Singing voice detection with deep recurrent neural networks - IMT - Institut Mines-Télécom
Communication Dans Un Congrès Année : 2015

Singing voice detection with deep recurrent neural networks

Romain Hennequin
  • Fonction : Auteur
  • PersonId : 963444
Roland Badeau

Résumé

In this paper, we propose a new method for singing voice detection based on a Bidirectional Long Short-Term Memory (BLSTM) Recurrent Neural Network (RNN). This classifier is able to take into account a past and future temporal context to decide on the presence/absence of singing voice, thus using the inherent sequential aspect of a short-term feature extraction in a piece of music. The BLSTM-RNN contains several hidden layers, so it is able to extract from low-level features a simple representation fitted to our task. The results we obtain significantly outperform state-of-the-art methods on a common database.
Fichier principal
Vignette du fichier
Leglaive-ICASSP-2015.pdf (660.51 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01110035 , version 1 (27-04-2015)

Identifiants

  • HAL Id : hal-01110035 , version 1

Citer

Simon Leglaive, Romain Hennequin, Roland Badeau. Singing voice detection with deep recurrent neural networks. 40th International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr 2015, Brisbane, Australia. pp.121-125. ⟨hal-01110035⟩
989 Consultations
2765 Téléchargements

Partager

More