outside of the cage in a straightforward manner. Never-

theless, PMVC can overcome this possible drawback, by

only taking into consideration the cage vertices which

are visible from the point under evaluation, which can

be done very efficiently on the GPU, using the ras-

terization hardware machinery. However, these coordi-

nates are not smooth since the visibility function is not

smooth either. It would be interesting to study in prac-
tice how reliable the MVC derivatives can be when re-

stricted to visibility dependant sub-cages, in order to

mimic the behavior observed with PMVC.

References

1. Babuska I, Oden J (2004) Verification and valida-

tion in computational engineering and science: ba-
sic concepts. Computer Methods in Applied Me-

chanics and Engineering pp 4057–4066

2. Ben-Chen M, Weber O, Gotsman C (2009) Varia-

tional harmonic maps for space deformation. ACM

Trans Graph (ACM SIGGRAPH) pp 1–11
3. Borosán P, Howard R, Zhang S, Nealen A (2010)

Hybrid mesh editing. In: Proc. of Eurographics

4. C L, T D (1989) A mulisided generalization of

Bézier surfaces. ACM Trans Graph 8:204–234
5. E W (1975) A rational finite element basis. Aca-

demic Press, New York

6. Etiene T, Scheiddeger C, Nonato L, Kirby R, Silva

C (2009) Verifiable visualization for isosurface ex-

traction. IEEE Trans on Vis and Comp Graph
(IEEE VIS) 15:1227–1234

7. Etiene T, Nonato L, Scheiddeger C, Tierny J, Pe-

ters TJ, Pascucci V, , Kirby R, Silva C (2011)

Topology verification for isosurface extraction.
IEEE Trans on Vis and Comp Graph

8. Flannery BP, Press WH, Teukolsky SA, Vetterling

W (1992) Numerical recipes in c. Press Syndicate

of the University of Cambridge, New York

9. Floater M (1997) Parameterization and smooth ap-
proximation of surface triangulations. Comp Aided

Geom Design 14:231–250

10. Floater M (1998) Parametric tilings and scattered

data approximation. International Journal of Shape
Modeling 4:165–182

11. Floater M (2003) Mean value coordinates. Comp

Aided Geom Design 20:19–27

12. Floater MS, Kos G, Reimers M (2005) Mean value

coordinates in 3D. Comp Aided Geom Design
22:623–631

13. Fornberg B (1981) Numerical differentiation of an-

alytic functions. ACM Transactions on Mathemat-

ical Software (TOMS) 7(4):512–526
14. Hormann K, Floater M (2006) Mean value coor-

dinates for arbitrary planar polygons. ACM Trans

Graph 25:1424–1441

MVC derivatives on triangular meshes 15

15. Huang J, Shi X, Liu X, Zhou K, Wei LY, Teng SH,

Bao H, Guo B, Shum HY (2006) Subspace gradi-

ent domain mesh deformation. ACM Trans Graph

(ACM SIGGRAPH) 25:1126–1134

16. Joshi P, Meyer M, DeRose T, Green B, Sanocki T
(2007) Harmonic coordinates for character articu-

lation. ACM Trans Graph (ACM SIGGRAPH) 26

17. Ju T, Schaefer S, Warren J (2005) Mean value co-

ordinates for closed triangular meshes. ACM Trans
Graph (ACM SIGGRAPH) 24(3):561–566

18. Langer T, Belyaev A, Seidel HP (2006) Spherical

barycentric coordinates. In: Proc. of Symposium on

Geometry Processing, pp 81–88

19. Lipman Y, Kopf J, Cohen-Or D, Levin D (2007)
Gpu-assisted positive mean value coordinates for

mesh deformation. In: Symposium on Geometry

Processing, pp 117–123

20. Lipman Y, Levin D, Cohen-Or D (2008) Green co-
ordinates. ACM Trans Graph (ACM SIGGRAPH)

27(3):1–10

21. Malsch E, Dasgupta G (2003) Algebraic construc-

tion of smooth interpolants on polygonal domains.

In: Proc. of International Mathematica Symposium
22. Meyer M, Lee H, Barr A, Desbrun M (2002) Gen-

eralized barycentric coordinates for irregular poly-

gons. Graphics Tools 7:13–22

23. Nieser M, Reitebuch U, Polthier K (2011) Cube-
Cover - Parameterization of 3D volumes. Comp

Graph Forum (SGP) 30:1397–1406

24. Squire W, Trapp G (1998) Using complex variables

to estimate derivatives of real functions. Siam Re-

view 40(1):110–112
25. Thiery JM (2013) MVC derivatives C++ imple-

mentation. URL http://sourceforge.net/projects/

meanvaluecoordinatesderivs/files/latest/

download?source=files
26. Urago M (2000) Analytical integrals of fundamen-

tal solution of three-dimensional laplace equation

and their gradients. Trans of the Japan Soc of Mech

Eng 66:254–261

27. Warren J (1996) Barycentric coordinates for convex
polytopes. Advances in Computational Mathemat-

ics 6:97–108

28. Warren J, Schaefer S, Hirani A, Desbrun M (2007)

Barycentric coordinates for convex sets. Advances
in Computational Mathematics 27:319–338

