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ABSTRACT
We demonstrate that the Internet has a formula linking de-
mand, capacity and performance that in many ways is the
analogue of the Erlang loss formula of telephony. Surpris-
ingly, this formula is none other than the Erlang delay for-
mula. It provides an upper bound on the probability a flow
of given peak rate suffers degradation when bandwidth shar-
ing is max-min fair. Apart from the flow rate, the only rel-
evant parameters are link capacity and overall demand. We
explain why this result is valid under a very general and re-
alistic traffic model and discuss its significance for network
engineering.

Categories and Subject Descriptors
C.2.5 Local and wide-area networks –Internet, C.4 Perfor-
mance of systems – modeling studies

General Terms
Design, Performance

Keywords
Erlang formula, Traffic, Congestion

1. INTRODUCTION
A recent report on the NSF program FIND (Future In-

ternet design) concluded that an important open issue for
future research is the identification of “Erlang formulas” for
the Internet [8]. The Erlang formula, or Erlang loss for-
mula, is used in engineering the telephone network. It gives
the probability of call blocking on a trunk group as a func-
tion of the number of trunks and the offered traffic. It is the
archetype of the relation between demand, capacity and per-
formance whose understanding is essential for cost effective
network engineering.

Currently, the Internet is engineered more by the use of
pragmatic rules of thumb than by applying soundly based
mathematical models like that which led to the Erlang for-
mula. This leads not only to inefficiencies through inap-
propriate sizing but also to misconceptions about the effec-
tiveness of traffic controls and their ability to support dif-
ferentiated services. This is why we agree with the FIND
report that identifying Internet Erlang formulas is indeed
important. We believe, however, that much of the neces-
sary research has already been performed and that the main
problem is a lack of awareness of known results and their im-
plications. Crucially, this research considers Internet traffic
∗This author has carried out the work presented in this pa-
per at LINCS – www.lincs.fr.

in terms of stochastic processes of packet, flow and session
arrivals.

Our objective in this paper is to propose a candidate Er-
lang formula for the Internet. Surprisingly, the essential
demand–capacity–performance relation turns out here to be
none other than the so-called Erlang delay formula! This
is clearly a surprising result since it is commonly believed
that Internet traffic is so complex that it is practically im-
possible to characterize performance in a simple way. The
Internet is used by a very large number of different appli-
cations and its traffic characteristics change continually as
new applications gain popularity. Furthermore, while it is
well-established that telephone calls arrive as a Poisson pro-
cess, the arrival process of IP datagrams has been shown to
exhibit much more complex, self-similar or fractal-like be-
havior that defies parsimonious modelling [15].

The basis of our claim is a model of Internet traffic where
flows arrive on a network link according to a particular, re-
alistic arrival process and dynamically share its bandwidth.
Flows at the considered link have an intrinsic peak rate de-
termined either by their end-systems or by bottlenecks else-
where on their path. We assume bandwidth sharing is, at
least approximately, max-min fair. The Erlang delay for-
mula is then shown to upper bound the proportion of time
a flow of given peak rate would suffer loss or have to reduce
its rate below the peak.

This result is significant for several reasons. It provides a
useful, relevant dimensioning criterion, ensuring for instance
a streaming flow of given coding rate suffers negligible degra-
dation. It shows performance is broadly robust with respect
to detailed traffic characteristics other than link capacity
and overall expected demand. It constitutes a solid basis on
which to build effective network engineering practice and to
elaborate additional performance results. The Erlang delay
formula is thus potentially as important for dimensioning
the Internet as the Erlang loss formula is important for di-
mensioning the telephone network.

It is not possible in this short paper to review the large
body of related work on dimensioning the Internet. It is
useful, however, to recall some work on Gaussian approx-
imations, typified by the papers of Fraleigh et al. [9] and
van den Berg et al. [2]. The former estimates packet delay
properties while the latter adopts a dimensioning criterion
based on the probability the incoming bit rate exceeds link
capacity. Traffic in both is modeled as a Gaussian process,
implicitly assuming therefore that the arrival rate of pack-
ets is independent of congestion. The present proposals, on
the other hand, are meant to account for the “closed loop”



nature of Internet traffic where the arrival process can be
significantly modified by the action of congestion control.

We first recall the significance of the Erlang formula for
the telephone network. Our general, flow-based Internet
traffic model is then introduced and used to characterize
so-called transparent, elastic and overload traffic regimes.
Performance of a link subject to this traffic is then evaluated
under the assumption that active flows share link bandwidth
fairly. Lastly, the results of the evaluation are applied to
derive the proposed “Internet Erlang formula”.

2. ERLANG AND THE TELEPHONE NET-
WORK

We first recall the importance of the Erlang formula for
the telephone network.

2.1 Historical note
A. K. Erlang was a mathematician working for the Copen-

hagen Telephone Company from 1909, some 30 years after
the inauguration of the first public telephone network [7].
In parallel with some illustrious contemporaries in other
countries, and in opposition to the opinion of many skep-
tics, he established that the analysis of telephone traffic was
amenable to the mathematical modelling tools of probability
theory. His celebrated formulas, as discussed below, relate
performance to capacity and a simple measure of demand,
enabling cost-effective network dimensioning and providing
a rigorous basis for network design. It is remarkable that
the formulas established for the technology and usage of a
century ago are still applied by network operators today.

2.2 The Erlang loss formula
The Erlang loss formula, the B-formula, gives the proba-

bility of call blocking when N trunks are offered traffic A:

EB(A,N) =
AN

N !

1 +A+ · · ·+ AN

N !

, (1)

where A is the product, call arrival rate × mean call hold-
ing time. The formula is derived from a mathematical model
that makes a number of assumptions about telephone switch-
ing and the nature of traffic, including the following:

1. call arrivals constitute a stationary Poisson process;

2. calls are blocked if and only if all trunks are busy;

3. blocked calls are cleared.

Some assumptions are realistic, being based on observable
reality, others are merely convenient, enabling a simple for-
mula when a more accurate model would be intractable.
For instance, to assume Poisson arrivals is realistic over rel-
atively short timescales (less than 1 hour, say) when calls are
generated by a large user population. The second assump-
tion is realistic for present day switches though in Erlang’s
day, all trunks could not usually be tested by every call. It
is convenient to suppose blocked calls are cleared though in
practice callers usually make repeat attempts. This means
the B-formula is good for dimensioning (for low blocking)
but not for analysing performance in overload.

It is well-known now that Erlang’s B-formula is insensi-
tive to the distribution of the call holding time. The blocking
probability depends only on the simple average measure of

offered traffic A. This insensitivity explains why the formula
remains a precious dimensioning tool today despite signifi-
cant changes in usage over the last century. It also underlies
much of network engineering practice since it informs us that
the essential measure of demand to be monitored and fore-
cast is offered traffic A, even when the above assumptions
may not be perfectly reasonable.

The Erlang formula reveals the important scale economies
phenomenon of networking (see Figure 1): achievable load
A(1 − EB)/N , for a given target blocking probability EB ,
increases towards 100% with trunk group size N . This has
two important consequences for large N , say N ≥ 100:

1. dimensioning based on maximum load is adequate (e.g.,
simply applying a load limit of 80% ensures blocking
is lower than 1%),

2. there is little scope for service differentiation (e.g., di-
mensioning to realize a 5% loss rate for low priority
calls would bring little gain compared to a 1% rate for
all).
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Figure 1: Achievable load as a function of trunk
group capacity for blocking probabilities 5%, 1%, 0.1%
(from top to bottom)

Of course, the Erlang formula is not a universal tool that
solves all telephone network engineering problems. It does,
however, have a very important emblematic role through
the lessons it provides about traffic modelling and the con-
fidence it inspires that we are indeed able to relate demand,
capacity and performance for a construction as complex as
the telephone network.

2.3 Generalizations
The following two generalizations are actually more sig-

nificant for the Internet than for the telephone network.
First, suppose calls do not occur as a Poisson process but

are produced in “sessions”. A session is a succession of calls
separated by silent intervals (or think times). We assume
sessions occur as a Poisson process. Under very general as-
sumptions about the distributions of the number of calls per
session, individual call holding times and silence intervals
and their correlation, the call blocking probability is still
given by Erlang B [3]. Under this Poisson session model the



call arrival process would even be self-similar if the number
of calls per session had a so-called heavy-tailed distribution.

The second generalization relates to heterogeneous call
types distinguished by the number of trunks each call re-
quires throughout its holding time. A call requiring c trunks
is blocked and cleared if the number of free trunks on its ar-
rival is less than c. Traffic for this type of call is defined by
the product, call arrival rate × mean call holding time × c.
Consider m types of calls, class-i calls requiring ci trunks
and offering traffic ai. The probability that n trunks are oc-
cupied is proportional to f(n), given by the following simple
recurrence relation [11, 16]:

f(n) =
1

n

mX
i=1

aif(n− ci), (2)

for n = 1, . . . , N , with f(0) = 1 and f(n) = 0 if n < 0. The
blocking rate of class-i calls then follows as the probability
that more than N − ci trunks are occupied. The formulas
are valid under the same general assumptions as Erlang B,
including the Poisson session model.

2.4 The Erlang delay formula
Before coming to the Internet, it is useful to recall a sec-

ond result due to Erlang, the Erlang delay formula or C-
formula, derived initially to dimension the number of oper-
ators manning a switchboard. The formula gives the prob-
ability EC(A,N) that a caller must wait when N operators
receive offered traffic A, assuming A < N :

EC(A,N) =
AN

N !
N

N−A

1 +A+ · · ·+ AN−1

(N−1)!
+ AN

N !
N

N−A

. (3)

This formula is valid under the following assumptions: call
arrivals are Poisson, call service times have an exponential
distribution, calls are served in arrival order and the queue
length is unlimited. We show below that this formula has
in fact much more general application in the Internet.

3. INTERNET TRAFFIC
Internet traffic is clearly much more complex than tele-

phone traffic and the mix of applications that produces it
continues to vary widely over time.

3.1 Packets, flows, sessions
Though the Internet protocols only deal with datagrams,

it is important for network engineering to recognize that
these belong to “flows” which in turn are components of
“sessions”. For present purposes, a flow is defined as the
succession of packets handled by a given link that relate to
one instance of some application.

Flows are basically of two types:

• elastic flows download documents as fast as possible
by adjusting their packet emission rate (e.g., through
TCP) to use all available capacity,

• streaming flows, typically based on UDP, send packets
as and when they are generated by the audio or video
codec.

Each flow is characterized by some peak rate. For elastic
flows, this peak rate is typically due to the access network,
the server capacity or some other bottleneck on its path. For

streaming flows, it is the peak rate of the codec. It matters
little for the present discussion that some streaming flows
may be emitted as progressive downloads in applications
like YouTube.

A session is loosely defined as a set of flows that are re-
lated in some way. The session is in fact better defined by
the requirement that any two sessions relate to independent
activities, usually by distinct users. Sessions cannot in gen-
eral be identified as such but, for the same reason a large
population generates telephone calls as a Poisson process, it
is natural that the arrival epochs of sessions using a consid-
ered network link are Poisson.

Poisson session arrivals have been observed experimen-
tally by Paxson and Floyd for some kinds of session that
can be identified in Internet trace data [15]. The same au-
thors confirmed that flow and packet arrivals are anything
but Poisson, on the other hand, and even exhibit the ex-
treme correlation of self-similar processes. We explain later,
in Section 5, that these characteristics are in fact only of
secondary importance.

3.2 Traffic regimes
Figure 2 illustrates three traffic regimes that help to un-

derstand the scope for meeting performance requirements.
Assuming flows have a constant peak rate, they can be rep-
resented simply in the figure as rectangles where height is
peak rate and area is size. They share the bandwidth of a
link represented by the parallel black lines. The dashed line
represents the instantaneous overall input rate.

(a) Transparent regime:
Sum of flow rates less than capacity.

(b) Elastic regime:
Some flows momentarily saturate the link.

(c) Overload regime:
The link is permanently saturated.

Figure 2: Link occupancy regimes: rectangles rep-
resent flows (minimum duration × peak rate), the
dashed line traces the sum of realized rates.

In the transparent regime, all flows have a relatively low
peak rate and demand is such that, with very high prob-
ability, the sum of rates is less than link capacity. In this
regime, packet loss is negligible and delays are tiny. Note



that the Gaussian approximations proposed in [9] and [2]
can be used for dimensioning if this regime prevails.

The elastic regime occurs when some flows have a peak
rate that momentarily saturates the link. The buffer is then
sure to overflow and flows suffer loss and delays that can be
significant. Periods of transparency alternate with periods
of saturation. Performance may be considered satisfactory
if degradation can be confined to the high rate elastic flows.

The overload regime occurs when demand (flow arrival
rate × mean flow size) exceeds link capacity. Performance
is then typically very bad for all flows so that this regime
needs to be avoided by appropriate traffic engineering.

3.3 Bandwidth sharing
Flows that are concurrently active on a given link may be

said to share its bandwidth. In the transparent regime there
is capacity to spare and every flow realizes its peak rate. A
simple FIFO buffer is then sufficient to resolve contention
between packets from distinct flows.

In the elastic regime some flows must reduce their rate.
TCP normally realizes the necessary adjustment resulting in
each flow receiving an allocation that is approximately max-
min fair [13]. Strict max-min fairness would be realized if
access to the link were controlled by a fair queuing sched-
uler [10]. It is worth recalling that fair queuing is provably
feasible at any link rate, as long as demand overloads can
be avoided [14]. With max-min fairness, only the high peak
rate flows are constrained to reduce their rate. The oth-
ers maintain their rate and suffer negligible loss, as if they
experienced the transparent regime.

Bandwidth sharing in the Internet can be controlled to
some extent by QoS mechanisms like Diffserv. It is possible,
for example, to consider certain classes of traffic with prior-
ity, ensuring they experience a transparent or elastic regime
even when other classes are in overload. It remains difficult
to control performance, however, since this depends criti-
cally on the amount of traffic in each class and on the peak
rates of its flows, parameters that are largely uncontrollable.

4. PERFORMANCE OF FAIR SHARING
We briefly present a number of recently obtained, power-

ful performance results for Internet traffic. We consider an
isolated link in order to highlight the analogy with the Er-
lang loss formula. Note, however, that extensions equivalent
to more general, known results for loss networks (e.g., see
[12]) are discussed elsewhere [6].

4.1 Assumptions
As discussed above, max-min fair sharing between concur-

rent flows is a realistic assumption if routers impose per flow
fairness [10]. It is just a convenient assumption if we must
rely on end-system compliance in implementing congestion
control.

We make the further convenient assumption that even
streaming flows adjust their rate as necessary to respect fair-
ness and that they preserve their volume (i.e., like elastic
flows, if their rate is reduced below their peak rate they last
longer). This simplifies modelling and the resulting approx-
imation is accurate as long as the probability a streaming
flow would suffer loss is small. As this should be an objective
of dimensioning, this is similar in effect to Erlang’s “blocked
calls cleared” assumption.

We further adopt the realistic assumption that sessions
occur as a Poisson process and the convenient assumption
that on any given link, their flows occur singly in an alter-
nating sequence with think times. Equivalently, we assume
concurrent flows of the same session are considered as one
for the purpose of bandwidth sharing. Flow sizes and think
time durations are generally distributed and can be corre-
lated. The number of flows in the same session has a general
distribution.

4.2 A common peak rate
Consider a link of capacity C offered traffic A, in bit/s,

and suppose each flow has the same peak rate c. Under the
above traffic and sharing assumptions, the number of flows
concurrently active x behaves like the number of customers
in a multi-server processor sharing queue [1]. In particular,
when C/c is an integer and under the stability condition
A < C, the proportion of time a flow suffers congestion (in
the sense that xc ≥ C) is given by the Erlang C-formula,
EC(A/c,C/c).

Thus, under the assumption of equal peak rates, the Inter-
net Erlang formula is precisely the Erlang delay formula (3).
Note that, due to the insensitivity property of the processor-
sharing discipline, this formula is valid for the considered
Poisson session traffic model with general flow size distri-
bution while, for the FIFO queue envisaged by Erlang, it
is only valid for Poisson flow arrivals and exponentially dis-
tributed call holding times.

4.3 A mixture of peak rates
In practice, flows in the Internet have a wide range of peak

rates. Assume for convenience that the number of possible
peak rates is limited to m, that these rates are c1, c2, . . . , cm
in increasing order and that flows of rate ci offer traffic ai.
Let the number of active flows of class i be xi and consider
a time interval of congestion, where

P
xici ≥ C.

With max-min fair sharing, the congestion is confined to
flows of high rates. Specifically, there is an index j such that
flows of classes j to m reduce their rate to a “fair rate” r
satisfying cj−1 < r ≤ cj , while flows of classes 1 to j − 1
maintain their peak rate. The precise value of r is such that
the sum of realized flow rates is equal to C. It turns out
that performance evaluation under max-min fairness is now
analytically intractable.

To make progress it is useful to make a further convenient
assumption. We assume that sharing is “balanced fair”, as
defined in [6, 5]. In the present context, this means that
when

P
xici ≥ C, all flows see a rate reduction, the reduc-

tion of flows of class i being approximately proportional to
ci. It has been proved that balanced fairness is the only
policy for which it is possible to derive explicit performance
results for general rate and demand vectors, {ci} and {ai},
and that these results do not depend on any more detailed
traffic characteristics.

Under balanced fairness, the probability that the total
flow rate

P
xici is equal to n, assuming C and the {ci} are

integers, is proportional to a function f(n) that satisfies the
recurrence relations:

f(n) =

(
1
n

Pm
i=1 aif(n− ci) if n < C,

1
C

Pm
i=1 aif(n− ci) if n ≥ C.

(4)

Comparison of (2) and (4) reveals a quite remarkable parallel
between loss systems on one hand and balanced fair systems



on the other that in fact extends well beyond the results we
are able to summarize here.

The function f(n) can be used to derive a number of per-
formance parameters like the congestion rate, the proba-
bility input rate

P
xici exceeds capacity C. Others can

be derived from further properties of balanced fairness dis-
cussed in [6]. Importantly, it has been verified by simulation
that many performance results derived under the convenient
balanced fairness assumption closely approximate those ob-
tained for max-min as well as other fairness criteria. The
balanced fairness assumption is then reasonable as well as
convenient.

4.4 Throughput and congestion
It has been shown in particular that the expected through-

put of a flow of peak rate ci is approximately equal to the
minimum of ci and C−A where A =

P
ai is overall demand.

The fact that C is large and utilization A/C is typically not
more than 80% explains why Internet backbone links rarely
impact perceived performance. They are in the transparent
regime since no flows are able to saturate the residual free
capacity, i.e., ci << C −A for all i.

If the {ci} and {ai} are known, it is possible to use the
recurrence relations (4) to dimension links to ensure a low
congestion probability. This means the link stays with high
probability in the transparent regime. This is only satis-
factory however if the ci are all guaranteed to be relatively
small. Otherwise the variance of the offered traffic is high so
that congestion can only be avoided by limiting mean load
to a small fraction of capacity.

While the transparent regime prevails in the Internet, jus-
tifying the Gaussian traffic models of [9] and [2], we antic-
ipate that the elastic regime will become more common as
flow rates increase, notably between well-connected servers
and data centers. In the next section we propose a simple al-
ternative dimensioning criterion that makes no assumption
about the ci and uses only overall demand A. This is what
we call the Internet Erlang formula.

5. THE INTERNET ERLANG FORMULA
We identify an explicit performance relation that, like the

Erlang loss formula, involves only link capacity and expected
demand. For all practical purposes, this relation is an upper
bound on the probability of congestion and can be used to
dimension Internet links.

5.1 Performance criteria
Following the above discussion, we consider the demand–

capacity–performance relation with the following choice of
performance criterion. We suppose a network provider seeks
to limit the degradation suffered by streaming flows of peak
rate no greater than c. Specifically, assuming max-min fair
bandwidth sharing, the proportion of time Pc any currently
active flow of rate c would suffer loss or have to reduce its
rate should be less than some target ε. We refer to Pc as the
rate-c congestion probability. The dimensioning objective,
given demand A, is to provide sufficient capacity C such
that Pc < ε.

Under max-min fair bandwidth sharing, Pc is simply the
probability that the fair rate is less than c. According to the
model of the previous section, with some traffic mix defined

by {ci} and {ai}, we have:

Pc = Pr

 
mX
i=1

xi min(ci, c) ≥ C

!
. (5)

5.2 A congestion probability bound
Unfortunately, max-min sharing is intractable: it is not

possible to calculate the probability distribution of the fair
rate. Moreover, any formula that depends on precise knowl-
edge of {ci} and {ai} is hardly useful in practice since these
data are not usually available. On the other hand, as shown
below, there is a formula that, for all practical purposes,
constitutes an upper bound on the congestion probability
Pc and is valid for any traffic mix.

The test rate c divides the flows into two categories: “low-
rate-flows” that have a peak rate less than c and “high-rate-
flows” that have a peak rate greater than or equal to c. For
given overall traffic A, Pc tends to increase either as the
peak rate of low-rate-flows increases to c or as the peak rate
of high-rate-flows decreases to c. In particular, the rate-c
congestion for any traffic mix is upper bounded by that for
traffic concentrated on rate c alone.

This statement is, in fact, not strictly true and precisely
qualifying the sets of parameters and conditions for which
it is remains an open research challenge. However, intuitive
arguments, some mathematical demonstrations and the re-
sults of simulations lead us to the conviction to calculate Pc
assuming uniform rate-c flows constitutes a valid, conserva-
tive approach for link dimensioning.

Reducing the rate of high-rate-flows while maintaining
the same demand tends to increase the number of flows in
progress. This naturally reduces the fair rate thus increasing
Pc. Proposition 1 in the appendix proves this is generally
true for any non-state dependent flow arrival process.

Consider now a set of classes such that ci ≤ c for all i
(i.e., after reducing the rate of high-rate-flows). The dimen-
sioning objective is to ensure the link leaves the transparent
regime with probability less than ε. We claim there is a folk
theorem that such congestion increases with the “bursti-
ness” of the arrival process. Assimilating burstiness to the
variance of the input rate, this indeed increases with flow
rates. It is, moreover, explicit in the Gaussian approach to
dimensioning (e.g., see [2]) that congestion increases with
input rate variance. Proposition 2 in the appendix proves
the bound holds for balanced fair sharing and large C.

For all practical purposes, the worst case traffic mix for
rate c congestion thus corresponds to all flows having the
same peak rate, c. This is precisely the assumption of Sec-
tion 4.2 where Pc was shown to be given by the Erlang
C-formula. We conclude that a dimensioning rule to ensure
Pc < ε for any traffic mix with overall demand A is to deter-
mine C such that EC(A/c,C/c) < ε. The Internet Erlang
formula is none other than the Erlang delay formula!

5.3 Significance
Note that the Erlang C-formula provides a bound that is

not necessarily tight. Figure 3 compares EC with the results
of simulations for a link of capacity 1000 shared by flows
of peak rate 1, 10 and 100 arriving as a Poisson process1.

1We simulate max-min fair sharing assuming Poisson ar-
rivals and exponential flow size distributions. Statistics are



Figure 3: Congestion probability for rate-10 flows:
Erlang C bound compared to simulations of a link
of capacity 1000 with flows of rates 1, 10 and 100
contributing to load in proportions (a1/A, a2/A, a3/A)
given in the legend.

The Erlang C-formula is used to bound the rate-c congestion
probability for c = 10. The figure demonstrates that realized
performance can be significantly better than that predicted
by the bound, especially when there is a large proportion of
high-rate-flow traffic.

The importance of the bound, even when it is not tight, is
that it has precisely the same robustness as the Erlang loss
formula. Performance depends only on overall expected de-
mand A for whatever mix of flow rates and for the very
general Poisson session traffic model. Recall that under
this traffic model, packet and flow arrival processes are self-
similar whenever the distributions of the flow size and the
number of flows per session, respectively, have a heavy tail.
The above results demonstrate that these characteristics
have no significant impact on performance: the Erlang C
bound is insensitive.

While the bound may not always be tight, it is neverthe-
less a very useful dimensioning tool. In particular, it exhibits
scale economies similar to those of the telephone network,
as depicted in Figure 4. Achievable utilization increases to-
wards 100% as the ratio C/c grows. For example, utilization
greater than 80% is compatible with 5 Mb/s streaming flows
suffering congestion of less than 0.1% on any link of capacity
greater than 1 Gb/s.

The Erlang C bound is a solid result that is indepen-
dent of any assumption about traffic demand other than its
overall average. If an operator knows more about the ac-
tual traffic mix, notably the traffic proportion due to high-
rate-flows and their rates, a more precise demand–capacity–
performance relation could be derived, using the mathemat-
ical models developed in [5] for instance.

6. CONCLUSIONS
We have demonstrated that, under a realistic flow-level

model of Internet traffic, a simple performance parameter
useful as a dimensioning criterion for network links depends

derived for more than 108 arrival/departure events.
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Figure 4: Achievable load A/C as a function of rel-
ative link capacity C/c for rate-c congestion proba-
bilities 5%, 1%, 0.1% (from top to bottom)

only on link capacity C and overall demand A. Explicitly,
the probability a flow of given peak rate c must reduce its
rate is bounded by the Erlang delay formula, EC(A/c,C/c).

This Internet performance relation is analogous to the Er-
lang loss formula of the telephone network in several ways. It
depends only on link capacity and expected load and not on
more detailed traffic characteristics. It is therefore robust
to changing usage. Both formulas reveal scale economies
that validate simple, maximum-load dimensioning criteria
for large capacity links. Its adoption as a dimensioning cri-
terion facilitates network management since we only need to
monitor and estimate average overall demand in representa-
tive busy periods.

Like the Erlang loss formula, however, the bound is not
sufficient for all purposes and more precise performance mea-
sures are sometimes required. Our analysis is based on an
extensive body of work, summarized in the paper [5], where
many more results relevant to both wired and wireless net-
works are presented. It is, for example, possible to account
for finite source traffic in the access network or to derive
end-to-end performance measures for a network path.

The validity of the Internet Erlang formula relies on the
assumption of max-min fair sharing. In practice, fairness
does not need to be perfectly precise but one must ques-
tion current reliance on end-systems voluntarily implement-
ing TCP, or TCP-friendly, congestion control. We believe
the future Internet should impose per-flow fairness. This is
technically feasible and is arguably the only traffic control
needed to satisfy performance requirements. Fair sharing
makes the network manageable precisely because we then
do have an Erlang formula. This cannot be said for other
traffic control architectures, like Diffserv for instance.
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APPENDIX
We show in two particular cases that the rate-c congestion
probability Pc increases when high-rate-flow rates decrease
to c or low-rate-flow rates increase to c while overall demand
remains fixed.

Proposition 1. Under max-min fair sharing, reducing
the peak rate of high-rate-flows to c increases Pc for any
C > A.

Proof. We prove that reducing the rate of high-rate-
flows to c can only increase the number of flows of each class.
The result is then a direct consequence of the definition of
Pc, (5).

The proof is based on the following coupling argument.
Let x′i be the number of class-i flows in the modified system
where the peak rate of high-rate-flows is reduced to c. As-
sume that x′i ≥ xi for all i. We shall see that the rate of each
flow is larger in the original system than in the modified sys-
tem. If

P
i x
′
i min(ci, c) < C, then

P
i xi min(ci, c) < C so

that, in the original system, low-rate-flows realize their peak
rate while high-rate flows have rates larger than c. Now ifP
i x
′
i min(ci, c) ≥ C, let r′ be the max-min fair rate in the

modified system. We have:

mX
i=1

xi min(ci, r
′) ≤

mX
i=1

x′i min(ci, r
′) = C,

so that the max-min fair rate in the original system cannot
be less than r′. In both cases, the rate of each flow is larger
in the original system than in the modified system. Now
starting from any state such that x′i = xi for all i and com-
paring both stochastic processes path-by-path, we conclude
that x′i ≥ xi for all i.

Proposition 2. Assume ci ≤ c for all i. Under balanced
fair sharing, we have Pc ≤ EC(A/c,C/c) for large enough
C at any given load A/C.

Proof. Since ci ≥ c for all i, Pc is the congestion prob-
ability Pr(

P
i xici ≥ C). We use the asymptotic expression

for the congestion probability derived in [4, Theorem 2].
Since we are interested in the limit for large C, we can as-
sume that both the peak rates ci and the target rate c are
integers. Moreover, we let c1 = 1 for some arbitrarily small
demand a1. We then have:

Pc ∼
e−IC√
2πCσ

mX
i=1

ai
C −A

1− eτci

1− eτ , (6)

where τ is the root of
P
i aie

τci = C, σ2 =
P
i aicie

τci and:

I = Cτ +

mX
i=1

ai
ci

(1− eτci).

It can be verified that for all i > 1:

∂I

∂ci
= −ai

c2i
(1− eτci(1− τci)) < 0.

Letting a1 tend to 0, we deduce that the minimal value of
I is reached for ci = c for all i, which corresponds to the
system with common peak rate c. The proof then follows
from the fact that Pc is dominated by the exponential term
e−IC : we have Pc ≤ EC(A/c,C/c) for large enough C.
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