
HAL Id: hal-01112977
https://imt.hal.science/hal-01112977v1

Submitted on 4 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A simple architecture for secure and private data
sharing solutions

Antonio Famulari, Francesco Longo, Giuseppe Campobello, Thomas Bonald,
Marco Scarpa

To cite this version:
Antonio Famulari, Francesco Longo, Giuseppe Campobello, Thomas Bonald, Marco Scarpa. A simple
architecture for secure and private data sharing solutions. ISCC, May 2014, Madeira, Portugal. pp.1
- 6, �10.1109/ISCC.2014.6912518�. �hal-01112977�

https://imt.hal.science/hal-01112977v1
https://hal.archives-ouvertes.fr


A Simple Architecture for Secure and Private
Data Sharing Solutions

Antonio Famulari∗, Francesco Longo†, Giuseppe Campobello†, Thomas Bonald∗ and Marco Scarpa†
∗ Tèlècom ParisTech, INFRES, France
{famulari,bonald}@telecom-paristech.fr
† Università degli Studi di Messina, Italy
{flongo,gcampobello,mscarpa}@unime.it

Abstract—In recent years, Storage as a Service Cloud gained
popularity among both companies and private users. However,
security and interoperability issues still have to be adequately
faced and solved. In this work, we propose a simple, secure, and
privacy-preserving architecture for inter-Cloud data sharing. The
proposed solution relies on open standards for both sharing and
communication mechanisms, thus ensuring durability, robustness,
and compatibility of the approach in the current Internet.

Keywords—Storage Cloud, Security, Interoperability, Data Shar-
ing

I. INTRODUCTION

Cloud computing is a challenging technology that promises
to strongly modify the way computing and storage resources
will be accessed in the near future. The traditional taxonomy
about Cloud distinguishes among services at three different
levels: Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS). The above reported
services can be implemented in both private and public Clouds.
While private Clouds have infrastructures owned and main-
tained by a single organization for its own use, public Clouds
are made available to the general public by a service provider.

Recently Storage as a service (STaaS) Cloud gained popu-
larity both among private users and enterprises [1]. STaaS is a
Cloud business model in which a service provider rents space
in its storage infrastructure to individuals or companies. In this
context, some of the main challenges, both from an industry
and an academy point of view, are related to security (partic-
ularly associated to the personal sphere of users, compliance
with legislation, and problems of trust) and interoperability.

Security problems [2] are connected to the value and
sensitivity of the data stored in the Cloud. On the one hand,
big industrial groups might hesitate to put their sensitive data
in the Cloud, under the control of other organizations, if any
guarantee of privacy, integrity, and availability of data is not
provided. Besides data themselves, privacy of related metadata
and interactions is also important. In fact, such information is
usually fully accessible to the Cloud operator. On the other
hand, common users do not usually care about privacy and
security of their data. Not subjected to strong regulation as
industrial groups or unaware of risks and implications for their
privacy, they tend to accept terms of use and conditions im-
posed by the different Cloud operators.Nevertheless, problems
for user privacy are still an actual menace.

Besides privacy and security concerns, with respect to big
industrial groups, common users are more concerned with the

other challenge of Cloud computing, that is interoperability
[3]. In fact, several Cloud services cannot interoperate among
each other due to the absence of standard mechanisms. As a
consequence, in order to fully profit of interaction facilities,
two generic users usually need to rely on the same STaaS
provider. This also makes difficult to migrate data from one
platform to another without relying on local equipment.

Several works in literature deal with security [4] [5] [6] and
interoperability [3] [7] [8] issues focusing on standardization
of Cloud services. Our goal is not to provide a new standard
but to propose an approach that is transparent for both users
and providers. In particular, we present a solution that is able
to allow integration among different STaaSs without asking
for changes in their internal policies or implementations.
As a consequence, service providers can be unaware of the
solution. Note that our work is not focused in presenting new
encryption mechanisms or techniques. In fact, our solution is
more targeted on privacy preservation and with this aim it
is able to directly exploit a variety of encryption algorithms
already present in literature with minor changes in the design
and implementation. Our proposal relies on: i) a user client
containing all the added complexity, ii) out of band (OOB)
communication mechanisms (e.g., email or XMPP services)
used for signaling purposes, and iii) potentially any existing
STaaS with minimum sharing requirements for user data
storing.

II. MOTIVATIONS AND REQUIREMENTS

Two kind of requirements have been identified: privacy-
related requirements and functional requirements.

A. Privacy-related requirements

In the context of the present work, privacy is intended as
the effectiveness for a user to be able to restrict the access
to data he/she is responsible for (e.g., as a producer of the
content) or related to (e.g., details about his/her interactions).
We thus differentiate among privacy of data and privacy of
metadata. Such an effectiveness can be affected by technical
and/or social (e.g., social engineering) interferences [9].

Privacy of data. Privacy of data is satisfied if a user, as
producer or owner of a given piece of content, is able to define
who can access it and he/she is not obliged, by construction of
the platform, to make it accessible to any other party, included
any service provider or any other entity running the service. We
believe that not only the user should have an exact perception



of who can access his/her data, but that it should be possible
to assure that nobody but intended parties may access shared
content.

Privacy of metadata. Metadata attached to user data may
sometimes reveal more information than the data itself. As
an example, let us consider metadata of a photograph: it may
contain several sensible information such as GPS position, date
and time of the photograph, device that has been used, and so
on. We believe that medatada should be protected neither more
nor less than data, and it should be exclusively accessible to
intended parties [10]. Moreover, nobody but interacting parties
should be aware of any social interaction/relationship.

B. Functional requirements

In the present work, we focus on functional requirements
from two main point of views. On the one hand, we put
our attention to the flexibility in the choice of the external
resources and services that user can exploit. On the other hand,
the granularity of the access control mechanisms is taken into
consideration.

Flexible choice of external resources. One of the main
functionalities that users ask for when using STaaS platforms
is the possibility to share content with other people. However,
for several reasons (e.g., cost, trust toward the provider), users
often rely on different storage services [6]. In this case, the
interaction capabilities are rather limited to the simple link
sharing, and rely OOB (with respect to the exploited platforms)
mechanisms such as e-mail or instantaneous messages (IM).
Also, to the best of our knowledge, data migration from
one platform to another is not supported by any standard
mechanism. We believe that an effective sharing mechanism
should guarantee full interoperability among different STaaS
platforms, allowing users to interact also with principals using
different services, to easily define sharing groups, and to
migrate from one service to another in a simple way without
relying on local equipment.

Access control. Typical access control mechanisms are
much harder to be implemented in a decentralized platform
with respect to centralized counterparts. However we believe
that also in a decentralized sharing platform, a user should be
able to define, in a simple way, with whom to share a piece
of content and to easily assign and revoke such privileges.

III. ARCHITECTURE OVERVIEW AND FUNCTIONALITIES

In this section, we provide an overview of the proposed
architecture and we describe the main functionalities.

A. Architecture entities

The architecture we propose in the present work is com-
posed of three main classes of entities: (i) one or more
STaaS spaces which support easy sharing mechanisms, such
as HTTP or WEBDAV, used for storing data, metadata, and
any information about user interactions; (ii) one or more
communication services, such as e-mail or IM services, used
for the signaling mechanism; (iii) one local client on each
device of each user.

STaaS spaces. Our architecture is designed in order to
work with several heterogeneous STaaS spaces. The configu-
ration process consists of setting a vector <URL, credentials>
for each of the STaaS spaces that the user is willing to use to
store his/her data. The credentials will be provided to the client
so that it will be able to login and access the storage spaces.
Each user will only write on his/her storage space, which we
will refer at as personal space.

Communication services. Any e-mail or IM service can
be used for the signaling mechanism. In general, users should
reserve one or more accounts for the platform, so that signaling
messages related to our sharing mechanism do not interfere
with common messages.

User client. The local client is the core of the system
and provides a set of primitives/functionalities that can be
used to implement a rich interaction model relying on the
STaaS spaces for storing data, metadata, and information
about interactions and on the communication services for the
signaling and interactions. The interaction model, in terms of
functionalities is independent from the used STaaS and may
also be exploited by third party applications which can be
implemented on the top of our client.

B. Configuration

The user needs to install the client on each local equipment
that he/she wants to use and configure one or more storage
spaces. Also, he has to configure one or more e-mail or IM
accounts, which should be reserved for the platform usage.
Then, he/she has the possibility to add a certain number
of colleagues. Each colleague is identified by an identifier
(e.g., name, nickname, email address). To such identifier the
following items will be linked: (i) one or more URLs of
the personal space of the colleague which will point to a
file, called activity stream where the colleague will report his
activities, and to an entry point to the colleague’s data; (ii) a
security association between the user and the colleague, e.g.,
a key or a set of keys, so that the user and the colleague
may communicate and share content in a secure way; (iii)
optionally, an e-mail or IM contact reserved to such usage
that will be used for signalling purposes.

C. Working principle

The proposed solution implements primitives for storing
content and sharing with other colleagues.

Store a content. Each user authenticates and stores data
only on his/her own personal spaces, hosted by a STaaS on his
choice. STaaS authentication vectors will never been shared
with other users. Data are always stored in an encrypted form,
using encryption and key handling mechanisms embedded in
the client. Contents that are not intended to be shared are stored
in an encrypted way with keys that are known only by the
owner of the content.

Share a content. Stored content can thus be shared via
public sharing links, so that anybody can download it. How-
ever, in order to access a content a user has to own the decryp-
tion keys. The application will handle encryption/decryption
operations as well as assignment and revocation of privileges
(in the form of keys for accessing content) and notification.



In particular, when a user shares a piece of content with a
colleague, the content is encrypted with a fresh symmetric key,
which in turn is shared with the recipient of the content in a
secure way by mean of asymmetric public-key cryptography.
Similarly, when a colleague shares a piece of content with
groups of users, the piece of content is encrypted with a fresh
symmetric key and only one copy of the encrypted content
is produced. The symmetric encryption key is thus encrypted
for the group using a group key, which is owned by all the
members of a group, and shared among recipients. This assures
that only intended parties may access the content. The recipient
is then notified via mechanisms described below.

D. Notification mechanisms

The notification mechanisms are one of the most important
aspects of the proposed architecture. They must be able to
provide easy inter-Cloud sharing, meaning that they do not
have to rely on sharing facilities provided by specific storage
providers. In fact, thanks to our architecture two generic users
do not need to rely on the same providers for interaction. The
architecture supports a proactive and a reactive notification
mechanism.

Proactive notification. The first mechanism relies on e-
mail or IM services to send notification messages to the
colleague (or list of colleagues) to be notified. When a user
chooses to share an information with someone else, a message
is sent by either e-mail or IM mechanism with the link to that
information into the STaaS provider infrastructure. Please note
that the link to the content itself, embedded into the message,
gives no access to the content, since the latter is stored in an
encrypted form. The advantage of the proactive method is that
thanks to “push” techniques, supported by IM and most e-mail
services, an asynchronous notification is built.

Reactive notification. The second mechanism is based on
a regular verification, performed by each user, of a stream file
(namely Activity Stream) which is accessible on the public
space of each colleague. According to such a mechanism, in
order to notify a colleague of a new sharing, a user has to
report such interaction in his/her activity stream. At the time
of execution and regularly at predefined intervals, each client
downloads and verifies the content of the activity streams of
each or part of his contacts.

Note that the activity stream only contains entries ad-
dressed to specific contacts or groups of contacts. Specific
entries are cryptographically protected for the user or the group
of user, based on discussed security associations.

IV. IMPLEMENTATION DETAILS

A. User Client implementation

Figure 1 shows a graphical representation of the client
layered architecture and its interactions with external STaaS
spaces and communication services. Five modules are present
in the User Client: User Interface/API, Social Engine, En-
cryption Module, Read/Write Module, and Signaling Mod-
ule. The User Interface allows the user to interact with the
system. The same layer also provides APIs to possible third
party applications which can implement complex interactions
based on basic functionalities provided by the system. The

Fig. 1. Graphical representation of the proposed architecture.

Social Engine handles the system life cycle implementing
the orchestration of the main functionalities. The Encryption
Module allows to encrypt/decrypt pieces of content through
the considered encryption method. The R/W Module behaves
as an abstraction layer for the different STaaS spaces that the
system can deal with. Such module will be able to write only
on the user personal space and read from any storage. Finally,
the Signaling Module implements the communication layer by
abstracting the different communication service providers.

Two main high-level functionalities are present in our
prototype (refer to Figure 2 for the steps described below).
On one hand, the user is allowed to share a piece of data with
other users by selecting it from the local file system. First of
all, the user can indicate the identity of the users or groups
of users with which he/she wants to share the data (1). Then,
the encryption module is instructed for encrypting the piece
of content accordingly (2). Afterwards, the encrypted piece of
content is uploaded to the selected Storage Cloud through the
Storage Module (3, 4). Finally, the corresponding notification
is sent to such users through the selected signaling method by
mean of the Signaling Module (5, 6).

On the other hand, the recipient client can receive signals
about content that has been shared with him/her (8, 9). When
a notification is received through the Notification Module, the
Social Engine retrieves the content on the remote Storage
Cloud on which it is stored through the Storage Module (10,
11). Then, the piece of data is decrypted by mean of the
Encryption Module (12) and it is made available to the user
through the User Interface (13).

B. Adopted standards and technologies

We implemented a prototype of the proposed architecture
on an Android Samsung Galaxy Note device. Dropbox and
Google Drive have been selected as STaaS spaces while
Gmail as been taken into consideration as communication
service. Particularly interesting are the technologies adopted
in order to implement reactive notification mechanisms and
group encryption mechanisms.



Fig. 2. Interactions between two clients.

Activity description. In order to implement reactive notifi-
cation mechanisms we exploit the concept of Activity Stream.
An Activity Stream is a list of recent activities performed
by an individual in social web applications and services. The
more known example of Activity Stream is Facebook’s News
Feed. Since the proliferation of the Activity Stream concept
on websites, in recent year the necessity to standardize the
format came up in order for different websites to interact
among each other through their streams. In our work, we took
into consideration the open format Activity Streams [11] and
we designed a draft implementation of the format from both
the producer and the consumer point of view.

Group keying mechanisms. So as to support easy sharing
with locally defined groups of users, each principal may locally
define groups of users such as friends, family, co-workers. Our
proposal relies on Group Encryption with hierarchy of keys [4],
which allows to define by construction of the group several
subgroups. Such approach allows the issuer of the group to
address content to the whole group as well as to one or more
subgroups. It also allows for easy revoking privileges to one
user, i.e. removing one user from a group, reducing the number
and the complexity of the operations for re-keying remaining
users.

C. Reactive notification module

We adopted a JSON format for the activity streams. More
in particular, a customization of the approach proposed by [11]
has been implemented. In Figure 3, the structure of the Main
Activity Stream is shown. Field “url” contains the URL of
the user personal space, which is the entry point to his/her data
while “totalitems” is the maximum number of objects
that the stream may contain. This has been set up to 45 in
order to maintain the activity streams small. As soon as the
number of elements exceeds such limit, a new Activity Stream
is generated, which links to the previous one via field “prev”.
Each Activity Stream also links to the following one via field
“next”. The current Activity Stream is always available at the
same URL in order to facilitate the retrieval while previous
Activity Streams are moved at different URLs as specified
by fields “prev” and “next”. Field “first” links to the
first Activity Stream so that it is possible to go through the
whole list of streams starting from the beginning. Field “main
activity array” lists all the activities reported in the

Fig. 3. Structure of the Main Activity Stream

current stream. As discussed above, each activity reported in
the Main Activity Stream is referred to a list of users and thus
described in the related List Activity Stream, linked through
field “url” of “main activity array”.

List Activity Streams have a very similar structure with the
exception that several objects link at the content rather than
at other streams as in the case of Main Activity Streams. In
Figure 4, the structure of object “image” in a List Activity
Stream is depicted. Field “title” is a human readable
message that is displayed to the user. Field “url” contains the
URL of the personal space of the user while “id” is composed
of the list-id joined with a sequential number for the list. Main
Activity Streams are downloaded in parallel and the analysis
of each of them starts as soon as the download is completed.
Based on the content of the latter, List Activity Streams are
possibly downloaded and analyzed.



Fig. 4. Structure of object “image” in a List Activity Stream

D. Proactive notification module

We relied on email as messaging system. Messages follow
JSON format very similar to the one adopted for Streams. The
adopted email address is exclusively used for the system. As
soon as a new activity is performed by the user, the latter can
choose one or more recipients. Thus, the system automatically
generates email messages addressed to the recipients with a
description of the new activity. At the reception of the email,
the client automatically reacts decrypting and analyzing the
message and displaying the notification on the terminal.

E. Internal database

The internal status of the application is maintained within
an internal database which has been implemented in SQLite.
Such database is stored in an encrypted form on the personal
space of the user and contains basic information about the user
(his email, personal information and keys), his contacts (e.g.
associations between users and related keys, lists of friends
and related keys) and his activities within the platform (for
example, each sharing activity is reported). Such database is
upgraded on the personal space of the user each time the latter
launches the application, performs a significant action (e.g.
adds a new contact, shares a new piece of content) and allows
the user to accesses the platform from different devices. Based
on our experience, the size of the SQLite database is few KB,
and grows very slowly as the number of contacts or activities
increases.

V. EVALUATION

In this section we provide both qualitative and quantitative
evaluation.

A. Qualitative Evaluation

The system we propose implements a simple co-working
environment, allowing sharing of contents and providing a
framework that can be exploited for building complex interac-
tions, relying on several STaaS which are in general unable to
interact.

More in details, qualitative advantages of our system are
the following.

• It add new mechanisms for inter-Cloud data sharing
among different STaaS without the necessity for them
to change anything in their way of working, while
previous works mostly focuses on standardization of
Cloud to Cloud interfaces [12], [13]. Complex func-
tionalities can be implemented as plugins on the top of
the system, which provides primitives for interactions.

• It only relies on basic services of the Internet for
sharing content (e.g., HTTP, WebDAV) and commu-
nication (e.g., e-mail, IM). Relying on these services
ensures durability, robustness, and compatibility of the
service in the current Internet.

• It assures good levels of protection for the personal
sphere of users: all data stay under the control of the
owners and remain inaccessible to any unauthorized
party, included the storage service. Besides, access to
data is as anonymous as possible, since the access
control relies on encryption and users never have to
authenticate in order to access a piece of content. The
Cloud provider can only track accesses based on the
IP addresses, but this kind of tracking has always been
there since the born of Internet. Also, several project
aiming at providing anonymity at IP level already
exist, such as the TOR project, which allow to avoid
IP-based tracking.

• It abstracts from the exploited storage service: each
user may rely on the service of his choice, provided it
allows to share a piece of content via a sharing link.
Each user will always write on his/her own space.
Each sharing, modification, comment to a content can
only be done by uploading content on the own storage
space and relying on the interaction mechanism for
notification.

B. Quantitative Evaluation

We consider the dependency on the signalling module,
which for some interactions is based on the publish/subscribe
approach, as critical with respect to system performance. In
fact, in order to display the list of activities of a user contacts it
is necessary to download, decrypt, and analyze several activity
streams.

With the aim of evaluating the efficiency of such approach,
we tested our prototype in the more demanding case of
social network interaction dynamics, since inter-cloud sharing
and social network platforms are collapsing in one unique
interaction model. Also, although inter-cloud sharing systems
are mostly intended for usage from a PC, we also considered
usage from smart phones. We thus tested the publish/subscribe
approach on both a mobile device (Android Samsung Galaxy
Note) and a PC (Pentium 4, 2GHz, 1GB RAM) and observed
a very weak dependence on the local hardware with respect to
other parameters. More in particular, performance depends on
several variables: (i) Internet connection used for downloading
user activity streams; (ii) performance of the different services
users leverage for storing their own data; (iii) number of
contacts of which it is necessary to download, decrypt, and
analyze the related activity streams; (iv) number of activities
of such contacts in the context of the social network; (v)
employed device.

For what concerns the Internet connection, we tested the
mechanism in the case of both the Ethernet-based Internet
connection of our University Department and a 3G Internet
connection (usually used on smart phones). As storage services
we relied on Dropbox. Concerning the number of user contacts,
we identified 3 different scenarios which are typical of social
network platforms [14]: users with a small number of contacts



(25 contacts), users with average number of contacts (100)
and users with a huge number of contacts (500). However,
the majority of social network users tend to be interested at
and to interact with a much smaller number of contacts [15],
that is usually about 20% and however never more than 50
contacts; that is interactions with 5, 20 and 50 contacts in the
three discussed cases. That means a social system can give
higher priority to such subsets of contacts for providing a first
activity stream of most important contacts, then download in
the background data for all the remaining contacts. Note that
this approach is somewhat similar, in terms of user experience,
as what common social networks provide by allowing users
to favorite some contacts for filtering out most interesting
entries in the activity stream. For what concerns the activity
of contacts, we considered average levels of activity for all
contacts, that is about five activities per day [16]. However,
among all the activities a user can perform, only a subset of
them are notified via the publish/subscribe mechanism, that
is notification to a wide range of contacts; while others, for
example direct one-to-one interactions, are notified via direct
messages (e.g., IM, email). Such distinction is not foregone,
and depends on design choices. With respect to the list of
typical activities the ones notified via the publish/subscribe
model are: (i) new friendship/contact: since in general new
relationships are notified to all contacts; (ii) posted a status
update, a new picture, or a wall post etc.: since that concerns
several contacts of a user; (iii) liked a friend’s content: so as
to implement a basic recommendation system.

Such subset of activities represents about 47% of all typical
day’s activities [16]. Results of the simulations for the three
cases are summarized in Table 1. We report in parentheses
the results obtained by considering the subset of maintained
relationships only, as discussed above.

TABLE I. PERFORMANCE OF THE SYSTEM

Connection 25 (5) contacts 100 (20) contacts 500 (50) contacts
University 4.6 (1.6) sec. 5.6 (4.6) sec. 15.5 (5.2) sec.
3G 10.9 (3.8) sec. 34.5 (13.5) sec. 48.5 (13.5) sec.

The bottleneck seems to reside in the download of the sev-
eral activity streams, while decryption and analysis operations
seem to have a smaller impact on overall performance of the
system. That means the system remains usable in the case of
University Internet connection in all the cases except the most
demanding one (a user with 500 contacts who is interested at
the activities of all his contacts, which in general is not the
case). On the other hand, that is with a 3G Internet connection,
the system seems to be usable only in the case where one is
interested at a very small subset of contacts. However, in the
case of inter-cloud sharing users tend to maintain a very small
number of contacts.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a new approach for inter-
Cloud data sharing. We first identified the main requirements
and then provided both high-level and implementation-level
details of our approach. Relying on open standards, such
as HTTP, WebDAV, e-mail, and IM, our approach ensures
durability, robustness, and compatibility of the approach in
the current Internet by providing security and interoperability.
In the future, we aim at implementing a more complete

prototype of our architecture and quantitatively investigating
functional and non-functional requirements. Moreover, we plan
of building on top of our architecture by implementing a
distributed, shared, and secure file-system exploiting STaaS
spaces available online.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the Italian National project ”Integrated Cloud-Sensor
System for Advanced Multirisk Management” under grant
agreement PON01 00683.

REFERENCES

[1] E. Kolodner, S. Tal, D. Kyriazis, D. Naor, M. Allalouf, L. Bonelli,
P. Brand, A. Eckert, E. Elmroth, S. Gogouvitis, D. Harnik, F. Hernandez,
M. Jaeger, E. Lakew, J. Lopez, M. Lorenz, A. Messina, A. Shulman-
Peleg, R. Talyansky, A. Voulodimos, and Y. Wolfsthal, “A cloud
environment for data-intensive storage services,” in Cloud Computing
Technology and Science (CloudCom), 2011 IEEE Third International
Conference on, 29 2011-dec. 1 2011, pp. 357 –366.

[2] C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou, “Toward secure and
dependable storage services in cloud computing,” Services Computing,
IEEE Transactions on, vol. 5, no. 2, pp. 220 –232, april-june 2012.

[3] S. Dowell, A. Barreto III, J. B. Michael, and M. T. Shing, “Cloud
to cloud interoperability,” in Proc. of the 2011 6th International
Conference on System of Systems Engineering, Jun 2011, pp. 258 –
263.

[4] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group communications
using key graphs,” IEEE/ACM Trans. Netw., vol. 8, no. 1, pp. 16–30,
2000.

[5] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and
fine-grained data access control in cloud computing,” in INFOCOM,
2010 Proceedings IEEE, march 2010, pp. 1 –9.

[6] J. Li, C. Jia, J. Li, and Z. Liu, “A novel framework for outsourcing
and sharing searchable encrypted data on hybrid cloud,” in Intelligent
Networking and Collaborative Systems (INCoS), 2012 4th International
Conference on, sept. 2012, pp. 1 –7.

[7] S. Labes, J. Repschlager, R. Zarnekow, A. Stanik, and O. Kao,
“Standardization approaches within cloud computing: Evaluation of
infrastructure as a service architecture,” in Proceedings of the Federated
Conference on Computer Science and Information Systems, September
2012, pp. 923 –930.

[8] S. N. I. Association and the Open Grid Forum, “Cloud storage for
cloud computing,” in Open Grid Forum, Storage Networking Industry
Association, September 2009, pp. 1 –12.

[9] M. Zhou, R. Zhang, W. Xie, W. Qian, and A. Zhou, “Security and
privacy in cloud computing: A survey,” in Semantics Knowledge and
Grid (SKG), 2010 Sixth International Conference on, nov. 2010, pp.
105 –112.

[10] B. Snively, T. I. Morris, R. Ita, and K. L. Fox, “An application of
security access and control to semantic metadata management,” in
Military Communications Conference, 2007. MILCOM 2007. IEEE, oct.
2007, pp. 1 –7.

[11] “The activity streams format6.” [Online]. Available: http://activitystrea.
ms/

[12] (2013) Cloud data management interface (CDMI). [Online]. Available:
http://www.snia.org/cdmi

[13] X. Luo and H. Li, “Experiment design for cloud storage application
based on cdmi,” in Open-Source Software for Scientific Computation
(OSSC), 2011 International Workshop on, 2011, pp. 148–152.

[14] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow, “The anatomy of
the facebook social graph,” CoRR, vol. abs/1111.4503, 2011.

[15] (2013) Maintained relationships on facebook. [Online]. Available:
https://www.facebook.com/note.php?note id=55257228858&ref=mf

[16] (2013) Typical daily facebook activities. [On-
line]. Available: http://www.statista.com/statistics/192716/
typical-daily-facebook-activities-of-us-users/


