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Lossless contour coding using elastic curves in
multiview video plus depth

Marco Calemme, Marco Cagnazzo, Senior Member, IEEE, and Beatrice Pesquet-Popescu, Fellow, IEEE

Abstract—Multi-view video plus depth is emerging as the most
flexible format for 3D video representation, as witnessed by the
current standardization efforts by ISO and ITU. In particular, in
depth representation, arguably the most important information
lies in object contours. As a consequence, an interesting approach
consists in performing a lossless coding of object contours,
possibly followed by a lossy coding of per-object depth values.

In this context, we propose a new technique for lossless coding
of object contours, based on the elastic deformation of curves.
Using the square-root velocity representation for the elements
of the space of curves, we can model a continuous evolution of
elastic deformations between two reference contour curves. An
elastically deformed version of the reference contours can be
sent to the decoder with a reduced coding cost and used as side
information to improve the lossless coding of the actual contour.

Experimental results on several multiview video sequences
show remarkable gains with respect to the reference techniques
and to the state of the art.

Index Terms—3D video, multiple-views-plus-depth, contour
coding, lossless coding, elastic curves.

I. INTRODUCTION

The video-plus-depth representation for multi-view video
sequences (MVD) consists of several views of the same scene
with their associated depth information, which is the distance
from the camera for every point in the view. The MVD rep-
resentation allows functionalities like 3D television and free-
viewpoint video [1]–[3], but it generates large volumes of data
that need to be compressed for storage and transmission. As a
consequence, MVD compression has attracted a huge amount
of research effort in the last years, while ISO and ITU are
jointly developing an MVD coding standard [4]. Compression
should exploit all kinds of statistical dependencies present in
this format: spatial, temporal and inter-view, but also inter-
component dependencies, i.e. between color (or texture) and
depth data [5], [6].

We focus in particular on depth images compression through
contour-based coding means. The techniques developed for
texture images are not well suited for depth images, since
the latter have different properties and they are not meant to
be visualized but only used for rendering of virtual views.
Objects within a depth map are usually arranged along planes
in different perspectives; as a consequence, there are areas
of smoothly varying levels, separated by sharp edges cor-
responding to object boundaries. These characteristics call
for an accurate encoding of contour information. Some of
the proposed approaches include modeling the depth signal
as a piecewise polynomials (wedgelets and platelets, [7]),

Authors are with Telecom ParisTech, 75634 Paris, France.

where the smooth parts are separated by the object contours.
However, it is generally recognized that a high quality view
rendering at the receiver side is possible only by preserving the
contour information [8], [9], since distortions on edges during
the encoding step would cause a sensible degradation on the
synthesized view and on the 3D perception. In other words, a
lossless or quasi lossless coding of the contour is practically
mandatory.

For these reasons, in this paper we focus on lossless
coding of contours, and we target as natural application
the compression of depth maps. However, we observe that
an effective contour coding algorithm may prove beneficial
to other applications such as object-based image and video
coding. This promising coding framework has not been able
to replace traditional block-based approaches because, among
other things, lossless coding of contours was too expensive
[10], other causes being the absence of reliable segmentation
algorithms.

On the other hand, depth coding segmentation is eased by
the nature of the depth signal, and the extraction of the con-
tours can be achieved with specifically designed segmentation
techniques [11]. In conclusion, lossless contour coding is very
relevant in the context of depth map coding and it is the main
focus of this paper. Moreover it has potential applications also
for object-based coding of natural video.

The relevance of depth contour lossless coding has been
recognized in previous works. Gautier et al. [8] use JBIG [12]
to encode the object contours and a diffusion-based inpaint-
ing algorithm to fill in the interior of the objects, starting
from a subsampled version of the image and the boundary
values. In [8] it is underlined the importance of a lossless
representation of contours for depth maps, even though the
problem of efficient lossless coding is not in its scope: authors
use JBIG when more adapted tools are available, such as
JBIG2 [13], chain coding [14] and differential chain coding
[15], [16]. Recently the problem of contour coding for depth
maps has been explored by Daribo et al. [17]: their method
tries to predict the next edge direction within the context
of previously transmitted symbols, under the assumption that
pixel boundaries exhibit a linear trend. This approach allows
to achieve large improvement with respect to the state of the
art. However, even this high performing technique can be
improved by considering better models for object contours and
by exploiting temporal correlation: these elements are at the
basis of the our proposed technique [18].

Indeed, we achieve relevant results by using elastic de-
formation of curves [19] to provide more effective context
information for encoding the current curve: after computing
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the portion of the deformed curve corresponding to the current
symbol, we use the shape of this deformed curve and the past
samples of the encoded curve to estimate the most probable
direction of the contour. This direction is in turn used to
parametrize the probability distribution of the next symbol
in the curve representation. Finally, this symbol is encoded
with a context-based arithmetic encoder. Experimental results
show remarkable rate reductions with respect to standards
(around −65% with respect to JBIG2), to commonly used
algorithms (around −20% with respect to arithmetic coding
plus differential chain coding), and to the state-of-the-art
method in [17] (around −6.5%). We observe that this use
of the elastic deformation tool is quite different from what
it was proposed in the part. The only previous paper using
elastic curves in compression is [18]. However, in that paper,
elastic curves are used in the context of distributed video
coding, in order to improve the motion-compensated fusion
of background and foreground objects, while here it is used
for the lossless coding of contours.

The outline of the paper is as follows. We first introduce
basic notions on elastic deformations of curves and the basics
of arithmetic edge coding using the method of [17] in Section
II. The proposed technique is then described in Section III, ex-
perimental results and conclusions are presented respectively
in Section IV and Section V.

II. BACKGROUND NOTIONS

A. Elastic curves

Srivastava et al. [19] introduced a framework to model
a continuous evolution of elastic deformations between two
reference curves. The referred technique interpolates between
shapes and makes the intermediary curves retain the global
shape structure and the important local features such as corners
and bends.

In order to achieve this behavior, a variable speed parame-
terization is used, specifically square-root velocity (SRV), so
that it is possible to bend one shape into another as well as
stretch or compress a certain part of it. Let us introduce some
notation. We call p the curve defining the shape, and t ∈ [0, 1]
the curve parameter, leading to:

p : [0, 1]→ (x, y) ∈ R2, (1)

where (x, y) are the coordinates of each point in the contour.
Then, p is represented in the SRV space by q:

q : [0, 1]→ (x, y) ∈ R2, (2)

q(t) =
ṗ√
||ṗ||

, (3)

where || · || is the Euclidean norm in R2 and ṗ = dp
dt . This

transformation is reversible (up to a translation): the curve p
can reversely be obtained from q by:

p(t) =

∫ t

0

q(s)||q(s)||ds. (4)

Introducing the SRV representation is very interesting be-
cause it can be shown that the simple L2 metric in this space

corresponds to an “elastic” metric for the original curve space
[20] i.e. a metric that measures the amount of “stretching” and
”bending” between two curves, independently from a transla-
tion, scale, rotation and parametrization. Moreover, using the
SRV it is also relatively easy to compute the geodesic between
the two curves: according to the interpretation of the elastic
metric, this geodesic consists in a continuous set of deforma-
tions that transforms one curve into another with a minimum
amount of stretching and blending, and independently from
their absolute position, scale, rotation and parametrization
[19]. Classical applications of elastic deformations of curves
are related to shape matching and shape recognition. An
example of the geodesic connecting two curves is shown in
Fig. 1. We show in black two contours extracted (with the
Canny edge detector) from the depth of the video sequence
“ballet”. These depths correspond to the views 1 and 8, at
time instant 2. In red we show the extracted contours of
intermediary views, while in dashed blue we show a sampling
of the elastic geodesic computed between the two extreme
curves: it is evident that the elastic deformations along the
geodesic reproduce very well the deformations related to a
change of viewpoint. Similar results where obtained in the
temporal domain: elastic deformations are able to represent the
temporal deformation of an object contours, given the initial
and final shapes.

These observation lead us to conceive a lossless coding
technique for object contours: supposing that the encoder and
the decoder share a representation of the initial and final shape,
they can reproduce the exactly same geodesic path between
them. Then, the decoder will conveniently decide which point
of the geodesic (one of the blue curves in Fig. 1) shall be used
as context information to encode an intermediary contour (one
of the red curve in the same figure). The encoder will only
have to send a value s? ∈ [0, 1] to identify this curve. If this
curve is actually similar to the one to be encoded, it is possible
to exploit this information to improve the lossless coding of
the latter. However how to do this is not obvious, and the
solution to this problem is one of the main contributions of
this paper.

B. Lossless contour coding
Various techniques have been developed to represent and

code the boundaries of objects, like polygon approximation
[21] or chain coding [14]. The latter is the most common
method to losslessly encode boundary pixels. A chain code
follows the contour of an object and encodes the direction of
the next boundary pixel with respect to the current one. Since
an object tends to have a quite regular contour it is usually
more convenient to code the change of direction with respect
to the previous one, thus leading to differential chain codes.
An example of differential chain coding of the 8-connected
contour of an object is given in Fig. 2. The sequence of
symbols produced by a chain code is fed into an entropic
encoder, such as a variable length encoder or an arithmetic
encoder, possibly using contexts to improve its performance
[22].

Recently Daribo et al. [17] introduced a new technique
aimed at the lossless coding of edges that resulted to be the
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b̃0.2

i0 b3 i1

b̃s

bt

Fig. 1. Geodesic path of elastic deformations b̃s from the curve i0 to i1 (in dashed blue lines). b3 is one of the contours bt extracted from the intermediate
frames between the two reference ones, a good matching elastic curve b̃0.2 along the path is highlighted.

0

2-2

-4-3 3

1-1

Fig. 2. Differential chain code: the arrows represent the symbols of the
differential chain code if the previous symbol is “Up”. We can code the
contour of the object, from the starting point, as: “Up-Left”, 2, -1, 0, 3, -1,
-1, 3, -1, 2, 0, 1, 0.

best among the others. However it is conceived in a block-
based coding environment, we retain it as a base to develop
our contour-based coding technique. Their main idea is that
contours of a physical object possess geometrical structures
that can be exploited to predict the direction of the next
symbol, given a window of consecutive previous samples. A
chain code is used to represent a contour, and each symbol
is encoded with an arithmetic encoder that uses a probability
distribution adaptively computed using the previous symbols.
The probability distribution is centered around the estimated
most probable direction, which in turn is obtained using linear
regression on a suitable window of previous samples: the un-
derlying assumption is that contours exhibit linear trends. The
prediction of directions and the assignment of the probability
values can be reproduced at the decoder, provided that some
parameter is transmitted as side information.

This method has much better performance than other popu-
lar techniques [17], but further improvements are possible. On
the one hand the linear regression can be replaced with a more
effective estimator for the direction of the next symbol. On the

other hand the encoding algorithm does not take advantage
from temporal correlation of contours and the prediction of
the most probable direction cannot cope with sudden changes
of direction.

Our proposed method uses temporal correlation of contours
by producing an elastic estimation of the current curve; this
curve is subsequently employed for improving the statistical
model of the current symbol of the chain code, resulting in a
remarkable improvement of the coding rate. The two reference
curve used to produce the elastic deformation are encoded
using our improved version of the technique described by
Daribo et al. [17].

III. PROPOSED TECHNIQUE

We propose a technique for encoding the contour of an
object in a single view video sequence, in a multiview set
of images or in a multiview video sequence, and in any
context where two reference curves are available. The targeted
application is depth coding in MVD applications, and this for
two reasons: first, contour information is extremely important
for depth, and its lossless representation is necessary for
obtaining a good subjective quality for synthesized views;
second, extracting contours from a depth map is relatively
easy, since they are typically made up of smooth regions
separated by sharp discontinuities. However, in this paper we
do not investigate the contour extraction from depth images,
but uniquely their lossless coding; moreover, we point out that
our method can also be applied on contours extracted from
natural videos, as we show in the experimental results. In this
last case, contours are typically extracted from precise seg-
mentation maps: our method efficiently encodes both contours
automatically extracted from depths and contours obtained by
segmentation.
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As already mentioned, our method apply to the case where
we have a set of contours related to the same object, be
them representing the temporal evolution of the object borders
or their deformation related to the change of viewpoint: the
example in Fig. 1 refers to the latter case. However, without
loosing generality, we consider the following use case. We
have a set of K ≥ 3 contours (K = 8 in Fig. 1). We refer
to the parametric representation of the first contour as i0[n] =
(xi0 [n], yi0 [n]), with n ∈ {1, 2, . . . , Ni0}; likewise, i1[n] with
n ∈ {1, 2, . . . , Ni1} is the parametric representation of the
last contour, and bt[n] with n ∈ {1, 2, . . . , Nt} the one of the
generic t-th intermediate curve, with t ∈ {1, . . . ,K − 1}. We
propose an “intra method” (i.e. without temporal prediction)
to encode i0 and i1, and a “bidirectional method” (i.e. with
prediction from two already encoded curves) for the curves bt.
We will refer to the intra-coded contours as “I-contours” and
to the K − 2 intermediate contours, to which our prediction
based method is aimed, as “B-contours”.

Indeed, the I-contours are supposed to be available at the
encoder and at the decoder before the B-contours in order
to develop a prediction method to code the latter. To encode
the I-contours i0 and i1 we propose a small yet effective
modification to the technique described in [17]. The difference
between the modified and the original version lies in the
predictor for the direction of the next symbol, as shown in
Section III-B.

Let us now describe the proposed method for the B-
contours, the basic idea is independent from the value of K
and from the structure of dependencies (or, borrowing the
terms from the classical hybrid video coding paradigm, from
the GOP structure). More precisely, in order to encode bt,
we consider the geodesic path between i0 and i1. The elastic
deformation tool allows us to easily generate any intermediate
curve on the geodesic (dashed blue curves in Fig. 1), simply by
specifying a position parameter s ∈ [0, 1]. Let us refer to b̃s[n]
the parametric representation of a curve on the geodesic. We
observe that b̃0 = i0 and b̃1 = i1. Since i0 and i1 are available
at the encoder and the decoder, they both can produce the
same curve b̃s, for any s, and use it as side information for
the lossless encoding of bt. Intuition suggests that the encoder
and the decoder could agree in using s = t

K−1 as the position
on the geodesic used to predict bt. However, as we will show
in the experimental section, a significant coding gain can be
obtained if we let the encoder select a suitable value for s, let
it be s?, and use it for the encoding. Of course, s? should be
transmitted to the decoder using a suitable number of bits. The
choice of s? and the number of coding bits will be discussed in
the experimental section. Likewise, the problem of the optimal
“GOP structure” will be discussed in Section IV-D. In the
rest of the current section, in order to simplify the discussion,
we will consider a simple IBIBIB. . . configuration. This is
equivalent to having K = 3: in other words, we encode an
object contour knowing the previous and the future curves.
The proposed method can however be applied to any value of
K without major modifications. Other coding structures are
shown in the experimental part at Section IV-D.

In the rest of this section we will explain how to select a
suitable part of the elastic curve b̃s to be used as context to

encode the current edge symbol; how to use this information
to determine the most probable direction for the next symbol
on the contour; and which side information needs to be sent
to the decoder such that it can replicate the same behavior as
the encoder.

A. Correspondence function

In this subsection we consider the encoding of a single curve
bt using the elastic representation b̃s? , with s? suitably selected
by the encoder. For the encoding of i0 and i1 we do not use
the elastic deformation.

The curves are sampled respectively on Nb and Nb̃ points.
To simplify the notation, we will drop the subscript t and s?

where this does not give rise to ambiguities.
To use the suitable portion of the synthetic curve b̃ as side

information to code the current point on b, it is essential
to have a function that associates each point of b to the
corresponding point of b̃. This function is generated at the
encoder and has to be transmitted to the decoder.

In order to establish an association between the two curves,
we use Dynamic Time Warping [23] (DTW). First, it is needed
to establish a feature space F for the curves: a distance in this
space will then be used to create the DTW function. Since
we want to link the parts of the curve that have the same
characteristics in terms of lobes, spikes and such, we used
the direction of the tangent vector as feature 1. Let us use a
complex representation that associates to every point (x, y) the
complex number p = x+ y, and let us refer to the sequence
of tangent vectors of the curve c = (xc, yc) as ϕc:

∀n ∈ {1, · · · , Nc}, ϕc[n] = arg (pc[n]− pc[n− 1]) ∈ F ,
(5)

where F = [−π, π[. Computing Eq. (5) for b and b̃ we obtain
the sequences of features ϕb and ϕb̃ defined on Nb and Nb̃
points respectively.

A typical behavior of two feature sequences is shown in
Fig. 3; while the two sequences have similar shapes, they are
not aligned. To perform the alignment we need a local distance
measure (or local cost measure), defined as d : F ×F → R+.
The local distance measure d(ϕb [n], ϕb̃ [m]) should be small
when the two features are similar, large otherwise. Since in our
case F ⊂ R, we can use as distance the square of the direction

difference:
(
|ϕb − ϕb̃ | mod π

)2
. By evaluating the local cost

measure for every couple of elements in the sequences, we
obtain the cost matrix C ∈ RN×M , where the generic element
is defined as follows:

C(n,m) = d(ϕb [n], ϕb̃ [m]) =
(∣∣∣ϕb [n]− ϕb̃ [m]

∣∣∣ mod π
)2

.

We have to find now the sequence ψ, defined as a sequence
of couples:

ψ[`] = (ν?` , µ
?
` ) ∈ {1, · · · , N} × {1, · · · ,M},

1Other features we tested are: curvature and first order derivative of the
direction of the tangent vector.
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such that:

(ν?, µ?) = arg min
(ν,µ)

L∑
l=1

C (ν[`], µ[`])

under the conditions:
• boundary condition, ψ[1] = (1, 1) and ψ[L] = (N,M);
• monotonicity of ν?[`] and µ?[`];
• step size, ψ[`]− ψ[`− 1] ∈ {(0, 1), (1, 0), (1, 1)}.

In practice ψ is a sequence of indices (ν?[`], µ?[`]) of the
curves ϕb and ϕb̃ , such that ϕb [ν?[`]] and ϕb̃ [µ

?[`]] are best
matched under the aforementioned constraints. The association
by DTW of the two sequences is shown in dotted black lines
in Fig. 3.

ν?[`] µ?[`]
n

ϕb̃ [n]

ϕb [n]

Fig. 3. Example of association of two sequences by Dynamic Time Warping.

In our application the correspondence function obtained
with DTW on the direction of the tangent vector is very close
to a straight line and it can be approximated with a first order
polynomial. The approximation has two main effects: first
it reduces the number of bits needed to code the function;
moreover it prevents sudden variations on the correspondence
function that are rather related to outliers than actual values.
However, one may wonder whether it is worth computing the
exact DTW only for approximating at a first order: maybe
a simple rescaling of the “temporal” axis from N points to
M points could be as effective as the approximated DTW,
without needing to compute the correspondence function. We
have dealt with this issue with a simple heuristic approach:
we compared the coding rate of our algorithm in two cases:
in the first, we use the first order approximation of the DTW
function; in the second we use a rescaling of N/M . We
observed that using the DTW gives an average rate reduction
of 5.33%. For this reason, we kept the DWT in our system.

In Fig. 4 there is an example of DTW and its linear approx-
imation. The resulting correspondence between the points of
the two curves is shown in Fig. 5. We see that all the main
features of the curves are located and put in correspondence, so
that for each point of the actual curve b there is an associated
point on the elastic curve b̃, whose neighborhood is the side
information we want to use to enhance the coding of b.

B. Context

The correspondence function allows to associate the current
point to a portion of the elastic curve, centered in the corre-
sponding point. This information is used as side information
to have more accurate probability values for the next symbol.

1 Nn

M

m

1

Fig. 4. Ballet: correspondence function. In blue the association of the two
curves using the DTW of the direction of the tangent vector, in dashed red the
approximation with a first order polynomial. While n and m are the indices
of samples on the curves b and b̃, respectively.

b̃

b

Fig. 5. Ballet: correspondences between the elastic curve b̃ (dashed blue)
and the curve to code b (red).

We called this information the context, and for each point of
the curve b, it is composed by:

• v0, a vector of N0 points of the curve b transmitted so
far (in red in Fig. 6);

• v1p: the “past” on the elastic curve (in dashed blue in
Fig. 6), a vector of Np points of b̃ corresponding to v0;
more precisely, v1p is constituted of the points between
those corresponding to the terminal points of v0;

• v1f : the “future” on the elastic curve, a vector of Nf
points of the elastic curve b̃ following the current corre-
spondent point on b̃ (in dark blue in Fig. 6).

Of course v1p and v1f are only available for B-contours, for I-
contours only v0 is available. We use the context to obtain the
most probable direction for the next symbol, then we use this
result to define a distribution using the von Mises statistical
model [24].

Direction extraction. For all the set of points of the different
curves we have to estimate the direction of the next symbol.



6

b

b̃

α1p

α1f

α0

v0

v1p
v1f

Fig. 6. Extracts from the curves b (red) and b̃ (dashed blue). The
correspondences between the two curves are indicated with thin dotted black
lines. The dashed lines represent the extracted direction for the vectors of
points v0, v1p and v1f .

In the case of the I-contours only the set of points p0 are used,
while in the case of B-contours all the three sets of points v0,
v1p and v1f are used.

Several approaches can be used to extract a direction from
a set of ordered points. E.g. in [17] a linear regression on v0

is used. We found that a simple average direction is even more
effective. Using the same complex representation as in III-A,
the estimated direction α can be obtained using the following
formula:

α (v) = arg

(
1

N − 1

N∑
n=2

(v[n]− v[n− 1])

)
∈ [−π, π[,

(6)
where v is the complex representation of a
generic vector of N points, and is defined as
v = [x1 + y1, x2 + y2, · · · , xN + yN ]; arg is the argument
of a complex number.

Most probable direction. Applying α on the complex rep-
resentation of v0, we obtain α0, the angle of the average
direction based solely on the previously transmitted samples.
Likewise, α1p and α1f are the average directions based on the
vectors v1p and v1f of the curve b̃. We develop a method to
estimate θ, the most likely direction of next symbol of b: we
use α1f to adjust the direction α0. In this way, we manage to
seize the sudden changes and go along the long trends.

A simple and intuitive formula to take into account the
context for the prediction of the most probable direction is:

θ = (1− q)α0 + qα1f , (7)

with q ∈ [0, 1]. This way we can weight the directions of
the past of the curve b and the future of the curve b̃. To
decide the weight q, we observe that the side information of
the elastic curve is not essential when the curves are regular,
while it becomes fundamental next to the occurrence of a
sudden change. So q should be small if for the current point
the directions extracted from the two curves are similar (so
that θ is close to α0), and close to 1 if they are not (so that θ
close to α1f ):

q =
max {|α0 − α1p|, |α0 − α1f |}

π
. (8)

The value of q is related to the modulus of the difference of
directions, and it is large if α0 is very different from α1p or

α1f because a dissimilarity in the neighborhood of the current
point suggests a change which is not predicted solely from α0.

Adaptive statistical model. We retain the statistical model
described in [17] to assign values to the symbols for the
next edge. It is based on the von Mises distribution and the
distribution parameters are set according to the information
extracted from the curves b and b̃. The von Mises distribution
is the Gaussian distribution for angular measurements and it
is defined as [24]:

p(β|µ, κ) =
eκ cos(β−µ)

2πI0(κ)
, (9)

where I0(·) is the modified Bessel function of order 0, µ is the
mean and in this case it coincides with the estimated direction
θ, 1/κ is the variance of the distribution. As in reference [17],
we set κ as a function of the predicted direction θ: when θ
is aligned with the axis of the pixel connection grid, intuition
tells us that it is more convenient to give a higher probability
value to the symbol that represents that direction. So κ is set
to:

κ = ρ cos(2θ̂), (10)

where θ̂ = min{|θ − γi|}, and γi are the angles of the
pixel connection grid (

{
0, π8 ,

2π
8 , · · ·

}
in the case of an 8-

connected grid). The parameter ρ represents a “confidence
level” of the prediction: as it grows it makes the distribution
more unbalanced, so the more precise is the prediction based
on the context, the larger it should be to achieve higher coding
gains.

C. Coding

The curve b, represented with a differential chain code,
is encoded with an arithmetic coder which for each symbol
uses the probability vector assigned by the adaptive statistical
model. The encoder needs to transmit to the decoder the
parameters involved in the coding process:

• s?, the selected point on the geodesic path;
• the correspondence function, approximated by a first

order polynomial, so two parameters;
• the parameter ρ;
• N0 and Nf .

With this information the decoder can reproduce the behavior
of the encoder and it will compute the same probability values
for each point of the curve b. We observe that Np does
not need to be sent, since it is deduced by applying the
correspondence function to v0.

IV. EXPERIMENTAL RESULTS

The proposed method has been evaluated using the mul-
tiview sequences ballet (provided by Microsoft Research),
mobile (Philips), lovebird (ETRI/MPEG Korea Forum) and
beergarden (Philips). We encoded the curves corresponding to
the main object in the depth sequences for a fixed time instant
or view. We used to test our algorithm also masks extracted
from the standard monoview sequences stefan and foreman.

The curves for ballet, mobile, lovebird and beergarden
depths were obtained using the Canny edge detector [25].



7

Depth maps are not as complex as texture images and the
use of the Canny edge detector produced very good results
in our test cases. We extracted the contours of very precise
segmentation maps for the sequences stefan [26], [27] and
foreman [28]. This latter case can be seen as the ideal test case.

The coding scheme concentrates almost all the computational
load at the encoder side. In particular for the B-contours the
choice of the values of (Np, Nf , ρ, s) can be simply made
trying out every possible combination and selecting the one
that gives the best outcome. This full search method, however
optimal, is extremely costly in terms of time and complexity.
We thus introduced a greedy algorithm that optimizes one
variable at a time to find a sub-optimal solution.

A. Coding of I-contours and B-contours

To code the I-contours we replaced the linear regression
(LR) with the more effective average direction (AD) in the
technique described in [17], whereas for the coding of the B-
contours we can take advantage of the context provided by
the elastic curves (EC), thus achieving better coding gains. In
Tab. I are shown the results for a set of images taken from
the test sequences. We notice that just altering the direction
extraction method from LR to AD the average coding cost is
reduced by 4.88%, while passing from AD to AD with EC
context leads to a reduction of 1.82%, for a total reduction
of 6.53%. If on the other hand we use the LR with the EC
context, the rate reduction is 2.25%.

B. Side information cost

We will now account for the cost to transmit the four
parameters s?, N?

p , N?
f and ρ?, as well as the correspondence

function.
The correspondence function is the result of a linear ap-

proximation and experiments show that using 10 bits to code
the two parameters of the straight line leads to the same
performance as coding them with double precision.

For N?
p and N?

f we decided to use 1 bit for the range of Np
({5, 6}), and 2 bits for the range of Nf ({6, 7, 9, 11}), once
again based on experimental results. On the other hand the
optimal ρ has a wider range of values, and we observed that
typical values can be represented by the set {6.6 + k∆}, with
∆ = 0.1 and k = 0, . . . , 31, for a cost of 5 bits.

We observe that the accuracy of the representation of the
position on the geodesic s? has a quite large influence on
the coding efficiency. Using for example 2 bits to code the
possible positions we have 4 curves to use as side information
to code the curve b, using 3 bits leads to 8 curves, in general
using a fixed length representation with bs bits permits us to
choose among 2bs different curves. The chance of finding a
good matching curve to use as a side information increases
with bs, but for every bit added the complexity doubles, and
we are increasing the cost of the representation too. If some
values are more probable than others it is worth to consider a
variable length code to reduce the cost of the representation.

We thus used an experimental approach and compared two
different ways to code s?: a fixed length coding, with length

from 2 to 10, and an Exponential-Golomb code. In Tab. II
we see that, performing the average on different curves and
on different sequences, a fixed length coding leads to better
performance if the number of bits used for the representation
of s? approaches to 6 or more. To compare the proposed
method to other techniques we choose the best performing
10 bits fixed length coding.

For the I-contours we only have to transmit as side infor-
mation the parameters N?

p and ρ?, corresponding to an overall
cost of 6 bits. On the other hand the decoding of the B-
contours needs the correspondence function as well as the four
parameters N?

p , N?
f , ρ? and s?, corresponding to an overall

cost of 28 bits.

C. Greedy algorithm

Resting on experimental results for each variable we se-
lected a range of typical values. We initialize the greedy
algorithm (GA) with a starting point (Np0, Nf0, ρ0, s0), cor-
responding to the solution in which every value is the closest
to the center of the coded range, and then the GA optimizes
the variables in the order Np, Nf , ρ, s. Keeping fixed Nf0,
ρ0 and s0 the GA runs the proposed technique to select the
Np that minimizes the bit rate. Once N?

p has been found
the algorithm starts again to optimize Nf from the point
(N?

p , Nf0, ρ0, s0). Then again for ρ and s, until it reaches
the solution (N?

p , N
?
f , ρ

?, s?).
The search order for the parameters is set according to

our observations of the optimum parameter distributions after
the full search for many sequences: N?

p has a very peaked
distribution, so the selected value after the first step of the GA
should actually be the best one. N?

f , on the contrary, has an
almost uniform distribution, thus making difficult to locate the
best value; it is however required to select it before ρ?, because
the best value of ρ is influenced by the selected values of Np
and Nf . Still based on our observations, the last parameter to
select is s.

Sequence Full Search Greedy Algorithm
ballet 1309.60 1316.20

beergarden 1548.00 1554.00
lovebird 1305.18 1323.91
mobile 631.43 634.71

foreman 380.82 387.09
stefan 684.00 690.00

average 976.51 984.32

TABLE III
AVERAGE CODING COST (IN BITS) FOR THE FULL SEARCH AND THE

GREEDY ALGORITHM.

As we can see in Tab. III, the average loss with respect to
the full search is 0.82%, but the number of calculations the
encoder has to do is approximately reduced by a factor of 250.

Regarding the overall time needed for the coding of a curve,
we can distinguish fixed and variable time contributions. The
elastic estimation is fixed but we can decide how many frames
to leave in between the two reference ones. On the other hand
the execution time for the choice of the parameters can vary
greatly: a full search is very costly, and even if the greedy
algorithm speeds up the whole process, one can also decide
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linear regression average direction
linear regression average direction + EC context + EC context

ballet 1428.20 1375.20 1386.94 1338.78
beergarden 1687.67 1610.33 1656.67 1575.58

lovebird 1424.82 1370.73 1382.08 1341.73
mobile 711.71 642.29 697.15 639.12

foreman 411.73 396.82 398.15 390.20
stefan 745.33 701.00 738.33 700.00

average 1068.24 1016.06 1043.22 997.57

TABLE I
CODING RESULTS (IN BITS) FOR THE DIFFERENT CONTRIBUTIONS OF THE DEVELOPED TOOLS TO THE TECHNIQUE PROPOSED IN [17], APPLIED TO

OBJECT CONTOURS. TWO DIFFERENT METHODS TO EXTRACT THE PROBABLE DIRECTION FROM A SET OF POINTS: LINEAR REGRESSION, AND AVERAGE
DIRECTION, WITHOUT AND WITH EC CONTEXT.

Sequence 2 bits 3 bits 4 bits 5 bits 6 bits 7 bits 8 bits 9 bits 10 bits Exp-Golomb
ballet 1338.20 1329.00 1323.80 1323.80 1323.40 1321.40 1319.80 1318.20 1316.20 1320.80

beergarden 1573.33 1565.33 1559.33 1560.33 1559.00 1559.67 1554.67 1554.33 1554.00 1559.00
lovebird 1370.45 1347.18 1336.73 1334.18 1331.27 1328.73 1328.18 1324.73 1323.91 1332.09
mobile 638.29 635.29 635.43 635.57 634.57 634.86 635.71 635.00 634.71 635.71

foreman 390.27 388.27 388.45 388.91 387.00 386.82 387.09 386.55 387.09 388.09
stefan 705.00 695.67 693.00 693.00 691.67 689.33 688.33 689.33 690.00 694.00

average 1002.59 993.46 989.46 989.30 987.82 986.80 985.63 984.69 984.32 988.28

TABLE II
AVERAGE CODING COST (IN BITS) FOR DIFFERENT WAYS OF CODING s? : FIXED LENGTH CODING UP TO 10 BITS AND EXP-GOLOMB.

to keep the same parameters (or a subset of the parameters)
for a certain number of frames.

D. Comparisons

We compare our technique to various methods to code the
differential chain code of the contours: Adaptive Arithmetic
Coder (AAC), Context Based Arithmetic Coder (CBAC), and
the technique proposed in [17].

In the compression of B-contours we achieve gains up to
10% compared to the method of [17], but to make a fair
comparison we have to consider for our technique both I-
contours and B-contours of the GOP structure. To study the
influence of the GOP structure on the coding performance we
used the following:

• IBIBIB. . . is very effective for the B-contours, since the
two reference frames are very close and the prediction is
very accurate, but the I-contours have a non negligible
cost on the final outcome. Using this GOP structure pro-
duced in our experiments an average bit rate of 1000,19
bits per contour;

• IBBIBB. . . and IBBBIBBB. . . are flat structures with
fairly distant I-contours, they produced an average bit rate
of 1004.03 and 1010.28 bits per contour respectively;

• I1B1B2B3I2. . . is a hierarchical structure with 5 frames in
the GOP, in which B2 is predicted using I1 and I2, B1

using I1 and B2, and so on. It produced an average bit
rate of 997,57 bits per contour.

The hierarchical structure proved to be the most effective GOP
structure: the cost of the I-contours is low and the elastic
prediction for B2 is just slightly less accurate than the ones for
B1 and B3. This result is expected, given the previous study
on depth map compression with traditional hybrid techniques
that shows the importance of the prediction order [29].

In Tab. IV the average results for the test sequences are
shown, and in every case our technique performs better than
the others. The overall average gain with respect to the second
best coding technique in the group, the one proposed in [17],
is 6.53%. If we consider instead the gain of the proposed
technique with respect to JBIG2, which is not optimized for
this kind of data but has been chosen to code the boundary
information in [8], it is 65.09%. Over other standard tech-
niques, such as AAC and CBAC (with one symbol context,
the best choice in our tests) the average gains are of 23.93%
and 18.06%, respectively.

E. Object-based depth maps coding technique

We underline here that the goal of this paper is not to
propose a complete system for MVD coding, but only to show
the potential of the lossless contour coding based on elastic
deformation. In this respect, we show that a relatively simple
codec based on this tool may be competitive with (or even
better than) the state of the art and this may be considered a
validation of the proposed approach.

Coming to the implementation, we observe that it is very
difficult to integrate our object-based technique into a 3DVC
coder. We resort to an existing object-based technique since
it can immediately benefit from an improved contour coding
method, even though it is not the best option from a RD
perspective. Despite the simplicity of the approach, as we
will show, we have satisfying results, due to the nature of the
data we want to compress. In summary, the new object-based
compression technique is composed of:

• the proposed technique for the contours of the object with
a hierarchical GOP structure I1B1B2B3I2, as described
in IV-D. This part provides a lossless coding with inter-
frame prediction;
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Sequence # symbols JBIG2 AAC CBAC Method [17] Proposed Gain
ballet 1125.00 3968.00 1715.40 1585.60 1428.20 1338.78 6.26%

beergarden 1369.00 4226.67 2052.33 1882.67 1687.67 1575.58 6.64%
lovebird 1302.09 3153.45 1886.55 1740.36 1418.82 1341.73 5.43%
mobile 661.86 1915.43 837.14 696.00 711.71 639.12 10.20%

foreman 330.00 1776.73 517.18 522.91 411.73 390.20 5.23%
stefan 565.00 2106.67 859.33 877.33 745.33 700.00 6.08%

average 892.16 2857.82 1311.32 1217.48 1067.24 997.57 6.53%

TABLE IV
AVERAGE CODING COST (IN BITS) FOR VARIOUS SEQUENCES IN THE VIEW DOMAIN (ballet) AND IN THE TIME DOMAIN (mobile, lovebird, beergarden,

stefan). THE TESTED METHODS ARE: JBIG2, ADAPTIVE ARITHMETIC CODER (AAC), CONTEXT BASED ARITHMETIC CODER (CBAC) WITH 1 SYMBOL
CONTEXT, THE ONE PROPOSED IN [17], AND THE PROPOSED TECHNIQUE (ALL THE SIDE INFORMATION COST ACCOUNTED). IN THE LAST COLUMN ARE

REPORTED THE GAINS OF THE PROPOSED TECHNIQUE OVER THE OTHER BEST PERFORMING ONE IN THE GROUP.

• for the inner part of the objects we use the SA (Shape
Adaptive) Wavelet Transform, followed by SA SPIHT
(Set Partitioning In Hierarchical Trees), followed by an
arithmetic coder [30]. We remark that for the inner part
of the objects we thus have an entirely “Intra” technique.

We have chosen this technique because it is reasonable and
simple, and it complements perfectly with our lossless coding
technique.

To make a meaningful comparison we used HEVC Intra to
compress the depth maps. We believe that the comparison is
fair because in the case of HEVC Intra the arithmetic coder for
the lossless coding part take advantage of the context updating,
and there is no temporal prediction. Likewise, in our technique,
the lossless coding part exploits the temporal redundancy,
while the object coding is totally “Intra”. Moreover it would
not be fair to make a comparison with HEVC Inter because
we have no temporal prediction for the objects, neither would
be easy to develop an object-based coder with temporal
prediction.

Once defined the compression technique, we use the de-
coded depths to synthesize new views and make a comparison
with the images generated by the uncompressed depth maps.
Given any two adjacent views of the multiview sequence, we
generated three equally spaced synthetic intermediate views.
To test our depth maps compression technique we used the
multiview sequences ballet, beergarden, lovebird and mobile,
synthesizing 6, 15, 30 and 54 frames, respectively. In order
to assess the quality of the virtual views, we compared them
to synthesized images obtained by applying the same DIBR
algorithm to the uncompressed depths and views, and thus we
obtained the RD points related to our techniques and to HEVC
Intra.

Finally, we computed the Bjontegaard metrics [31] on
these RD points: we observed that our technique outperforms
the reference for ballet, beergarden and mobile, achieving
respectively +2.6 dB, +0.16 dB and +0.88 dB, while the PSNR
was practically identical for lovebird. These results, however
pertinent to quite specific test conditions (PSNR of synthesized
images, limited range), show that our technique can perform
at least as well as HEVC Intra, or even better depending on
the sequence: these results imply that the proposed approach
is worth considering. This is even more relevant in sight of
the fact that in general, object-based coding techniques achieve
not very good results in image compression. It has been shown
that the cost of lossless contour coding is one of the elements

that undermine these techniques the most [10].

V. CONCLUSIONS

In this article, we have proposed a new technique for
lossless coding of object contours for MVD. Using elastic de-
formation between two reference contour curves, we obtained
a useful side information for the coding of the actual contour.
The price payed with the coding cost for the side information
is fully rewarded with significant gains with respect to the
reference techniques and to the state of the art. We have also
improved the technique described in [17] by substituting its
prediction method with the average direction method.

Moreover a simple object-based depth map coding tech-
nique has been set up, showing that this approach can give
interesting results, even if compared to state-of-the-art tech-
niques, such as HEVC Intra.

So far only a monodimensional elastic interpolation has
been considered, but we expect a more precise estimation
if we can take into account 4 or 8 reference curves from
different views and different times, thus leading to further
improvements of the technique. This will be the subject of
further study.
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