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Abstract—In this paper, we address the problem of optimally
placing relay nodes in a cellular network with the aim of max-
imizing cell capacity. In order to accurately model interference,
we use a dynamic framework, in which users arrive at random
time instants and locations, download a file and leave the system.
A fixed point equation is solved to account for the interactions
between stations. We also propose an extension of a fluid model
to relay based cellular networks. This allows us to obtain quick
approximations of the Signal to Interference plus Noise Ratio
(SINR) that are very close to 3GPP LTE-A guideline results in
terms of SINR distribution. We then use these formulas to develop
a dedicated Simulated Annealing (SA) algorithm, which adapts
dynamically the temperature to energy variations and uses a
combination of coarse and fine grids to accelerate the search for
an optimized solution. Simulations results are provided for both
in-band and out-of-band relays. They show how relays should
be placed in a cell in order to increase the capacity in case
of uniform and non-uniform traffic. The crucial impact of the
backhaul link is analyzed for in-band relays. Insights are given
on the influence of shadowing.

Index Terms—Cellular network; relay; optimal placement;
fluid model; simulated annealing; processor sharing.

I. INTRODUCTION

Relaying is a promising feature of future cellular networks.

The scenarios envisioned by the two standards IEEE 802.16j

(for WiMAX networks) and 3GPP Release 10 and 11 (LTE-

A) are the following: (a) coverage extension: relays should

increase user experience in indoor or allow connection in

shadowed zones; (b) group mobility: relays can aggregate the

traffic related to a group of users within a train or a bus; (c)

capacity boost: by deploying low-cost relay stations, a cellular

operator can densify its network and increase its capacity. In

this paper, we tackle the problem of optimal relay placement

for capacity increase in an LTE-A-like cellular network.

A. Related Work

The relay placement problem arises in various contexts:

wireless sensor networks (see e.g. [1] and references therein),

Wireless Local Area Networks (WLAN), WiMAX networks

and cellular networks (like LTE-A); relays represent also a

paradigm in information theory (see e.g. [2] and references

therein). In this short literature review, we focus on the three
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philippe.godlewski@godlewski@telecom-paristech.fr (Philippe Godlewski).

first cases characterized by a hierarchical structure made of

Relay Nodes (RN) served by Base Stations (BS) or access

points. The RNs location problem can be seen as a sub-case

of the well studied facility location problem, which has been

proved to be NP-hard [3]. It deserves however some attention

because the objective functions and the interdependence be-

tween transmitting stations through interference make it very

specific.

Several papers in the literature focus on a single BS control-

ling several RNs [4], [5], [6], [7], [8]. In [4], authors consider

the problem of optimal relay placement in a single WLAN

cell. The problem consists in minimizing the average packet

transmission time. The method is based on a discretization

of the possible relay locations, a Lagrangian relaxation and

an iterative algorithm. In [5], RNs are constrained to be on

a circle around the BS, so that authors come up with a

single variable optimization problem. The same approach is

taken in [6] except that cooperative strategies (Decode and

Forward, DF and Amplify and Forward, AF) are assumed. In

[7], a region controlled by a BS is divided into sub-regions

characterized by their traffic requirements. The goal of the

authors is to place relays such that capacity is maximized and

user minimum bandwidth requirements are satisfied. Although

useful, for example in rural areas, these approaches cannot be

directly applied in a cellular network made of a dense network

of BSs and RNs.

References [9], [10], [11], [12], [13], [14], [15] consider

several BSs and several RNs per BS. A hierarchical optimiza-

tion problem is formulated in [9] for WiMAX networks: au-

thors first focus on short term call admission control decisions

(they use here the Markov Decision Process framework) and

then, on the long term, on network planning (a binary integer

linear problem, ILP, is solved with standard methods). Authors

of [10] consider the joint deployment of BSs and RNs and

try to maximize network capacity with a fixed budget. They

formulate the problem as an ILP and propose a two stage RN

and BS deployment algorithm to obtain sub-optimal strategies.

A similar idea is used in [11]. Wang et al. [15] try to minimize

the installation cost for serving a given demand or to maximize

the served demand for a fixed budget. Approximate algorithms

are proposed and related approximation ratios are computed or

bounded. Recently, [12] has also tackled the joint problem of

BSs and RNs placement, user allocation and transmit power

setting. The goal is to maximize the network sum capacity

while minimizing the installation cost. Sub-optimal solutions

to the resulting mixed integer non linear program are obtained
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thanks to an iterative algorithm. These papers suffer from

two main drawbacks. First, interference is never accurately

modeled. It is out of the scope of [9], [12], [15]; [10] considers

only noise for the calculation of data rates; [11] tries to

minimize the sum of path-losses, whereas data rate is related

to the Signal to Interference plus Noise Ratio (SINR); [13]

assumes a single-interferer model. Second, user locations are

often supposed to be known from the network planner (see

e.g. [15]). This assumption is realistic in a WiMAX network

but cannot be considered for a cellular network.

Three recent papers take into account co-channel interfer-

ence in their problem formulation. In [16], authors propose a

fixed point algorithm for the RN placement problem. RNs are

however constrained to be on a circle around their serving

BS. [17] relies on extensive system level simulations and

constraints also RNs to be placed according to a predefined

pattern. Sambale and Walke [18] propose a Simulated An-

nealing (SA) algorithm based on Monte Carlo simulations

compliant with 3GPP LTE-A guidelines (although shadowing

is ignored in the optimization). [19] deals with RN positioning

for network planning and optimization. Authors set up an

analytic performance evaluation model, based on simple path-

loss based SINR one-dimensional calculations with a single

interferer. [14], which is an extension of [18], also copes with

the problem of RN placement, taking into account physical

and MAC layer in their model (shadowing is taken into

account), and optimizing RNs placement in terms of cell

spectral efficiency. However, this paper, as well as [16], [17],

[18], [19] and other works, assumes that RNs and BSs transmit

at every time instant (full buffer traffic). Hence, it does not

model buffers loads and is equivalent to a static approach.

This often results in misleading performance evaluation, as

this model tends to overestimate interference.

B. Contributions

The contributions of this paper are the following:

• We introduce a ”dynamic” framework for relays place-

ment performance evaluation based on traffic analysis.

This model overcomes the limits of widely used static

models by considering users arriving in the system at

random time instants and locations, downloading a file

and leaving the system, rather than a fixed set of known

user locations. RNs and BSs are modeled as M/G/1/PS

queue and a fixed point iteration captures the interactions

between transmitting nodes. Contrary to most of the

literature, our framework takes into account non uniform

traffic patterns.

• We propose an extension of the fluid model, developed

in [20] for interference modeling, to relay-based cellular

networks in order to obtain quick calculations of the

SINR. We thus take into account co-channel interference

of the whole network in our optimization. Numerical

results show that we are very close to 3GPP LTE-A

guidelines results in terms of SINR distribution.

• Based on these quick SINR calculations, we develop a

dedicated SA algorithm for the relay placement problem.

Our algorithm enjoys some enhancements with respect to
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Fig. 1. Example of relay deployment with n = 4 relays. The cell range is
R. Sites are tri-sectorized and boresight directions of sector BSs are shown
with arrows.

the standard SA. These enhancements have been already

investigated in the field of image processing but have not

been yet considered for wireless network optimization,

to the best of authors’ knowledge. More specifically, we

propose a method to dynamically adapt temperature to

energy variations and a combination of coarse and fine

grids to accelerate the search for an optimal solution.

The paper is organized as follows. In Section II, we present

the system model, while in Section III, we deal with the

performance of RNs placement, by formulating cell capacity.

The SA algorithm is presented in Section IV and simulation

results in Section V. Section VI concludes the paper.

II. SYSTEM MODEL

A. Network Topology and Serving Station Assignment

We consider a single frequency cellular network (all stations

use the same frequency) consisting of tri-sectorized hexagonal

cells. Every sector is controlled by a sector BS. In every

hexagonal cell, n non-cooperative DF RNs [19] are deployed.

Every station (sector BS or RN) can be either active (i.e.,

transmitting) or idle (i.e., not transmitting), at any given time

instant. We denote with P the transmit power of an active

sector BS, and with PR the transmit power of an active RN.

Let B and R be respectively the set of sector BSs and the set

of RNs. We focus on capacity evaluation for the downlink.

The generic relay deployment is illustrated in Fig. 1. The

deployment pattern is identical in all cells1 (the relative

locations of the relays w.r.t. the cell center are constant across

the cells). We label RNs of each cell with indices 1 · · ·n, and

define as type i relays those RNs labeled with i. The set of

type i relays forms a regular stations pattern.

Each User Equipment (UE) is connected to its best server,

i.e., the station which provides the highest signal power.

We define Si as the region, of surface Si, where station i
is the best server. Moreover, denoting with Kc the set of

1The possibility to change the deployment pattern from cell to cell could
improve performance. This aspect is left for further studies.
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Fig. 2. Frame structure on the downlink for (a) in-band relays and (b)
out-of-band relays when BS sector controls p ≤ n relays.

stations belonging to a given hexagonal cell c, we define

Ac ,
⋃

i∈Kc
Si as the region, of surface Ac, where users

are served by a station of c.

B. Resource Organization

We consider in-band and out-of-band half-duplex relays.

We assume a time division access between sector BSs and

RNs illustrated in Fig. 2. Without loss of generality, the frame

duration and the overall band are set to 1 time unit. When

in-band relays are considered, a sector BS transmits data to

the RNs it controls over the Backhaul Link (BL) during a time

τ . Then, during 1 − τ and simultaneously, the BS transmits

over the Direct Link (DL, BS-UE link) and RNs transmit over

the Relay Link (RL, RN-UE link) to their respective attached

UEs (Fig. 3). When out-of-band relays are considered, the

BL is using another frequency band (e.g. over a microwave

link) or a dedicated narrow beam, so that BL radio resources

are not subject to the cellular network planning. In this case,

τ = 0. These definitions of in-band and out-of-band relays are

in accordance with the definitions of the 3GPP [21].

C. Propagation Model

Let consider a transmitting station j (RN on the RL, sector

BS on the DL or BL) and a receiver u (UE on the DL

or RL, RN on the BL) located in (rj , θj), where rj is

the receiver-station distance and θj is defined as the angle

between the receiver-station direction and the station antenna

boresight direction (θj = 0 for omnidirectional antennas). We

denote with superscripts L and N the propagation parameters

referred to Line of Sight (LOS) and Non Line of Sight

(NLOS) propagation respectively, and with subscripts B, R
and D the propagation parameters referred to BL, RL and

DL respectively. According to the 3GPP guidelines for relay

performance evaluation [22], the path-gain gl between a station

and a receiver location can be written as follows:

gl(rj , θj) = δl(rj)h
L
l (rj , θj)+(1−δl(rj))h

N
l (rj , θj), (1)

= δl(rj)Al(θj)
KL

l

r
ηL
l

j

+(1−δl(rj))Al(θj)
KN

l

rη
N
l

X
(u,j)
l ,

Backhaul Link (BL)
Direct Link (DL)Relay Link (RL)

Sector BSRNUE UE

Fig. 3. Relay Link (RL), Backhaul Link (BL), and Direct Link (DL).

where l ∈ {B,R,D} depends on the link type, KL
l and KN

l

are propagation constants, ηLl and ηNl are path-loss exponents,

δl(rj) is a Bernoulli random variable (RV), which is equal to 1
when the considered link is LOS. The probability for a given

link to be LOS depends on l and rj (for details see [22]).

Antenna pattern is given by Al(θ). RNs are equipped with

omnidirectional antennas, hence AR(θj) = 1 ∀θj . A sector BS

uses the same antenna for BL and DL, so that AB = AD ,

A. Shadowing is modeled by a log-normal RV X
(u,j)
l with

standard deviation σl. Note that the LOS or NLOS condition

is supposed to be constant in time. Shadowing is assumed to

change slowly in time, this notion will be detailed later in the

paper.

D. Traffic Model

In this paper, we assume that each station is equivalent

to an M/G/1/PS queue [23], [24]. This corresponds to a fair

radio resource scheduling policy. Flow calls from users arrive

according to a Poisson process of intensity λ(s)ds [flows/s]
in the location s of surface ds and flow calls sizes are

i.i.d. with mean π [bit/flow]. We suppose for simplicity

that the function λ(s) follows the same pattern in every

cell. Now, let decompose λ(s) , λ̄φ(s), where the constant

λ̄ =
∫

Ac
λ(s)ds/Ac [flows/s/m

2] is the average flow call

intensity in Ac, and φ(s) = λ(s)/λ̄ is named normalized flow

intensity. The term φ(s) allows us to consider spatially non-

uniform traffic and can be seen as a traffic profile. Moreover,

we define ω(s) = λ(s)π [bit/s/m2] as the traffic density in s.

Finally, ω̄ = λ̄π [bit/s/m2] denotes the average traffic density

in Ac. The latter can be decomposed according to the surface

controlled by each station: ω̄ =
∑n+3

i=1 ω̄i
Si

Ac
, where ω̄i is the

average traffic density on the surface Si controlled by device

i: ω̄i ,
π
Si

∫

Si
λ(s)ds.

We denote with C(s) > 0 the user spectral efficiency

(in bits/s/Hz) in location s, and with ρ̄i the load of the

M/G/1/PS associated to station i. If ρ̄i > 1, station i is said

to be saturated. According to the M/G/1/PS results, when

ρ̄i < 1, ρ̄i is also the probability that station i is active

(and thus interfere). By extension, if a station is saturated, it

is always active. If αi is the Bernoulli RV, which is equal

to 1 when station i is active and 0 otherwise, we have

P[αi = 1] = E[αi] = min{ρ̄i, 1}. By symmetry, all stations

of the same type (sector BSs with the same antenna boresight

direction or type i RNs) have the same load. At a given time

instant t, the spectral efficiency in s, which depends on the

SINR, is an explicit function of the αj , j 6= i, where i is

the serving station, because of the interference term. We thus
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write C(s,α−i(t)), where α−i(t) is the vector of the activity

variables of all stations in the network at time t, except i.

III. RELAYS PLACEMENT PERFORMANCE

Performance of RNs placement is measured with the corre-

sponding cell capacity. This section is devoted to the assess-

ment of the capacity of a cell made of three sectors and n RNs.

Cell capacity (derived in III-C) depends on the BL capacity

(III-A), on the spectral efficiency (III-D) and on the maximum

traffic intensity stations can sustain, which is obtained by

deriving stations loads (III-B). Subsection III-E introduces a

method to speed up capacity evaluation, by approximating

interference from far stations.

A. Backhaul Link Dimensioning

We derive here the proportion τ of radio resources dedicated

to the BL, based on average RN throughputs, supposing that

stations are not saturated. Let us consider a sector BS b and

the set of pb RNs controlled by b (see Fig. 2). Denote τi,b
the proportion of resources needed by b to serve RN i and

τb =
∑pb

i=1 τi,b. The average throughput of RN i is given by
∫

Si
ω(s)ds = ω̄iSi. Let CBL(i, b) be the average throughput

on the BL between b and i. The link between b and RN i is

not overloaded if CBL(i, b)τi,b > ω̄iSi. Hence, a lower bound

on τb is given by: τb >
∑pb

i=1
ω̄iSi

CBL(i,b) . Note that τb is the load

of the backhaul link between b and its corresponding RNs. In

order to ensure a time synchronization between all sectors of

a cell, we impose τ = maxb{τb}, so that in the best case:

τ , max
b

pb
∑

i=1

ω̄iSi

CBL(i, b)
. (2)

Suppose that the flow call intensity is uniform, i.e., ω(s) =
ω̄ ∀s. In this case (2) simplifies to:

τ(ω̄) , ω̄max
b

pb
∑

i=1

Si

CBL(i, b)
. (3)

In the following, we write τ(ω̄) to designate (2) or (3) in order

to show the dependency of τ on the input traffic. The value

of τ is set to zero when out-of-band relaying is adopted.

B. Stations Loads

The stations loads, which are related to their probability to

be active, are coupled through the spectral efficiency function,

which in turn is a function of the stations activities. We solve

this problem using a fixed point iteration.

Lemma 1. The load of a station i is expressed by:

ρ̄i =
ω̄

1− τ(ω̄)

∫

Si

φ(s)Eα

[

1

C(s,α−i)

∣

∣

∣

∣

αi = 1

]

ds. (4)

Proof:

ρ̄i
(1)
= lim

T→∞

1

1− τ(ω̄)

∫ T

0

∫

Si

ω(s)

C(s,α−i(t))
1lαi(t)=1ds dt

∫ T

0

1lαi(t)=1 dt

,

(2)
= lim

T→∞

ω̄

1− τ(ω̄)

1

T

∫ T

0

∫

Si

φ(s)

C(s,α−i(t))
1lαi(t)=1ds dt

1

T

∫ T

0

1lαi(t)=1 dt

,

(3)
=

ω̄

1− τ(ω̄)

Eα

[
∫

Si

φ(s)

C(s,α−i)
1lαi=1 ds

]

Pα(αi = 1)
,

(4)
=

ω̄

1− τ(ω̄)
Eα

[
∫

Si

φ(s)

C(s,α−i)
ds

∣

∣

∣

∣

αi = 1

]

,

(5)
=

ω̄

1− τ(ω̄)

∫

Si

Eα

[

φ(s)

C(s,α−i)

∣

∣

∣

∣

αi = 1

]

ds.

(1) comes from the fact that at a given instant t, the load gen-

erated in a small area ds in s is
ω(s)

C(s,α−i(t))
ds when the serving

station i is active. Averaging is done on the time activity of

station i. (2) comes from ω(s) = ω̄φ(s). (3) comes from the

assumption that the process α(t) has a time-stationary limit α.

(4) is by definition of the conditional expectation. (5) comes

from the assumption that the shadowing changes slowly in time

(and hence with respect to the realizations of α(t))2. Hence,

we assume that the expectation is taken over a period of time

large enough for the steady-state of the M/G/PS/1 queues to

be reached, but sufficiently small to keep the channel constant

at each location. Recall moreover that the LOS and NLOS

conditions are fixed in time. As a consequence, Si is fixed

with respect to the realizations of α(t).

We denote ρ , (ρ̄1, ..., ρ̄n+3) the vector of loads corre-

sponding to the n + 3 stations (n relays and three sector

BSs) in the central hexagonal cell. For a given normal-

ized flow intensity φ, let define the operator F (ρ, ω̄) =
(F1(ρ, ω̄), ..., Fn+3(ρ, ω̄)) as follows:

Fi(ρ, ω̄) =
ω̄

1− τ(ω̄)

∫

Si

φ(s)Eα

[

1

C(s,α−i)

∣

∣

∣

∣

αi = 1

]

ds,

(5)

where ∀i, Pα[αi = 1] = Eα[αi] = min{ρ̄i, 1}. Let also

define ω̄max
i , ω̄

1−τ(ω̄)

∫

Si

φ(s)ds
C(s,1) .

Theorem 1. If α 7→ C(s,α) is a continuous mapping and

1/C(s,α) is non-decreasing in α, F :
∏n+3

i=1 [0; ω̄
max
i ] →

∏n+3
i=1 [0; ω̄

max
i ] has at least one fixed point.

Proof: We have for any ρ ∈
∏n+3

i=1 [0; ω̄
max
i ] and any

2Measurements for outdoor static scenarios reported in [25] justify our
hypothesis, explaining this result with the fact that most of physical elements
causing shadowing outdoor are fixed.
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station i, 0 ≤ Fi(ρ, ω̄) and:

Fi(ρ, ω̄)
(1)
=

ω̄

1− τ(ω̄)

∫

Si

φ(s) lim
N→∞

1

N

N
∑

h=1

1

C(s,α−i(h))
ds,

(2)

≤
ω̄

1− τ(ω̄)

∫

Si

φ(s) lim
N→∞

1

N

N
∑

h=1

1

C(s,1)
ds,

(3)
=

ω̄

1− τ(ω̄)

∫

Si

φ(s)

C(s,1)
ds,

(4)
= ω̄max

i ,

where α−i(h) indicates the h-th realization of RV α−i. (1)

comes from the definition of average. (2) results from the fact

that, for each realization h of α−i, we have 1/C(s,α−i(h)) ≤
1/C(s,1). (3) follows from the consideration that all terms

(1/C(s,1)) in the summation have the same value. Finally,

(4) is by definition of ω̄max
i . Now, using the Brouwer’s fixed

point theorem, we conclude the proof.

A similar approach is considered in [26] (Corollary 1) for

a cellular network without relays. We extend here the result

to relay-based sectorized networks and we adopt a different

mapping F that guarantees the existence of a fixed point

(which is possibly outside the [0, 1)n+3 interval). As in [26],

we cannot conclude on the uniqueness of the fixed point.

Starting from a central isolated cell (i.e., without interference)

in the fixed point iteration makes however sense in a context

of increasing traffic.

The fixed point of (5) yields the loads ρ̄i of all stations

i = 1 · · ·n+3, for a given RN placement, a given normalized

flow call intensity φ(s), and a given traffic density ω̄.

C. Cell Capacity

The capacity of the cell is defined as

Ccell , ω̄maxAc [bit/sec/Hz/cell], (6)

where ω̄max is the maximum average traffic density that can

be supported by a RN placement (without any station being

saturated):

ω̄max = max{ω̄ ∈ R+ :F (ρ, ω̄)=ρ and ρ ∈ [0, 1)n+3}(7)

The value of ω̄max can be found for any given normalized

flow call intensity φ(s), by solving the fixed point of (5) for

several values of ω̄ and choosing the highest ω̄, for which no

station is saturated, according to the desired accuracy. This

can be done e.g. with a dichotomic search over ω̄.

D. Spectral Efficiency and SINR

We will now assume that the spectral efficiency in s is

derived by means of a saturated Shannon formula:

C(s,α−i) = min
{

log2(1 + γs(α−i)), C̃
}

, (8)

where C̃ is the maximum achievable spectral efficiency and

γs(α−i) is the SINR in s. Note that this function fulfills the

conditions of Theorem 1.

Now, consider a UE u located in s and receiving

from its serving station i a useful signal power Pi(s) =

Fig. 4. Interference is exactly computed for near stations, while it is
approximated for far stations by means of a fluid model of far stations network.

maxj∈B∪R Pj(s). The SINR γs(α−i) experienced by u is:

γs(α−i) =
Pi(s)

Is(α−i) +Nth
, (9)

where Nth is the thermal noise power and Is(α−i) =
∑

j∈B∪R, j 6=i αjPj(s).

E. Interference Computation with Fluid Model of Far Network

Stations

Relays placements performance assessment through (6) and

(8) involves intensive use of SINR evaluation: interference sum

and SINR must be evaluated on the whole cell surface for each

realization of α, at each iteration of the fixed point and for

each proposed ω̄.

In this subsection, we propose a fast methodology for

the computation of SINR, which should be simplified as

much as possible in order to reduce the computation time

of the optimization, while remaining accurate. Our approach

decomposes the interference into two parts: the contribution of

the near stations and that of the far stations. Far interference

is approximated thanks to a fluid model [27] adapted to relay-

based cellular networks, while interference from near stations

is exactly computed.

Let define the near BSs as the set Bc of BSs in the central

cell and in the first cells ring around the central cell, and

far BSs as the set Bf of BSs which are not near, so that

B = Bc∪Bf and Bc∩Bf = ∅. Sets Rc and Rf are similarly

defined for RNs (see Figure 4).

Now, the overall interference Is(α−i) can be decomposed

into two contributions: Is(α−i) = Is,c(α−i) + Is,f (α−i),
where

Is,c(α−i) =
∑

j∈Bc∪Rc, j 6=i

αjPj(s) (10)

is the power received from near stations, while

Is,f (α−i) =
∑

j∈Bf∪Rf ,j 6=i

αjPj(s) (11)
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is the power received from far stations.

In our study, we compute Is,c(α−i) explicitly, while

Is,f (α−i) is approximated with its average value over activity

(cf. α) and shadowing (cf. X) variations:

Is,f (α−i) ≈ Eα,X [Is,f (α−i)] , (12)

=
∑

j∈Bf

Eα,X [αjPj(s)] +
∑

k∈Rf

Eα,X [αkPk(s)] .

In the above equation, expectations should be taken knowing

αi = 1. However, we make the approximation that the

activities of the far stations are independent on αi.

It is reasonable to assume that a UE u in the central cell be

always served by a near station, and that the propagation on

all links between u and far stations be NLOS. This is valid

considering commonly used shadowing standard deviations

and LOS probability expressions (see e.g. [21], [22]). Our

simulations, based on the assumptions suggested in [22],

confirm these hypothesis, showing that less than 1% of users

are connected to far stations, and LOS probability between u
and a far station is close to zero. Hence, we assume Is,f (α−i)
to be composed by NLOS interferers, and express it as

Is,f (α−i)

≈
∑

j∈Bf

eaσ
2
D/2

Eα

[

αjPKN
D r

−ηN
D

s,j A(θ)
]

+
∑

k∈Rf

eaσ
2
R/2

Eα

[

αkPRK
N
R r

−ηN
R

s,k

]

= eaσ
2
D/2

3
∑

k=1

min{1, ρ̄k}
∑

j∈Bf,k

PKN
D r

−ηN
D

s,j A(θ)

+ eaσ
2
R/2

n
∑

h=1

min{1, ρ̄h}
∑

k∈Rf,h

PRK
N
R r

−ηN
R

s,k , (13)

where rs,j is the distance between station j and s, Bf,k is the

set of far BSs of type k, Rf,h is the set of RNs of type h and

a = ln(10)/10. Note that parameters KN
D , ηND , KN

R and ηNR
in (13) are referred to NLOS propagation.

Sums
∑

j∈Bf,k
PKN

D r
−ηN

D

s,j A(θ) and
∑

k∈Rf,h
PRK

N
R r

−ηN
R

s,k

can be approximated by adopting a fluid model [20] for the far

stations networks Bf,k, k ∈ {1 · · · 3} and Rf,h, h ∈ {1 · · ·n}.
The fluid model is a powerful tool to simplify interference

computation in hexagonal [27] and dense Poisson [28] cellular

networks. It is based on approximating a discrete set of

network stations, lying on a given region, with a continuum

of stations. The density (measured in [stations/m2]) of the

continuum is set to be equal to the density of discrete stations

in the original network. Interference sum is then approximated

by integrating received power from the continuum of stations,

over the considered area. The main advantage of this approach

is that it allows us to obtain approximate closed-form in-

terference expressions, which solely depend on the distance

between s and the network center. We refer the reader to [27]

for a detailed explanation and validation through Monte Carlo

simulations.

Let now focus on
∑

j∈Bf,k
PKN

D r
−ηN

D

s,j A(θ), k ∈ {1 · · · 3}.
We adopt the fluid model, substituting the hexagonal network

of type-k far BSs with a continuum of BSs of the same type,

lying on a ring centered at s. Following the approach presented

in [29], interference sum can be approximated as
∑

j∈Bf,k

PKN
D r

−ηN
D

s,j A(θ)

≈ ρBS

∫ ∞

Rc−r0

∫ 2π

0

(

PKN
D r−ηN

DA(θ)
)

rdrdθ,

= ρBSb
PKN

D

ηND − 2
(Rc − r0)

2−ηN
D , (14)

where ρBS is the BS sites density, b =
∫ 2π

0
A(θ)dθ, r0 is the

distance between the location s and the cell center and Rc is

the distance between the closest far BS and the cell center.

Terms
∑

k∈Rf,h
PRK

N
R r

−ηN
R

s,k , h ∈ {1 · · ·n} can also be

approximated adopting a fluid network model, obtaining
∑

k∈Rf,h

PRK
N
R r

−ηN
R

s,k

≈ ρBS

∫ ∞

Rc−rh

∫ 2π

0

(

PRK
N
R r−ηN

R

)

rdrdθ,

= 2πρBS
PRK

N
R

ηNR − 2
(Rc − rh)

2−ηN
R , (15)

where rh is the distance between s and the RN of type h in

the central cell.

Using (14) and (15), Is(α−i) is finally approximated as

Is(α−i) ≈
∑

j∈Bc∪Rc, j 6=i

αjPj(s) (16)

+eaσ
2
D/2

3
∑

k=1

min{1, ρ̄k}ρBSb
PKN

D

ηND − 2
(Rc − r0)

2−ηN
D

+eaσ
2
R/2

n
∑

h=1

min{1, ρ̄h}2πρBS
PRK

N
R

ηNR − 2
(Rc − rh)

2−ηN
R .

The use of a fluid model allows to approximate the sum

of interference from all far stations, at each considered cell

point, by only computing n + 1 closed-form formulae, while

the hexagonal model requires to calculate the sum of (n +
3)
∑NR

i=Nf
6i far stations received powers, where NR denotes

the number of cells rings around the central cell and Nf the

first ring of far cells. This considerably reduces computational

burden, considering that interference calculation is inserted in

multiple nested computation cycles, as mentioned above.

IV. OPTIMAL PLACEMENT

In this section, we study the optimization of relays place-

ment, by means of a dedicated Metropolis-Hastings Simulated

Annealing (SA) optimization algorithm, with the target of

maximizing cell capacity Ccell, defined in Section III (see (6)).

We first detail the configuration space, i.e., the set of variables

to be sought, and then describe the used SA algorithm, with

several enhancements which have been implemented.

In this work, a configuration is given by the positions of all

relays in a cell, which we assume to lay on an hexagonal grid,

due to the symmetry of the problem (see Fig. IV-1). As the

RN location problem includes the capacitated facility location



7

problem as a special case, it is NP-hard [3]. For a typical

grid of size N = 1024 measurements points per cell and

n = 6 relays, the cardinality of the configuration space Ω is:

|Ω| = CN
n = C1024

6 > (1000)6/6! > 1015. Hence, exhaustive

search is infeasible in practice and we have to address other

optimization techniques. Simulated Annealing (SA) is a well-

known stochastic technique for solving such large combina-

torial optimization problems endowed with fairly non-trivial

energy landscapes. It originates to [30] but was rediscovered

later [31], and with great success in network optimization

up to now [32], [33]. It leads to efficient optimization if its

parameters (especially the temperature schedule) are well set-

up [34]. Recall that Ω is a finite configuration space and

that we consider a cost energy function U(x) : Ω 7→ R

to be minimized. In this work, the energy of a candidate

configuration x is the inverse of its related cell capacity (see

(6)):

U(x) = −Ccell(x). (17)

The principle of SA lays in assigning the following exponential

probability to any configuration:

P(x) =
e−U(x)

Z
∀x ∈ Ω (with Z =

∑

x∈Ω

e−U(x)). (18)

A minimizer of U(.) possesses thus maximal probability

P(.) and can be found as follows (using Metropolis-Hastings

variant [35]):

• Initialization: assign an arbitrary initial configuration x0 ∈
Ω.

• At step m ≥ 0: let x = xm be the current configuration.

Apply the following procedure: pick up a candidate config-

uration x′ ∈ Ω according to a user-specified proposal law

r(x→ x′) and compute then the following acceptance rate:

Ξ(x→ x′) = min

(

1,

(

P(x′)

P(x)

)
1

Tm

.
r(x′ → x)

r(x→ x′)

)

,

= min

(

1, e−
U(x′)−U(x)

Tm .
r(x′ → x)

r(x→ x′)

)

. (19)

Assign xm+1 = x′ with probability p = Ξ(x → x′) (and

xm+1 = x with probability 1− p).

Here, Tm is a positive temperature parameter depending on

step m required to slowly decrease to 0 as m → +∞ (and

rigorously to satisfy Tm ≥
T0

1+log(m+1) ). Usually a geometric

law is adopted Tm = T0 . βm with β < 1 but close to 1.

Hereafter an adaptive temperature schedule is investigated.

Notice also that when the proposal law is uniform or more

generally symmetric, i.e., r(x′ → x) = r(x → x′), the

acceptance rate boils down to the usual Metropolis form:

Ξ(x→ x′) = min

(

1, e−
U(x′)−U(x)

Tm

)

. (20)

This generic method enjoys a number of extensions and

variants that are implemented here:

1) ”Restricted Image Spaces” [34]: It is indeed preferable

to draw at each step a configuration x′ which is close to x, for

instance by varying one variable only (say, the position ξi of

the relay of type i) and in a restricted range around its current

ξi

ξ'i

Fig. 5. Typical hexagonal cell with a hexagonal grid of possible relay
locations. The current location is ξi and the acceptance law is Gaussian
along a random direction. If the candidate ξ′

i
falls outside the hexagon, it

is ”periodized” inside the cell.

value. This is known to increase the global algorithm search

speed [34]. To this aim we adopt a continuous framework, with

symmetric gaussian proposal probability distribution function

(PDF) given by:

r(ξi, ξ′i) =
1

2π

1

ζ2
N (‖ ξ′i − ξi ‖ ; ζ2). (21)

Here, ζ controls the average distance between sites ξi and

ξ′i (Fig. IV-1). Finally the closest discrete grid site to ξ′i
is selected. This is justified (mostly at fine resolution) for

reasonable values of ζ w.r.t. the lattice step: first, there is low

probability to reject proposed grid node, i.e., to find an already

busy site. Then, the overall periodicity of RN lattice is injected

by periodizing the proposed site itself into the whole lattice

(Fig. IV-1). Thus, with this approximation the proposal laws

cancels down in Hastings-Metropolis, and we obtain the usual

Metropolis acceptance ratio.

2) Adaptive temperature scheme: In this work, we try to

automatically (and adaptively) estimate both initial tempera-

ture T0 and the cooling coefficient β. This has been previously

done in the literature [34] provided that one knows the energy

landscape (which is not the case here). This is done in two

steps:

• Initial temperature setting: it is adjusted by imposing that

the initial average acceptance ratio Ξ0 = <Ξ(x → x′)>
∈ [a, b] (in practice, we select [a, b] = [0.5, 0.8]). To do

this, T0 is first kept constant during some number of steps

(depending on the size of Ω). Then, a dichotomic-type

update process is applied:

T0 ← β T0 if Ξ0 > b and T0 ←
0.5

β
T0 if Ξ0 < a.

• Cooling schedule: after the previous initialization phase, a

fixed number of simulated annealing steps M l and a final

temperature TM
l [34] are assigned at each scale l = 1, 2

(see below), with related temperature schedule:

Tm
l = T0

l × (TM
l/T0

l)m/M l

. (22)

3) Multiscale implementation: Multiscale algorithms have

been employed long ago in various branches of Applied

Mathematics. In image processing several multiscale strategies
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have been outlined in [36], and fast algorithms for movement

detection/segmentation of video sequences can be found in

[37]. For instance a hand movement can be decomposed

first in a large range displacement (translation-rotation) of

the hand, followed by detection of fingers moves at a finer

scale. Similarly here we use a two-step setup with a first

optimization on a coarse grid, then refinement of this solution

at a finer level. Both steps employ SA with their own adapted

parameters (initial temperature, temperature step and spatial

grid resolution). The advantage of such a multiscale strategy

seems twofold here. First, it allows, at lower level, to avoid

spurious transitions between (high level) symmetry-invariant

configurations, which can arise due to the complexity of

the global energy landscape. Then, it enables to check the

robustness at both coarse and fine level of the placement

solution to shadowing, LOS and NLOS conditions.

V. RESULTS

A. Simulation Assumptions

1) Spectral Efficiency Computation: Simulation assump-

tions related to network layout and propagation (see (1)) follow

the setup described in [22, Appendix: Simulation Assump-

tions] (case 3) for LTE-Advanced. In particular, the sector BS

and RN transmit powers are resp. 46 dBm and 30 dBm and

the cell range is 1 km. The shadowing standard deviations

are 10, 8 and 6 dB on the RL, DL, and BL resp. for NLOS

propagation. Shadowing RVs between cell sites and between

sector BSs are correlated (see [13]). The correlation distance

is 50 m (we use the Cholesky decomposition as in [38]).

The SINR is computed on a regular hexagonal grid of

Measurement Points (MP) in the cell (with 25 m spacing), in

order to adapt to the problem geometry. For a given realization

of the propagation random variables, a given value of ω̄, a

given vector of station loads ρ and a given realization of the

activity vector α, the SINR is computed according to (9).

Instead of computing spectral efficiency using (8), we rely

on the Modulation and Coding Schemes (MCS) indicated in

[39] in order to have more realistic results. According to

[39], below a certain SINR threshold, a MP is in outage,

i.e., this position cannot be served by any station. In this

case, the contribution of such MP to stations loads is zero.

Any placement with an outage probability greater than 1% is

rejected by the optimization process (see [40], [41]).

2) Fixed Point Iteration: The expectation of the spectral

efficiency is computed on every MP over hundred realizations

of α and a new vector ρ is deduced from (4). We iteratively

solve the fixed point equation F (ρ, ω̄) = ρ (about six itera-

tions ensures convergence in our context). If ∃i, s.t. ρ̄i ≥ 1,

this means that ω̄ > ω̄max, otherwise ω̄ < ω̄max, see (7). The

values of ω̄ to be used in the fixed point iteration are selected

based on a dychotomous update process, which ensures a

maximum error for Ccell equal to ±2.3 × 10−3 [bit/s] (this

corresponds to ±23 [kbit/(s× cell)] for a system bandwidth

of 10 MHz).

3) Simulated Annealing: Optimization of RN positioning is

performed by evaluating the energy of a number of candidate

RN placements during the execution of the SA. Each RN

−5 −2.5 0 2.5 5 7.5 10 12.5 15 17.5 20 22.1
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0.9

SINR [dB]

C
D
F

 

 

n = 0 - our approximation

n = 0 - 3GPP simulations

n = 3 - our approximation

n = 3 - 3GPP simulations

Fig. 6. SINR distribution, our SINR approximation vs. 3GPP results [22]
(static case, n = 0 or 3 relays).

is allowed to be located on a hexagonal grid spanning the

whole cell. Two RNs are not allowed to be located on the

same spot, or in the cell center. During the first optimization

phase, RNs can be located on a coarse hexagonal grid (see

Section IV), where the spacing between 2 neighboring MPs

is 200 m. During the second phase, the spacing becomes

50 m. In this phase, candidate RN locations cannot be farther

than 300 m from the location found at the end of the first

phase. The number of states analyzed during each phase

varies according to n. For example, if n = 3, the first phase

of the SA is composed of M1 = 30 temperatures steps.

During each temperature step, the energy of 250 candidate

placements are evaluated. The second phase of the SA is

characterized by M2 = 20 and 150 placements for each step.

The SA is stopped if the acceptance rate Ξ is zero for two

consecutive temperature steps. In this case, we assume that the

algorithm has already reached a ’stable’ solution, and we elect

as final placement the one with the lowest energy among those

analyzed up to the algorithm stop. Note that the implemented

SA provides optimized solutions and not necessarily optimal

solutions that can be obtained theoretically after an infinite

number of iterations.

B. Model Validation

We first show the accuracy of SINR approximation intro-

duced in Section III-E. Fig. 6 plots the Cumulative Distribution

Function (CDF) of the SINR for the static case (α(t) = 1, ∀t)
with n = 3 relays and without relays. We have compared

the curves obtained in [22] with those derived by means of

our SINR approximation under the same assumptions. The

results show that there is a good match between our fluid

model approach and the results obtained by 3GPP. This can

be explained by the shadowing model (the standard deviation

is relatively low and RVs are correlated) and the resulting low

probability for a UE to be attached to a far station.

C. Simulation Results

Unless specified, simulation assumptions are taken from

[22] (case 3). In Fig. 7, we first show the influence of the
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cell (in-band and out-of-band, PR = 26, 30 and 46 dBm).
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Fig. 8. Average RN to cell center distance vs. n (in-band and out-of-band,
PR = 46 dBm, with and without shadowing).

number of RNs and of their transmit power on their distance

to the cell center. Let us first consider out-of-band RNs.

The absence of backhaul constraints allows the RNs to cover

the most interfered regions of the cell, i.e., the cell edge.

Increasing n tends to decrease the average distance to the cell

center because of a repulsion effect: RNs interfere more and

tends to move away from each other. While a set of RNs is

remaining close to cell edge, another set moves closer to the

BS site so that several rings of RNs may appear. Increasing PR

induces a similar but smaller repulsion effect for n ≥ 5. When

n is small, PR has however less influence because the inter-RN

distances are bigger and thus their mutual influence is lower.

The in-band case is characterized by a trade-off between the

advantage of covering the cell edge and the price to be paid

on the backhaul in terms of capacity. When PR is increased, a

RN controls a bigger region (especially when n is small) and

thus require a higher data rate on the backhaul. Consequently,

RNs have to be placed closer to the sector BSs.

In Fig. 8, we can observe that the shadowing has a neg-

ligible effect on the location of out-of-band RNs. The best

server mechanism assumed on the DL and the RL indeed

compensates the effect of the channel variations. The impact

is however decisive for in-band RNs. The best server policy

is indeed not assumed on the BL3. This means that the BL is

possibly highly interfered and its capacity is degraded. This

explains that RNs have to move closer to the sector BS in

order to benefit from higher MCSs and LOS propagation.

Fig. 9 and 10 show some examples of optimized RN

placements. In the out-of-band case, we see how RNs are

preferably placed on the cell edge. With one or two RNs (not

shown on the figure), the RNs cover corners of the hexagon.

When the number of RNs increases, e.g. with 6 RNs, we see

how three of them move closer to the cell center. If n still

increases a second ring of RNs around the BS site appears. It

is also noticeable from these figures that the RN placement in

a given cell is coherent with the RN placement in neighboring

cells. With four RNs for example, RNs attached to different

cell sites form a regular pattern around the edge of the central

cell. In the in-band case, RNs are much closer to the BS site

because of the BL influence. The boresight direction of the

sector BSs, which has almost no influence on the out-of-band

case, plays now an important role. On the one hand, RNs tends

to be in the boresight direction in order to benefit from a better

backhaul. On the other hand, most interfered regions lies on

the frontier between two sectors. For two RNs for example,

the first effect is preponderant.

Fig. 11 shows the cell capacity as a function of n. In the out-

of-band case, increasing n or PR leads to a capacity increase.

When there is no backhaul constraint, relaying is indeed

equivalent to a classical network densification, which clearly

increases the network capacity [42]. Higher is PR, higher is

the offload of the sector BSs towards RNs. As they control

bigger regions, sector BSs are indeed the limiting stations:

their load reaches 1 well before the RN loads do. According

to (7), this limits in turn the cell capacity. Increasing PR

consequently balances the traffic among RNs and BSs, which

results in a higher capacity. For in-band RNs, there are two

contradictory effects: increasing PR offloads the sector BSs but

increases also the proportion of resources dedicated to the BL

(RNs control bigger regions). Numerical results show that the

first effect is slightly preponderant. The increase of capacity

observed for out-of-band as well as in-band RNs contradicts

the effect observed in [19], which suggests a capacity decrease

after 3 to 7 RNs (depending on PR). This can be explained by

the fact that [19] assumes a full buffer traffic model (stations

are always active) and supposes that RNs are placed on a circle

around the BS. Fig. 12 confirms the influence of shadowing:

it has a relative small impact on out-of-band RNs but greatly

degrades the in-band RNs performance.

These results clearly show the advantage of deploying out-

of-band relays, especially in terms of cell capacity. The benefit

of in-band relays in a scenario similar to the one defined by

the 3GPP is less obvious. First, the increase of capacity is

small. Second, RNs are placed close to the BS because of

the backhaul constraints, so that the capacity increase benefits

mainly to UEs having already good radio conditions without

relays. The deployment of in-band RNs can thus be interesting

only if the BL benefits from a much higher capacity either

3Reference [13] proposes to attach a RN to the best BS, it is however not
an option offered by the standard so far.
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3 relays 4 relays 6 relays

Fig. 9. Optimized out-of-band relay locations (PR = 30 dBm, n = 2, 4 and 6, RNs are empty circles, BS sites are filled circles).

3 relays 4 relays2 relays

Fig. 10. Optimized in-band relay locations (PR = 30 dBm, n = 2, 3 and 4, RNs are empty circles, BS sites are filled circles).

because of a good radio propagation (as in [43]) or because

RN cell selection is adopted (as in [13]).

Finally, Fig. 13 shows an example of non-uniform traf-

fic pattern inside the cell. The normalized traffic inten-

sity φ(s) follows a bivariate normal distribution centered in

(0.3, 0.4) km and with standard deviation 0.3 km. Iso-flow

intensity levels are shown with concentric circles. As expected,

the relays are placed closed to the hot spot. In the out-of-

band case, the relays are also close to the cell border in order

to cover the most interfered region. On the contrary, in-band

relays are between the BS site and the hot spot in order to

benefit from a good BL.

Now the question arises of the accuracy of the solutions

obtained by SA. There are few results on this problem in the

literature and they are generally based on some consideration

over the energy surface. For example, the work of Catoni (see

e.g. [44]) is based on large deviations theory, and deals with

the evaluation (in a probabilistic framework) of the distance of

the final attained configuration to the optimal one. However,

the performed analysis seems not to be applicable in our case,

since we have a very weak knowledge of the energy landscape

of this complex problem.

VI. CONCLUSION

In this paper, we have addressed the problem of the optimal

placement of relays in a cellular network with the aim of in-

creasing the downlink cell capacity. Compared to other works
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Fig. 11. Cell capacity vs. n (in-band and out-of-band, PR = 26, 30 and
46 dBm).

on this subject, traffic and SINR computation models are more

realistic: we have set up a dynamic traffic model, where each

station is equivalent to a M/G/1/PS queue. The interaction

between stations is captured by a fixed point equation. The

system is stable if none of the stations is overloaded. This

approach accurately models the activity of the stations and

the relative weight of most interfered regions. Uniform and

non-uniform traffic can be analyzed. The optimization of the

placement is done using a dedicated Simulated Annealing

algorithm. In order to speed up the search for an optimized

solution, we have developed an extension of a fluid model
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Fig. 12. Cell capacity vs. n (in-band and out-of-band, PR = 30 dBm, with
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Fig. 13. Optimized out-of-band and in-band relay locations with a non-
uniform traffic pattern (PR = 30 dBm, n = 3, the BS site is in the center
of the hexagons, RNs are filled circles).

to relay based cellular networks. This approach yields very

good approximations of the SINR at every location. Our SA

algorithm adapts dynamically the temperature to the energy

variations and uses a combination of coarse and fine grids.

Simulation results shows that out-of-band relays are preferably

placed on the cell edge and are arranged in rings around the

BS, when their number increases. In-band relays suffer from

the poor quality of the backhaul link, especially in presence

of shadowing and tends to be much closer to the BS. In both

cases, cell capacity increases with the number of relays. The

benefit is however small with in-band relays.
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