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We demonstrate that for a cosmic variance limited experiment, CMB E polarization alone places
stronger constraints on cosmological parameters than CMB temperature. For example, we show
that CEE` can constrain parameters better than CTT` by up to a factor 2.8 when a multipole range
of ` = 30− 2500 is considered. We expose the physical effects at play behind this remarkable result
and study how it depends on the multipole range included in the analysis. In most relevant cases,
CTE` or CEE` surpass the CTT` based cosmological constraints. This result is important as the small
scale astrophysical foregrounds are expected to have a much reduced impact on polarization, thus
opening the possibility of building cleaner and more stringent constraints of the ΛCDM model. This
is relevant specially for proposed future CMB satellite missions, such as CORE or PRISM, that are
designed to be cosmic variance limited in polarization till very large multipoles. We perform the
same analysis for a Planck-like experiment, and conclude that even in this case CTE` alone should
determine the constraint on Ωch

2 better than CTT` by ∼ 15% , while determining Ωbh
2, ns and θ with

comparable accuracy. Finally, we explore a few classical extensions of the ΛCDM model and show
again that CMB polarization alone provides more stringent constraints than CMB temperature in
case of a cosmic variance limited experiment.

PACS numbers: 98.80.-k

I. INTRODUCTION

The results from the Planck satellite have recently con-
firmed that the cosmic microwave background (CMB)
anisotropies are a powerful probe of cosmology [1]. While
these first cosmological results were based on Planck tem-
perature data alone, interesting improvements are ex-
pected with the next release of data, when CMB polariza-
tion will be included in the analysis. CMB polarization
is often described in the literature as a unique source
of information for reionization studies [2, 3], thanks to
the large-scale signature that reionization is expected to
leave in the polarization power spectra, and for inflation
studies, as primordial gravitational waves are expected
to produce B-mode CMB polarization [4–9] and because
polarization provides a cleaner probe of initial conditions
[10–14]. Furthermore, it is in general recognised that
adding the information coming from polarization can im-
prove the constraints on cosmological parameters and can
help breaking some degeneracies [4, 15–21].

In this paper, we argue that the CMB E polariza-
tion data is much more than a mere improvement over
the temperature anisotropies measurement. We demon-
strate that either the temperature-polarization cross-
correlation CTE` or the CEE` polarization power spectra

can provide tighter constraints on cosmological parame-
ters than the temperature power spectrum CTT` , in the
case of a Cosmic Variance Limited experiment (hereafter
CVL). The constraining power of CEE` had already been
noticed in [15]. Here we show, for the first time, that
CTE` as well is more constraining than the CTT` power
spectrum, and explicit the physical reasons behind this
conclusion.

We find that the CEE` power spectrum can constrain
the parameters (including the optical depth τ) by up to
a factor 2.8 better than CTT` in the case of a CVL ex-
periment probing up to multipoles ` = 2500, even when
excising the large scales polarized signature of reioniza-
tion (` < 30). Overall, the constraining power of the
CEE` power spectrum is found to be mildly dependent on
the availability of small scales (` > 2000) and dramati-
cally on the large scales (30 < ` < 130). The CTE` based
constraints are also found to be tighter than the CTT`
based ones.

In the case of a more realistic Planck-like experiment,
we demonstrate that the CTE` power spectrum provides
comparable constraints to the CTT` one, and a better one
for the dark matter physical density Ωch

2 by about 15%.

Finally, we show that even for classical extentions of
the ΛCDM models, the polarized based constraints are
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at least equivalent and often better than the temperature
based one, for a CVL experiment.

Our results open the possibility of improving the ro-
bustness of the CMB based cosmological constraints. In
fact, an important limitation of the CTT` based cosmolog-
ical constraints both from Planck [22] and from ground
based experiments [23, 24] is the presence of astrophysical
foregrounds, particularly at small scales where the CMB
temperature anisotropies are dominated by the contri-
bution from unresolved radio and infrared galaxies. Po-
larization, however, is expected to suffer less from this
contamination [25, 26]. Using the exceptional constrain-
ing power of the polarized CMB observations, one should
thus be able to build cross-checks of the temperature re-
sults and improve the temperature foreground models at
small scales.

In Section II, we first describe the Fisher Matrix for-
malism that will be used to calculate forecasts on cos-
mological parameters. Then, in Section III we present
the main results on ΛCDM parameters for a CVL ex-
periment. In particular, we show how the constraints de-
pend on the maximum or minimum multipole included in
the analysis, and describe the physics at play in this set-
ting. Section IV reproduces the analysis for a Planck-like
experiment. The sensitivity of the constraints to prior
knowledge of the reionization optical depth τ is discussed
in Section V, and we show how the large scales (` < 30)
contribute to the determination of τ . Finally, Section VI
allows us to generalize our conclusions to classical ΛCDM
model extensions.

II. METHODOLOGY

The information on a vector of cosmological param-
eter θi that can be extracted from a subset M of
the CMB temperature and polarization power spectra
(CTT` , CTE` , CEE` ) can be estimated using the Fisher In-
formation Matrix (FIM) (see e.g. [27, 28]):

FCMB
ij =

∑
X,Y in M

∑
`

∂CX`
∂θi

[C`]
−1
XY

∂CY`
∂θj

. (1)

One can forecast the cosmological constraints obtained
using either CTT` , CTE` , CEE` or all of them by changing
the content of M in the above equation. To compute the
elements of the FIM, we need to evaluate the power spec-
tra covariance matrix and the derivatives of the power
spectra with respect to the parameters of interest.

The computation of the covariance matrix can be sim-
plified using the following assumptions. We ignore all
sources of non-Gaussianity in the CMB data. We model
the lensing of the CMB by the large scale structure as
a smoothing of the observed CMB power spectra, and
ignore the lensing induced 4-point correction which is
being known to introduce a small correlation in the CEE`
covariance matrix and a negligible one on CTT` [29]. We
further assume that foreground contamination, beam un-
certainties and other systematics have been corrected to
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FIG. 1. Derivatives of the CTT` (top panel), CEE` (middle
panel) and CTE` (bottom panel) power spectrum with respect
to the ΛCDM parameters. The plot is in logarithmic scale, so
we plot the absolute value of the derivatives, showing negative
values as dashed lines.

a level much smaller than the statistical error and we
do not take into account any marginalization over their
parameters. Finally, we account for partial sky cover-
age (fsky) by a rescaling of the full sky covariance and
ignore the mode correlations it introduces. Under those
assumptions, the covariance matrix C` is only a function
of the theoretical CMB power spectra, and of the effec-
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FIG. 2. Signal-to-noise for a Planck-like full mission experi-
ment (solid lines) with fsky = 0.5, as detailed in Table II, for
the CTT` (blue), CEE` (red) and CTE` (green) power spectra.
Dashed lines show the signal to noise for a CVL experiment
with fsky = 1.

tive noise power spectra of temperature (NTT
` ) and E

polarization (NEE
` ). We have:

C` =
2

2`+ 1

1

fsky

 (C̃TT` )2 (C̃TE` )2 C̃TT` C̃TE`
(C̃TE` )2 (C̃EE` )2 C̃EE` C̃TE`
C̃TT` C̃TE` C̃EE` C̃TE` 1/2[(C̃TE` )2 + C̃TT` C̃EE` ]

 (2)

with C̃TT` , C̃EE` and C̃TE` , the observed temperature
and polarization spectra, given by

C̃TT` = CTT` +NTT
` , (3)

C̃EE` = CEE` +NEE
` , (4)

C̃TE` = CTE` (5)

The numerical evaluation of the power spectra and
their derivatives will be performed using the PICO1 code
[30]. An example of some of the power spectra derivatives
is presented in Fig. 1.

In the next sections, we forecast the constraints on the
parameters of a ΛCDM cosmology. We focus on the fol-
lowing 6 parameters: the physical baryon and CDM den-
sities, ωb = Ωbh

2 and ωc = Ωch
2, the angular dimension

of the sound horizon at recombination θ, the normaliza-
tion of the primordial power spectrum, ln(1010As), with
pivot scale k0 = 0.05 Mpc−1, the scalar spectral index,
ns, and the optical depth to reionization, τ . We also ex-
plore a few classical extentions of the model in Section
VI. The fiducial values of the parameters used thorough
the article are presented in Table I.

We consider two experimental settings: a full sky cos-
mic variance limited experiment (CVL) and a Planck-
like mission. For the CVL experiment, we have NTT

` =

1 https://sites.google.com/a/ucdavis.edu/pico/home

NEE
` = 0 and fsky = 1. Changing the smallest available

scale (`max) as we do in section III allows the reader to
evaluate quickly what will be the behaviour of a more
realistic experiment.

The Planck-like mission corresponds to 30 months
worth of combined observations by the two best Planck
CMB channels at 143 GHz and 217 GHz. We assume that
due to galactic dust contamination only half of the sky is
available for cosmological use, fsky = 0.5. The effective
noise of the combined data is given by [31]

NX,chan
` =

(
w

−1/2
X,chan

µK-rad

)2

exp

[
`(`+ 1)(θpix/rad)2

8 ln 2

]
,(6)

NX
` =

1∑
chan{1/(N

X,chan
` )}

(7)

where NX,chan
` is the noise in each of the channels consid-

ered in temperature (X = T ) or polarization (X = P ),
while NX

` is the total noise, w−1
X = {(∆X/T )× TCMB ×

θpix}2[µK2] is the raw sensitivity, (∆X/TCMB) is the
sensitivity per pixel, TCMB = 2.725K is the CMB tem-
perature, and θFWHM is the full width at half maximum
beam size. We compute the characteristics of this experi-
ment according to the Planck Blue Book [32], and report
the numerical values in Table II. This setting gives a rea-
sonable estimate of the expected sensitivity of the second
Planck data release. We show the signal-to-noise ratio
(including cosmic variance) for different power spectra
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Parameter Fiducial
Ωbh

2 0.022032
Ωch

2 0.12038
θ100 1.04119
τ 0.0925
ns 0.9619
ln(1010As) 3.0980
Ωk 0
Yp 0.24
Neff 3.046
nrun 0
Σmν 0

TABLE I. Fiducial model used in the analysis.

both for a CVL and Planck-like experiment in Fig. 2.

Channel FWHM ∆T/T ∆P/T
GHz arcmin [µK/K] [µK/K]
143 7’ 1.5 3.0
217 5’ 3.3 6.6

TABLE II. Specifications of the Planck-like experiment. Val-
ues are based on the Blue Book specification and for a 30
month mission [32]. ∆T/T is the sensitivity per pixel.

III. COSMIC VARIANCE LIMITED
EXPERIMENT

We present in this section forecasts on cosmological
parameters in case of a CVL Experiment for CTT` , CEE`
or CTE` considered separately or from the combination
of all the spectra. Our baseline in this Section has
`min = 30 and `max = 2500 unless otherwise specified,
and always includes a prior2 on τ , σ(τ) = 0.013. In
this way, we can compare the information content of the
different power spectra assuming nearly the same infor-
mation about reionization, that can otherwise be more
tightly constrained observing its signature at large scales
(` . 30) in polarization. We will discuss the effect of
relaxing this τ−prior assumption in Section V.

A. Evolution of the constraints with `max

In this section we analyze how the constraints change
as a function of maximum multipole (`max) included. In
Fig. 3 we show how the constraints evolve with `max

for lensed CMB spectra (reference constraints). By ob-
serving Fig. 3, we notice that at `max = 2500, CEE` is

2 The prior we use is comparable with the constraint obtained by
the WMAP satellite observing polarization at large scales [33].

the best at constraining all parameters, as also shown in
Table III and as already noticed by [15].

In particular, the CEE` power spectrum constrains the
angular size of the sound horizon θ better than CTT` by a
factor ∼ 2.8, Ωch

2, ln(1010As), τ , ns by a factor 1.9, 1.7,
1.6 and 1.4 respectively, while the smallest improvement
is on the baryon density Ωbh

2 by a factor ∼ 1.3.
The CTE` power spectrum constrains the dark matter

density Ωch
2 as strongly as CEE` , θ and ns slightly worse

than CEE` (only by a factor ∼ 1.2), while it constrains
the other parameters (Ωbh

2, ln(1010As) and τ) at a level
comparable to CTT` . It is interesting to notice however
that CTE` becomes the best at constraining the matter
densities Ωbh

2 and Ωch
2 if `max . 2100, while the other

parameters keep being constrained best by CEE` .
Finally, combining all the spectra leads to a substan-

tial improvement only to the constraint on Ωbh
2 (by a

factor ∼ 2.1 compared to CEE` alone), while the other
parameters improve only by a factor ∼ 1.2 compared to
the constraints from CEE` alone.

In order to gain some physical insight into why the
constraints are stronger when determined from the CEE`
power spectrum, we will make use of two additional fig-
ures. Fig. 5 shows the constraints obtained as the in-
verse of the diagonal of the Fisher Matrix, i.e. without
marginalizing over the degeneracies among all the param-
eters (we will refer to this as the ‘diagonal’ case). This is
equivalent to calculating constraints for one parameter at
the time, assuming the others fixed to their fiducial value.
This plot is useful to understand whether the reference
constraints in Fig. 3 are limited by degeneracies among
parameters or by the intrinsic information encoded in the
CMB, limited only by cosmic variance. Fig. 4 shows the
same plots as Fig. 3 but for unlensed CMB spectra. This
plot is useful to assess whether the information coming
from the effect of weak lensing at high multipoles impacts
the constraints on cosmological parameters. We also re-
port in Table IV the ratio of the constraints obtained
from the scalar versus lensed power spectra.

By comparing these plots, we notice the following fea-
tures:

Constraint on θ. As already mentioned and shown in
Fig. 3, the angular size of the sound horizon θ is better
determined using the CEE` or CTE` power spectra alone
than by using CTT` alone. As is well known, the effect
of changing θ on the power spectra is to shift the posi-
tion of the acoustic peaks, e.g. an increase in θ shifts
the peaks to larger scales (smaller multipoles). However,
peaks in CEE` and CTE` are sharper than in CTT` [34], so
that their position can be better determined from polar-
ization. This is due to the fact that polarization is mainly
sourced by the gradient of the velocity field of the photo-
baryonic fluid, while temperature is sourced both by the
perturbations in the density field (Sachs-Wolfe plus in-
trinsic temperature effects) and by the perturbations in
the velocity field (Doppler effect). The peaks in polar-
ization are thus only determined by the extrema of oscil-
lations in the velocity field, while the peaks in temper-
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FIG. 3. Standard deviations on ΛCDM parameters as function of `max, normalized to the standard deviation σref obtained
from CTT` with `max = 2500. We consider a CVL experiment with `min = 30 and a prior on τ . We consider here lensed CMB
power spectra.

Data Ωbh
2 Ωch

2 θ τ ns ln(1010As)

CTT` 7.2 × 10−5 [0.3%] 1.2 × 10−3 [1.0%] 2.2 × 10−4 [0.02%] 8.1 × 10−3 [9%] 2.7 × 10−3 [0.3%] 1.5 × 10−2 [0.5%]
CEE` 5.7 × 10−5 (1.3) 6.5 × 10−4 (1.9) 7.9 × 10−5 (2.8) 5.2 × 10−3 (1.6) 1.9 × 10−3 (1.4) 9.0 × 10−3 (1.7)
CTE` 7.3 × 10−5 (1.0) 6.6 × 10−4 (1.8) 9.3 × 10−5 (2.4) 7.7 × 10−3 (1.1) 2.3 × 10−3 (1.2) 1.5 × 10−2 (1.0)

JOINT 2.7 × 10−5 (2.7) 5.4 × 10−4 (2.2) 6.4 × 10−5 (3.4) 4.4 × 10−3 (1.8) 1.6 × 10−3 (1.7) 7.4 × 10−3 (2.0)

TABLE III. Standard deviations on the ΛCDM model for a CVL experiment from CTT` , CEE` , CTE` taken separately or from
the combination of all the power spectra. These constraints are calculated assuming `min = 30, `max = 2500, and a prior on τ ,
σ(τ) = 0.013. In square brackets, on the first line we translate the standard deviation in relative error. In parenthesis, on the
next lines we show the improvement factor compared to the CTT` case.

ature are mainly determined by the oscillation extrema
of the density distribution plus the smaller contribution
(damped by the presence of baryons that slow down the
sound speed) from oscillations of the velocity field. The
peaks in temperature, determined by these two effects
out of phase by π/2, are thus smoother compared to the
ones in polarization, which can therefore better constrain
θ. Furthermore, by comparing Fig. 3 with the diagonal
case in Fig. 5, we notice that the constraints on θ are
only mildy affected by degeneracies with other parame-
ters, as the errorbars obtained in the diagonal case are
only a factor ∼ 2 smaller than the ones obtained with
the full marginalization over all parameters. Finally, by
comparing Fig. 3 with the diagonal case in Fig. 5, we no-
tice that θ would be better constrained by the unlensed
CMB spectra, due to the fact that lensing smooths the

peaks/throughs of the CMB power spectra, making the
position of the peaks harder to determine.

Breaking the τ − ln(1010As) degeneracy with lens-
ing. The CEE` power spectrum alone is also better at
constraining the reionization optical depth and the am-
plitude of the primordial power spectrum ln(1010As).
One of the main effects of increasing the reionization op-
tical depth τ on the power spectra is to suppress the
amplitude of the peaks at scales smaller than the causal
horizon at the epoch of reionization. This effect is due
to the fact that only a fraction exp (−τ) of the photons
manage to stream freely through the reionized universe,
so that the power spectra are in fact proportional to
exp (−2τ) [2, 35]. This effect is highly degenerate with
the amplitude of the primordial power spectrum As [36].
The degeneracy can be lifted in two ways. Either mea-
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FIG. 4. Same as Fig. 3, but for unlensed CMB power
spectra.
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FIG. 5. Same as Fig. 3, but the constraints in this case are
calculated as the inverse of the diagonal of the Fisher Ma-
trix, i.e. they are not marginalized over degeneracies between
parameters. By comparing with Fig. 3, one can determine
whether constraints on the parameters are limited by their
degeneracies or by the sensitivity of the spectra to each pa-
rameter separately.

suring the reionization bump in the polarization power
spectra at large scales (` . 30), that directly constrain τ ,
or measuring with high accuracy the effect of lensing on
small scales (` & 1000), as the amplitude of the lensing
potential depends on the amplitude of the initial pertur-
bations As but not on τ . In the cases we consider in this
Section, we do not include the large scale polarization
in our calculations, but we weakly break the degener-
acy between the two parameters by adding a prior on τ
with width σ(τ) = 0.013. From Fig. 3, we notice that
the constraints on τ and ln(1010As) improve when in-

Data Ωbh
2 Ωch

2 θ τ ns ln(1010As)

CVL

TT 0.8 0.9 0.7 1.6 0.8 1.7
EE 0.9 1.0 0.7 2.5 1.0 2.8
TE 0.6 1.0 0.7 1.7 0.8 1.7
JOINT 0.9 1.0 0.8 2.9 0.9 3.3

Planck

TT 1.0 1.0 0.9 1.1 1.0 1.2
EE 1.1 1.1 0.9 1.0 1.1 1.0
TE 1.0 1.1 0.9 1.0 1.1 1.0
JOINT 1.0 1.1 0.9 1.2 1.0 1.2

TABLE IV. Ratio of standard deviations obtained from un-
lensed power spectra divided by the standard deviations ob-
tained from lensed power spectra. We show results for CTT`
CEE` CTE` power spectra taken separately or from the joint
combination of all of them, for a CVL and a Planck-like full
mission experiment. These constraints are calculated assum-
ing `min = 30, `max = 2500, and a prior on τ , σ(τ) = 0.013.
This table shows that the lensed spectra do not always pro-
vide the tightest constraints.

cluding higher `max, thanks to the degeneracy-breaking
effect of lensing. Such an improvement is not present
when the same constraints are evaluated from unlensed
power spectra, as shown in Fig. 4, where the constraints
on τ and ln(1010As) are constant with `max. Further-
more, we notice from the reference constraints in Fig.
3 that CEE` provides a better measurement than CTE`
or CTT` on these two parameters. This is due to the fact
that the effect of lensing is larger on polarization than on
temperature (at ` ∼ 2000, the change in the amplitude
is a factor 2 larger for CEE` than CTT` ) [37]. A change
in the lensing amplitude thus impacts polarization more
strongly than temperature, resulting in a stronger con-
straint on ln(1010As). This is also clear from Table IV,
showing that the lensed CEE` power spectrum constrains
τ by a factor 3 better than unlensed spectra3, while the
constraints from the lensed CTE` and CTT` improve only
by a factor 1.7.

A general remark on CTE` . To understand why CEE`
determines Ωbh

2, Ωch
2 and ns as well as or better than

CTT` , we refer the reader to the next Subsection III B.
As a general remark, however, we would like to empha-

size that CTE` is very powerful at constraining parame-
ters despite the fact that its signal-to-noise ratio (both
in the CVL and in the Planck case) is not as large as
the one for CTT` or CEE` alone, as shown in Fig 2. This
is however not surprising, as the determining factor for
strong constraints on the parameters is not only the am-
plitude of the noise, but most importantly how large is

3 We remind here that both in the lensed and unlensed case we
include a prior on τ in the analysis.
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FIG. 6. Standard deviations on ΛCDM parameters as func-
tion of `min, normalized to the standard deviation σref ob-
tained from CTT` with `min = 30. We consider a CVL exper-
iment with `max = 2500 and a prior on τ . We consider here
lensed CMB power spectra.

the change of the spectra under a variation of the pa-
rameters compared to the noise (i.e. the Fisher Matrix),
and how different the effect of each parameter is on the
spectra, so that degeneracies can be broken. In the case
of CTE` , the noise is indeed relatively high, but this spec-
trum is very efficient at breaking degeneracies. This can
be inferred by comparing the constraints from CTE` in
the diagonal case in Fig. 5 with the ones in the reference
case in Fig. 3. In the diagonal case, where the degen-
eracy breaking power of each spectrum is removed, CTE`
becomes much worse at constraining ns, ln(1010As) and
τ than CTT` or CEE` alone, and it becomes comparable
to CTT` on Ωch

2. However, it remains very good at con-
straining θ and Ωbh

2 because intrinsically changing these
parameters has a large impact on the cross-correlation
spectrum.

B. Evolution of the constraints with `min

Fig. 6 shows the evolution of the constraints with `min,
varied between 30 < `min < 300 at a fixed `max = 2500.
In the CVL case considered here, we naively expect that
cutting the noisier low-` part of the spectrum should only
marginally affect the results. Indeed, we find that the
CTT` constraints are marginally affected even when the
most dramatic cut (`min = 300) is applied. Only the
constraint on Ωbh

2 is worsened by ∼ 50% for `min & 200,
due to the fact that with such a cut, the first peak is
not observed anymore, reducing the information on the
baryon load coming from the difference in height between
the first and the second peak [38].

On the other hand, the constraints from the CEE` po-
larization are more drastically affected by cutting the
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FIG. 7. Evolution of the correlations between selected param-
eters as a functions of `min. We consider a CVL experiment
with `max = 2500 and a prior on τ . We consider here lensed
CMB power spectra.

low-` part. In particular, there is a strong worsening of
the constraints of all parameters when `min & 130. This
is due to the fact that the inclusion of the multipoles
` . 200 alleviates degeneracies, in particular between
the scalar spectral index ns and other parameters. This
is clear from Fig. 7, where we plot the correlation coef-
ficients between couples of parameters (mainly ns versus
the others) as a function of `min. For `min larger than
`min & 130, ns becomes almost ∼ ±100% correlated with
the other parameters for CEE` . Furthermore, we verified
that if we fix ns (thus marginalizing over only 5 parame-
ters), this sharp worsening of the constraints disappears,
while if we fix any of the other parameters, the step is still
present, although when fixing Ωch

2 it appears only in the
constraints for Ωbh

2 and ns. This suggests that cutting
at `min & 130 largely impacts the constraints from CEE`
due to the increasing degeneracies between ns and other
parameters, in particular with Ωch

2 and Ωbh
2.

The reason why this `−range helps breaking such de-
generacies can be inferred from Fig. 1, that shows the
derivatives of the CEE` power spectrum relative to the
different ΛCDM parameters. The derivatives with re-
spect to Ωbh

2 and Ωch
2 change behaviour at ` ∼ 200,

thus helping to break degeneracies. The physical reason
of this is the following.

Breaking the Ωch
2 − ns degeneracy. Scales below

` . 200 entered the causal horizon well after matter-
radiation equality (zeq ∼ 3400). These scales are thus not
affected by the decay of the metric perturbations during
radiation domination, that act as a driving force on the
acoustic oscillations, boosting their amplitude [38]. In-
creasing Ωmh

2 by increasing Ωch
2 anticipates the redshift

of equality, and thus decreases the boosting effect due to
the driving, shifting it to smaller scales. The overall re-
sult is thus a decrease in the amplitude of the oscillations
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at ` & 200, and an almost negligible change at larger
scales. This is then reflected in a negative derivative rel-
ative to Ωch

2 at ` & 200, and in a very small one, (by
almost two orders of magnitude) at larger scales. This
difference in behaviour of the spectrum under a change in
Ωch

2 at large and small scales significantly helps break-
ing degeneracies with ns, which smoothly changes the
spectrum at these scales.

It is also interesting to notice that such a difference is
not so evident in the derivative of the CTT` spectrum rel-
ative to Ωch

2, as shown in Fig. 1. This is due to the fact
that an increase in the matter density also determines a
decrease of the early and late Integrated Sachs-Wolfe ef-
fects (ISW) at large scales in temperature (these effects
are absent in polarization), so that the derivatives are
negative and large even at these scales. Therefore, de-
generacies are not particularly broken by observing this
`−range in CTT` .

Breaking the Ωbh
2 − ns degeneracy. As far as the

baryon density is concerned, changing Ωbh
2 affects CEE`

through the change in Ωmh
2, similarly to Ωch

2. How-
ever, in this case, there are also other, more relevant
effects. The first is that increasing Ωbh

2 decreases the
sound speed cs = 1/

√
(3(1 +R)), R = 3Ωba

4Ωr
. As the am-

plitude of the temperature dipole, sourcing the tempera-
ture quadrupole and thus polarization, is proportional to
cs, an increase in Ωbh

2 causes a decrease in the amplitude
of the CEE` spectrum, proportional to c2s [38]. This effect
acts in principle on all scales smaller than the causal hori-
zon at the epoch of decoupling, ` . 100, and would result
in a negative derivative relative to Ωbh

2 at all these scales.
However, Fig. 1 shows that the derivative at ` . 200 is
positive. This is due to the fact that increasing Ωbh

2 in-
creases the effective mass of the photo-baryonic fluid, en-
hancing the gravitational potential wells. This increases
the amplitude of the spectra (both temperature and po-
larization) by a factor (1 + 3R)2 [38, 39], and it is the
dominant effect at large scales, where the metric pertur-
bations have not decayed during radiation domination.
This explains why the derivative relative to Ωbh

2 is pos-
itive at these scales4. Notice that the effect of baryons
on CTT` has additional features compared to CEE` : the
change in the effective mass also produces a shift in the
equilibrium point of the oscillations, resulting in the en-
hancement of the odd peaks (compressions of overden-

4 Let us mention here, for completeness, that the derivatives of all
the spectra relative to Ωbh

2 are positive also at ` & 1000. This
is due to the fact that increasing the baryon density decreases
the Silk damping [40, 41], as the Silk damping scale kD is pro-

portional to kD ∝
√

(Ωbh2). We also verified that the changes
in the recombination history and on the visibility function due
to a change in Ωbh

2 have minor effects on the derivatives. Fi-
nally, the derivatives relative to Ωch2 also change behavior at
` & 1000. This is due to the effect of lensing: increasing the
amount of matter increases the amount of lensing, thus increas-
ing the power and the smoothing of the peaks/troughs at high-`
[37].

sities) compared to even ones (rarefactions of overdensi-
ties), at scales where the metric perturbation have not
completely decayed during radiation domination. This
effect dominates over the decrease in the sound speed,
that affects CTT` reducing the amplitude of the Doppler
contribution to the oscillations.

IV. PLANCK

In this section, we repeat the analysis performed in the
previous Sections for the case of a Planck-like experiment,
assuming full mission data (30 months of data). We com-
bine the 143 and 217 GHz channels, and assume specifica-
tions as in Table II, following [32]. Clearly, the forecasts
in this Section are overly simplified, as we e.g. ignore the
presence of foregrounds, use only two frequency chan-
nels, ignore ` by ` correlations due to the galactic/point
source masking of the maps. However, we verified that
for a Planck-like nominal mission experiment (14 months
of data), the error bars obtained from our Fisher Matrix
forecast for CTT` alone are similar to the ones obtained us-
ing the published Planck data from the first data-release
[1], within a factor 1.3 − 1.5. We therefore expect the
forecasts to be in the right ballpark.

Figure 8 shows the evolution of the constraints on cos-
mological parameters as a function of `max, while Fig. 9
shows the same evolution but for unlensed spectra.

The most interesting result in Figure 8 is that we fore-
cast that CTE` should provide a constraint on the dark
matter density Ωch

2 stronger than the one obtained from
CTT` alone, namely σTE(Ωch

2) = 1.7 × 10−3 [1.4%] ver-
sus σTT (Ωch

2) = 2.0× 10−3 [1.7%], while providing con-
straints comparable to CTT` for Ωbh

2, ns and θ, as also
shown in Table V. We underline that this is the first time
that the power of CTE` alone is forecasted in a paper.

This opens the interesting possibility of cross-checking
the results obtained from CTT` alone, also considering
that CTE` is expected to have a lower level of foreground
contamination at small scales than CTT` . Furthermore,
the constraints from CTE` do not seem to improve ex-
tending `max & 1500, as shown in Fig. 8, or by cutting at
`min . 150, as shown in Fig. 10. This provides the pos-
sibility of obtaining strong constraints even when elimi-
nating the most problematic multipole ranges, where po-
larized contamination from the galaxy (at large scales)
or from extragalactic foregrounds (at small scales) are
expected to be most relevant.

Furthermore, comparing Fig. 8 (from lensed spectra)
with Fig. 9 (from unlensed spectra), we notice that the
degeneracy-breaking effect of lensing on ln(1010As) − τ
is effective only for CTT` alone, as CTE` and CEE` ap-
parently do not have a high enough signal-to-noise ratio
to sufficiently observe such an effect at small scales, as
also shown in Fig. 2. Moreover, the constraints on the
other parameters are only marginally affected by the ad-
ditional information provided by lensing, as also shown
in Table IV. Figure 10 shows the evolution of the con-
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FIG. 8. Standard deviations on ΛCDM parameters as function of `max, normalized to the standard deviation σref obtained
from CTT` with `max = 2500. We consider a Planck-like full mission experiment with two channels at 143 GHz and 217 GHz
with `min = 30 and a prior on τ . We consider here lensed CMB power spectra.

Data Ωbh
2 Ωch

2 θ τ ns ln(1010As)

TT 1.7 × 10−4 [0.8%] 2.0 × 10−3 [1.7%] 4.5 × 10−4 [0.04%] 1.2 × 10−2 [13%] 4.9 × 10−3 [0.5%] 2.3 × 10−2 [0.7%]
EE 8.0 × 10−4 (0.2) 3.6 × 10−3 (0.56) 6.1 × 10−4 (0.72) 1.3 × 10−2 (0.91) 8.3 × 10−3 (0.59) 2.7 × 10−2 (0.84)
TE 2.1 × 10−4 (0.78) 1.7 × 10−3 (1.2) 4.4 × 10−4 (1.0) 1.3 × 10−2 (0.92) 8.2 × 10−3 (0.59) 2.8 × 10−2 (0.82)

JOINT 1.3 × 10−4 (1.3) 1.3 × 10−3 (1.6) 2.9 × 10−4 (1.6) 1.1 × 10−2 (1.1) 3.5 × 10−3 (1.4) 2.1 × 10−2 (1.1)

TABLE V. Standard deviations on the ΛCDM model for a Planck-like full mission experiment from CTT` CEE` CTE` taken
separately or from the combination of all the power spectra. These constraints are calculated assuming `min = 30, `max = 2500,
and a prior on τ , σ(τ) = 0.013. In square brackets, on the first line we translate the standard deviation in relative error. In
parenthesis, on the next lines we show the improvement factor compared to the CTT` case.

straints with `min. As previously noted for the CVL case
in Section III B, the constraints from CEE` rapidly worsen
when `min & 130, due to the fact that multipoles between
130 . ` . 200 help breaking degeneracies between ns and
other parameters. We notice in particular that ns wors-
ens by a factor ∼ 3 if we cut `min = 200. This indicates
that for CEE` , the proper handling of the galactic dust
contamination at large scales is crucial to have accurate
results, as the observation in this `−range has such large
impact on the constraints.

V. THE EFFECT OF A PRIOR ON τ

In the previous sections we forecasted constraints al-
ways assuming a prior on τ . In this Section we want

to analyze whether relaxing this assumption impacts our
conclusions.

Fig. 11 (left plot) shows the evolution of the con-
straints as a function of `max without including any prior
on τ and fixing `min = 30. Comparing to Figure 3, we
notice that, as expected, the uncertainties on parameters
increase by a factor of 1.2−3, due to the now much wider
degeneracy between τ and other parameters (in partic-
ular ln(1010As)). However, our previous conclusions do
not qualitatively change, i.e. that the CEE` power spec-
trum is the best at constraining parameters when the full
`−range is considered.

Furthermore, we notice that thanks to the degeneracy-
breaking effect of lensing, including `max = 2500 the con-
straint on τ from CTT` alone is σTT (τ) = 0.010 [11%],
from CTE` is σTE(τ) = 0.010 [11%] and from CEE` is
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FIG. 10. Standard deviations on ΛCDM parameters as func-
tion of `min, normalized to the standard deviation σref ob-
tained from CTT` with `min = 30. We consider a Planck-like
full mission experiment `max = 2500 and a prior on τ . We
consider here lensed CMB power spectra.

σEE(τ) = 0.006 [6%]. This can be compared to the
constraints obtainable from polarization when the low-
` part of the spectrum is included in the analysis, i.e.
when the reionization bump is included. This is shown
in Fig. 11 (right plot), where we calculate constraints
assuming `min = 2. In this case we obtain from CTE`
σTE(τ) = 0.005 [5%] and from CEE` σEE(τ) = 0.002
[2%]. This indicates that observing the reionization
bump can place constraints on τ that are stronger by
about a factor 3 compared to the ones obtained using
the degeneracy-breaking effect of lensing alone5. Fur-

5 Notice that when we do not use a τ prior, the degeneracy with

thermore, both in the cases when `min = 2 or `min = 30,
CEE` is best at constraining τ , either from the large scale
reionization bump (as already noticed in [42]) or from
the degeneracy-breaking effect of lensing.

We perform this same analysis also for a Planck-like
full mission experiment, with specifications already de-
tailed in Section IV. Fig. 12 (left plot) shows the con-
straints on parameters without any prior on τ and with
`min = 30. As already noticed in Section IV, only tem-
perature has enough signal-to-noise ratio to take ad-
vantage of the degeneracy breaking power of lensing,
achieving a constraint on τ of σTT (τ) = 0.027 [29%].
This can be compared to the constraint obtained from
CEE` alone, σEE(τ) = 0.072 [78%] and from CTE` alone,
σTE(τ) = 0.064 [69%]. On the other hand, when in-
cluding the low-` part (`min = 2), as shown in Fig. 12
(right plot), we again see that the CEE` power spectrum
is the best at constraining τ . In particular, we obtain
from CEE` σEE(τ) = 0.0046 [5%], that compared to the
results from CTE` , σTE(τ) = 0.011 [12%] are a factor
∼ 2 stronger. These forecasts however do not take into
account the difficulties in dealing with the contamina-
tion of the galactic emission or systematics, that might
considerably worsen the expected constraints from the
reionization bump.

VI. ΛCDM EXTENSIONS

In this Section, we present the constraints on exten-
sions of the ΛCDM model. In particular, we explore cases
where we constrain one additional parameter at a time:
the sum of neutrino mass

∑
mν , the number of relativis-

tic species Neff , the Helium abundance Yp or running of
the scalar spectral index nrun. Current constraints from
Planck limit the sum of the neutrino mass to be smaller
than ∼ 1eV , so that neutrinos are expected to become
non-relativistic only after the baryon-photon decoupling.
Thus, the sum of the neutrino masses affects only the
late time evolution of the spectra, changing the early and
late ISW effects through a change in the expansion his-
tory in the CTT` power spectrum at large scales, and by
changing the amount of lensing at small scales (a larger
neutrino mass smooths the matter power spectrum at
scales smaller than the free-streaming scales, decreasing
the effect of lensing) [43].

The number of relativistic species on the other hand
affects the spectra in a number of different ways [44–
46], and we describe only the main ones. An increase of
Neff determines an increase of the radiation density, so
that matter-radiation equality happens at later times.
This increases the amplitude of acoustic peaks in all
spectra through an increase of the radiation driving, as

ln(1010As) becomes very large, and the likelihood distribution of
the parameters might become non-gaussian, rendering the esti-
mates from the Fisher Matrices overly optimistic.
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explained in Section III B, and at large scales in CTT`
through an increase of early ISW. This effect is strongly
degenerate with Ωch

2. Furthermore, it increases the an-
gular Silk damping scale θD ∝ rD/D∗ relative to the
angular size of sound horizon θ, with rD the comov-
ing Silk damping scale and D∗ the comoving distance
to decoupling. In fact, having θ fixed, θD is propor-
tional to the square of the Hubble parameter H0.5 [45],
so that an increase of the radiation density increases
H ∼

√
((Ωch2 + Ω2

b)a
−3 + Ωrh2a−4) and therefore θD,

i.e. it increases the effect of Silk damping shifting it to
larger scales.

A change in the primordial Helium abundance Yp
changes the epoch of recombination: a larger amount of
helium relative to hydrogen leaves a smaller amount of
free electrons after helium recombination, so that hydro-
gen recombination happens earlier, and the width of the
last scattering surface is larger, enhancing Silk damping
[47].

Finally, changing nrun changes the relative amount of
power at large/small scales, as we define the power spec-
trum as

PR(k) = As

(
k

k0

)ns−1+(1/2)(dns/d ln k)(ln(k/k0))

,

with k0 = 0.05 Mpc−1 the pivot scale and dns/dlnk ≡
nrun the running.

Figs. 13-16 show how the constraints on these parame-
ters evolve with `max for a CVL experiment or a Planck-
like full mission experiment. Contrary to what was pre-
viously found in the case of ΛCDM for a CVL experi-
ment, only the neutrino mass

∑
mν is better constrained

by CEE` rather than CTE` at `max = 2500, through the
larger effect of lensing on CEE` . Neff , Yp and nrun are
instead better constrained by CTE` . For a Planck-like
experiment, on the other hand, we forecast that CTT`
is always superior in constraining all the extensions of
ΛCDM. The case where the constraining power of CTE`
seems to be the most interesting is Neff , for which we
forecast σTE(Neff) = 0.43 [14%], to be compared to the
constraint from CTT` , σTT (Neff) = 0.29 [10%], i.e. the
constrain from CTE` is only a factor 1.5 weaker.

VII. CONCLUSIONS

We have forecasted the power to constrain cosmologi-
cal parameters from the CTT` , CEE` or CTE` CMB power
spectra taken separately. We find that for a cosmic vari-
ance limited experiment, CEE` is the best at constraining
all cosmological parameters in a ΛCDM model compared

to CTE` and CTT` alone. This fact holds true when differ-
ent amount of information about cosmic reionization is
included in the analysis, e.g. whether the polarized power
spectra are cut at `min = 2 or `min = 30, or whether
a prior on the reionization optical depth τ is included
in the analysis. We find that most of the degeneracy
breaking power of the CEE` power spectrum comes from
` ranges between 100 − 200, a region where we expect
the galactic dust contamination to be harder to clean.
We have also shown for the first time the constraining
power of the temperature-polarization cross-correlation
power spectrum CTE` , finding that for a CVL experiment
it would also constrain parameters more efficiently than
CTT` alone. The advantage of CTE` over CEE` however,
is that the constraints are less affected when ` . 200
are excluded from the analysis, making it less sensitive
to large-scale foreground modelling. We have also shown
that CEE` is the best at constraining τ , compared to CTE`
or CTT` , either from the large scale polarization reion-
ization bump, or from the degeneracy breaking effect of
lensing at small scales. We find that observing the polar-
ization bump provides constraints that are a factor ∼ 3
stronger than the ones obtainable by the effect of lensing.

These findings are particularly interesting for future
proposed CMB missions such as CORE [48] or PRISM
[49], as such experiments are designed to be cosmic vari-
ance limited both in temperature and in polarization in
wide multipole ranges.

We also forecast constraints for a Planck-like satellite
experiment. In spite of the much higher noise of polariza-
tion, we find that CTE` determines the dark matter den-
sity Ωch

2 by 15% better than CTT` , and the other param-
eters at a similar level of precision. This result has never
been forecasted before, and opens the possibility to verify
the Planck results from CTT` with those from CTE` . The
advantage of this procedure is that the two spectra are
expected to have different dependencies on systematics
and foregrounds. We emphasize here that our forecasts
do not include marginalization over foreground parame-
ters. However, the level of foreground contamination at
small scales in polarization is expected to be lower than
the one in temperature, so we expect that our broad con-
clusions about the superiority of polarization should not
depend on this factor.
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FIG. 11. Standard deviations on ΛCDM parameters as function of `max without any prior on τ , normalized to the standard
deviation σref obtained from CTT` with `max = 2500. We consider a CVL experiment with `min = 30 (left) and with `min = 2
(right). We consider here lensed CMB power spectra.
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from CTT` with `max = 2500. We consider a Planck-like experiment with `min = 30 (left) and `min = 2 (right), without any
prior on τ . We consider here lensed CMB power spectra.
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FIG. 14. Standard deviations on Neff as function of `max, normalized to the standard deviation σref obtained from CTT` with
`max = 2500. We consider a CVL experiment (left) and a Planck-like full mission experiment (right) with `min = 30 and a prior
on τ .
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FIG. 15. Standard deviations on Yp as function of `max, normalized to the standard deviation σref obtained from CTT` with
`max = 2500. We consider a CVL experiment (left) and a Planck-like full mission experiment (right) with `min = 30 and a prior
on τ .

800 1200 1600 2000 2400
`max

0.3

1.0

3.0

σ
/
σ

re
f

nrun

σref =5.1e-03

TT TE EE JOINT

800 1200 1600 2000 2400
`max

0.3

1.0

3.0

σ
/
σ

re
f

nrun

σref =7.9e-03

TT TE EE JOINT

FIG. 16. Standard deviations on nrun as function of `max, normalized to the standard deviation σref obtained from CTT` with
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