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A Markov Decision Theoretic Approach to Pilot

Allocation and Receive Antenna Selection
Reuben George Stephen∗, Chandra R. Murthy† and Marceau Coupechoux‡

Abstract—This paper considers antenna selection (AS) at a
receiver equipped with multiple antenna elements but only a
single radio frequency chain for packet reception. As information
about the channel state is acquired using training symbols
(pilots), the receiver makes its AS decisions based on noisy
channel estimates. Additional information that can be exploited
for AS includes the time-correlation of the wireless channel and
the results of the link-layer error checks upon receiving the data
packets. In this scenario, the task of the receiver is to sequentially
select (a) the pilot symbol allocation, i.e., how to distribute the
available pilot symbols among the antenna elements, for channel
estimation on each of the receive antennas; and (b) the antenna
to be used for data packet reception. The goal is to maximize
the expected throughput, based on the past history of allocation
and selection decisions, and the corresponding noisy channel
estimates and error check results. Since the channel state is
only partially observed through the noisy pilots and the error
checks, the joint problem of pilot allocation and AS is modeled
as a partially observed Markov decision process (POMDP). The
solution to the POMDP yields the policy that maximizes the
long-term expected throughput. Using the Finite State Markov
Chain (FSMC) model for the wireless channel, the performance
of the POMDP solution is compared with that of other existing
schemes, and it is illustrated through numerical evaluation that
the POMDP solution significantly outperforms them.

Index Terms—Antenna selection, pilot allocation, POMDP,
FSMC

I. INTRODUCTION

Antenna selection (AS) [1]–[3] is a powerful technique,

employed to reduce hardware costs at the transmitter and/or

receiver of a multiple antenna wireless link. The core idea

is to use a limited number of radio frequency (RF) chains,

and adaptively switch them to subsets of a larger number of

available antenna elements. AS achieves the same diversity

order as a system that uses all the antenna elements, and hence

only a small loss in data rate is suffered when the receiver uses

the best possible subset of the available receive antennas [2].

AS can be employed at the transmitter, receiver, or both ends;

this work focuses on receive AS.

Several criteria for AS have been considered, and several

algorithms assuming perfect channel state information (CSI)

at the receiver have been proposed ([4], [5], and references
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therein). In practice, it is necessary to estimate CSI using, for

example, a pilot-based training scheme, and imperfect CSI can

lead to both inaccurate AS and erroneous decoding of data,

increasing the symbol error probability (SEP) [6]. Somewhat

surprisingly, it has been shown that transmit and receive AS

can achieve full diversity order even in the presence of channel

estimation errors [7].

Most of the past work on AS suffers from three drawbacks.

First, it assumes that the receiver equally divides the available

pilot symbols by the number of antenna elements during the

training phase [6], [8], [9]. However, when the channel is

slowly-varying, such an equal allocation is not optimal, as the

receiver can use the past estimates of the channel and the time-

correlation information to reallocate pilots among antennas in

subsequent training periods. Second, with packet reception, the

receiver can use link-layer error checks on the data packets

to glean additional information on the channel; this aspect

is typically not exploited in the literature. An exception,

for example, is [10], where an expression for the link-layer

throughput is used as a metric for transmit antenna subset

selection. Third, a quasi-static block-fading channel model is

usually assumed [1], [11], which precludes the receiver from

fully exploiting the temporal channel correlation. This work

seeks to overcome the aforementioned drawbacks and fully

exploit all the available information in deciding the optimal

pilot allocation for channel estimation and AS for data packet

reception.

The system model considered in this work consists of a

transmitter with a single antenna, and a receiver with N
antenna elements. The receiver has a single RF chain, so it

needs to decide on the antenna with which it should receive

data from the transmitter. To this end, the transmitter sends

the data in frames, with each frame consisting of L pilot or

training symbols, followed by a data packet. The receiver then

has the following trade-off. On the one hand it could allot most

of the pilots out of the available L to one particular antenna,

getting an accurate estimate of the channel on that antenna.

However, this would lead to losing track of the channels on

the other antennas that could have possibly been better. On

the other hand, it could allot fewer pilots each to different

antennas and keep track of the channels at all the antennas.

However, now it has poorer quality estimates of channels on

a larger number of antennas, which would lead to errors in

subsequent selection decisions, and loss of data packets.

The actual state of the channel at each available receive

antenna is known to the receiver only through noisy estimates

and error checks on the data packet. The receiver can control

the accuracy with which to estimate the channel at a particular
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antenna, and can select the antenna to be used for packet

reception. Thus, it has the freedom to control the partial

observability of the system. These controls must be applied

in such a way as to maximize some notion of long-term

reward. As a consequence, in this work, the problem of

joint pilot allotment and AS at the receiver in each frame is

modeled as a Partially Observable Markov Decision Process

(POMDP) [12]–[14], with the objective of maximizing the

long-term packet success rate. The contributions of this work

are as follows.

• For the first time in the literature, the general problem

of joint pilot allocation and AS in a time-correlated

channel is solved using a decision-theoretic framework.

A challenge in the formulation is that it needs to be

able to deal with two different kinds of actions, namely,

the pilot allocation and AS decisions, and two different

observations in the training and data phases. This is

further elaborated in Section III.

• The POMDP is solved to obtain the joint pilot allocation

and AS policy that maximizes the long-term reward such

as the throughput.

• Insights are provided on the nature of the policies to be

followed. For example, with 2 receive antennas and a 2-

state Markov model for the wireless channel, when the

channel is fast-varying, it is found, somewhat surpris-

ingly, that the POMDP solution allots all pilot symbols

to a single antenna, which allows it to glean accurate

information about that antenna, and the selection decision

picks the antenna that is most likely to be in a good state.

• With a Finite State Markov Chain (FSMC) model for the

wireless channel, it is shown via numerical evaluation

that employing the POMDP policy can lead to consider-

able savings in the pilot power required to achieve the

same packet success rate as compared to other existing

schemes. These can be up to 8 dB at a fixed average

data SNR of 0 dB, and around 2 − 3 dB with 3 dB

pilot power boosting, for moderate values of pilot SNR.

With a 2-state Markov Chain model and N = 2 antennas

and L = 4 training symbols, it is found that the greedy

myopic policy [15] is nearly optimal over a wide range

of channel parameters and pilot and data SNR values.

The advantage of posing the problem as a POMDP is that

it admits the use of a gamut of computationally efficient

methods [16, and references therein] for solving it. Moreover,

once the solution is obtained, implementing the optimal policy

to optimally allot pilot symbols and select the antenna to

receive the data packet is simple. One has to update the belief

vector for the channel state based on the observations in every

slot using Baye’s rule, and then employ the optimal action

corresponding to the updated belief vector, possibly by using

a look-up table. The solutions presented in this work can

lead to a significant reduction in the pilot SNR or number

of pilot symbols required to obtain a given performance, or

an improvement in the average data rate, in practical AS based

systems.

The paper is organized as follows. Section II gives a

description of the system model. Section III describes the
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Fig. 1. Frame structure for training and data reception.

POMDP formulation of the problem and Section IV describes

the solution techniques. This is followed by a discussion in

Section V. Simulation results are presented in Section VI.

Appendices A and B detail the observation models used

and the calculation of observation probabilities required for

POMDP planning.

Notation In the paper, x indicates a scalar and x, a vector.

x∗, xT and xH denote the conjugate of x, and the transpose

and Hermitian of x respectively. xj is the jth component of

x and xi,j , the jth component of vector xi. X is a random

variable (RV), and X, a random vector, unless mentioned oth-

erwise. fX(x) denotes the probability density function (pdf) of

the continuous RV X . An indicates a square matrix of size n.

CN (µ, σ2) and N (µ, σ2) denote respectively a complex and

real normal distribution with mean µ and variance σ2. ❊A{X}
denotes expectation of X , given condition A, and PA{E}, the

probability of event E, given condition A. ✶{A} denotes the

indicator function, equal to 1 if condition A is satisfied, and

0 otherwise.

II. SYSTEM MODEL

Consider a wireless system with a single transmit antenna

and N receive antenna elements, but only a single RF chain

at the receiver. Time is divided into frames of fixed duration

Tf . Each frame consists of a training period Tt and a data

transmission period Td. In the training period, L reference

pilot symbols, each of duration Ts, are received and used by

the receiver to estimate the channel gains at the N receive

antennas. The training period is followed by data packet

transmission, at the end of which the receiver performs an error

check and hence knows whether the data packet was received

without error or not. Figure 1 shows the frame structure. Let

hi[k] denote the frequency-flat channel between the transmitter

and the ith receive antenna at the beginning of frame k. It is

assumed that hi[k] is constant for the entire duration Tf of

frame k, but correlated from frame to frame. This holds true

if the coherence time Tc of the channel satisfies Tc ≫ Tf , as

is typically the case in practice. Also, hi[k] is independent of

hj [k] for i 6= j. This assumption, though not necessary for the

POMDP formulation of the problem, simplifies the evaluation.

It holds true if the antenna elements at the receiver are spaced

sufficiently apart from each other.

Consider a particular frame in which ℓi ∈ {0, 1, . . . , L}
pilots are used to estimate the channel1 hi at receive an-

tenna i, with
∑N

i=1 ℓi = L. Here, the time overhead of

switching between antennas is assumed to be negligible

compared to the duration of the training phase [2], and

1the frame index k in hi[k] is dropped here for convenience.



3

...1 2 G

p
(i)
G,G

p
(i)
G−1,Gp

(i)
12 p

(i)
23

p
(i)
21 p

(i)
22p

(i)
11

p
(i)
32 p

(i)
G,G−1

Fig. 2. The FSMC channel model for the ith antenna.

hence is ignored. It is common in AS literature to assume

that different pilot symbols within the training period can

be received on different antenna elements [6], [8], [17]. If

yi = [y1 · · · yℓi ]
H ∈ ❈ℓi denotes the vector of received

symbols and pi =
√

Ep

L
[1 · · · 1]T is the ℓi-length vector

of pilot symbols with energy Ep/L each, one can write,

yi = hipi +wi, i = 1, . . . , N, (1)

when ℓi > 0, where wi ∈ ❈ℓi is the additive white Gaussian

noise (AWGN) vector with wi ∼ CN (0, σ2Iℓi). When ℓi = 0,

no symbol is received on the ith antenna.

In the sequel, the time-correlated channel is modeled as

an FSMC, as shown in Figure 2. An FSMC model has been

widely used to characterize block or packet level performance

measures in correlated Rayleigh fading channels [18], [19].

Zhang and Kassam [20] establish the relationship between a

physical fading channel and its FSMC model for a packet

transmission system, and the same approach is adopted here.

The idea is to partition the received SNR values into a finite

number of states according to a criterion based on the average

duration of each state.

Let G = {1, 2, . . . , G} denote the state space of the station-

ary Markov chain with |G| = G different channel states corre-

sponding to SEPs Pe,j , j = 1, . . . , G. Let {γ1, γ2, . . . , γG+1}
denote received SNR thresholds in increasing order, with

γ1 = 0 and γG+1 = ∞. State j of the Markov chain

corresponds to γj ≤ γ < γj+1. For the packet reception

scenario considered in this work, a one-step transition in

the model corresponds to the channel state transition after

one frame period Tf . Transitions are such that if pij is

the transition probability from state i to state j, pij = 0
∀j /∈ {i − 1, i, i + 1}. With Rayleigh fading in AWGN,

the received instantaneous SNR γ is exponentially distributed

with pdf fΓ(γ) = 1
γ̄
e
−

γ
γ̄ , (γ ≥ 0), where γ̄ is the average

SNR. The SNR thresholds and transition probabilities can

be found by solving a set of equations [20, Eq. (7)], with

the requirement that the average time duration of each state,

τ̄j , satisfy τ̄j = cTf for j = 1, . . . , G, where c > 1 is a

constant. Successful packet reception is assumed to depend

only on the true channel state of the selected antenna, rather

than the receiver’s estimate of the channel. This assumption

leads to a tractable relation between the AS decisions and

packet success probabilities, which is required to design the

optimal policies. As an example, in LTE systems, there are

separate sounding reference signals (SRS) for channel quality

estimation, and demodulation reference signals (DM RS) for

channel estimation during coherent demodulation [21]. The

focus of this work is on finding optimal AS decision policies

Training
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Selection
n[k]

Error Check
Observation

Training Period Data Period Error
Check

Receiver/Controller

Θ[k] Z[k]

Pilot Allotment
l[k]

Frame k
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Fig. 3. Sequence of operations in frame k.

under partial observability of the channel state due to channel

estimation errors.

In addition to the FSMC model described in the above para-

graph, the popular 2-state Markov model is also considered

here [22]. In the 2-state model, the channel is reduced to

two gain states h1 and h2, where packets are assumed to be

received without error when the channel state on the selected

antenna is h2, while an error occurs with certainty when the

channel state is h1.

The observation models and corresponding probabilities in

the training and data phase for the FSMC as well as the 2-

state model are described in Appendices A and B. Particular

models are used to derive these probabilities for concreteness

in the subsequent development, but other observation models

can also be used in the POMDP framework that is constructed

in this work.

The sequence of operations that the receiver follows in

each frame is illustrated in Figure 3 and described below.

Let S[k] = [S1[k] · · · SN [k]]T denote the state vector

of the channels at the N antenna elements in frame k, with

Si[k] ∈ {1, . . . , G}, i = 1, . . . , N . Here, Si[k] , j if the

receive SNR γ is such that γj ≤ γ < γj+1. In Figure 3, k0
and k1 represent the training and data sub-frames, respectively.

At the beginning of frame k, the receiver decides on the

value of ℓi[k] to be used to estimate the channels at antennas

i = 1, . . . , N in the training period. The actual channel state

vector transits to S[k] according to the transition probabilities

of the underlying Markov chains. Observations Θi[k] that

depend on Si[k] as well as ℓi[k] are obtained for each antenna

i, and the receiver determines the antenna n ∈ {1, . . . , N} to

be used to receive the data packet. Appendix A describes how

the observations Θi[k] are obtained, from (11) for the FSMC

model, or from (12) for the 2-state model. It is assumed that

the receiver knows the channel statistics, and hence it can

determine the probability Pℓi {Si = s|Θi = θi} that the true

channel state is s, given the observations θi ∈ {1, . . . , G}. At

the end of the packet reception, Z[k] ∈ {0, 1} is observed,

which indicates whether the packet was received in error (0),

or there was no error (1). This provides additional information

on the channel state at the antenna selected in the current

frame, and is used in future frames to determine the pilot

allocation and make AS decisions.
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III. POMDP FORMULATION

The sequential decision-making process described above is

now formalized as a POMDP. In this particular case, two

different actions, namely, pilot allocation and AS, are to be

taken at different points in a single frame, and two different

observations can be obtained in the training and data phase,

while the channel state remains the same. In the classical

POMDP framework, the actions belong to a single set at all

decision points. Hence, the pilot allocation and AS decisions

are combined to form a single action that has both these

components, and taken at both the beginning of the training

phase and the start of the data phase. Also, an observation is

produced by performing an action in a particular state, i. e., an

observation corresponds to a single state-action combination,

and only one observation can be obtained when taking an

action in a given state. This mandates a distinction between

the state of the system in the training and the data phase, and

hence the state space is expanded with an additional variable

m ∈ {0, 1} that represents the two different decision points

in a single frame. This state-space expansion is necessary to

bring the joint pilot allocation and AS problem to a standard

form, where it can be solved using available POMDP solution

methods.

Within a frame k, m = 0 denotes the start of the training

period and m = 1, the start of the data packet reception period.

Since the channels are assumed to be constant over a frame,

transitions are naturally restricted so that

P {S[k1] = s̃1|S[k0] = s0} =

{

0, s̃ 6= s,

1, s̃ = s,
(2)

where s̃, s ∈ {1, . . . , G}N , s1 , [s 1]T and s0 ,

[s 0]T . Here s = [s1 · · · sN ]T , denotes the channel

state vector without the decision point indication m. Subscripts

0 and 1 are used on s to indicate the state of the system in

the training phase and the data phase respectively, and

km + 1 , (k +m)m′ , (3)

where m′ , 1 − m, m ∈ {0, 1}. That is, the POMDP slots

are the subframes indexed as 10, 11, 20, 21, . . . and so on. The

components of the POMDP are formally described next.

1) State Space: The state space of the system is defined

as S , {1, . . . , G}N × {0, 1}, where {0, 1} is the set of

subframe indices. The transition probabilities are denoted by

P {s̃m̃|sm} where P {s̃1|s0} is given by (2) and P {s̃0|s1}
is the transition probability from state s1 to s̃0, calculated

from the transition probability matrix of the Markov chains

governing the evolution of the channel state.

2) Action Space: The action consists of two parts within a

frame:

• A pilot allocation vector l = [ℓi]
N
i=1 ∈ L, where L ,

{

l : ℓi ∈ {0, . . . , L},∑N
i=1 ℓi = L

}

. For a given N and

L, |L| =
(

N+L−1
L

)

.

• An antenna selection decision n ∈ C , {1, . . . , N}.

The receiver takes the composite action A , {l, n} ∈ A,

where A , L×C, and |A| =
(

N+L−1
L

)

N , at the start of every

decision period km = 10, 11, 20, 21, . . . and so on. However,

for points k0, only the pilot allocation l affects the observation,

and for k1, only the selection decision n is of relevance.

3) Observation Space: The observation also consists of two

parts:

• The vector of channel state observations at the antennas,

Θ[k0] = [Θi[k0]]
N
i=1, whose reliability depends on ℓi[k0].

• The packet error indication Z[k1] ∈ {0, 1} obtained at the

end of each frame, which depends on the channel state

of the antenna selected.

In general, on taking action A ∈ A, at each km, the receiver

observes z[km] ∈ Ωm. For points k0, z[k0] , Θ[k0] ∈
Ω0, with Ω0 , {1, . . . , G}N , and for points k1, z[k1] ,

Z[k1] ∈ Ω1 , {0, 1}. The combined observation set is thus

Ω , Ω0 ∪ Ω1 with |Ω| = GN + 2 for the G-state channels

considered here. The probabilities of observing z ∈ Ωm satisfy

PA {z ∈ Ω1|s0} = PA {z ∈ Ω0|s1} = 0.

4) Reward: The reward is defined as the number of bits

or symbols that can be delivered if the packet is received

successfully. Given the action A[km] = {l[km], n[km]}, and

the system state vector S[km] = sm, the expected immediate

reward for the decision period km is given by:

R(sm, A[km]) = mPA {Z[km] = 1|sm} ·B. (4)

In the sequel, B = 1 is assumed without loss of generality.

Thus, R(s0, A[k0]) = 0 ∀k, since the receiver does not collect

any immediate reward in the training phase, reward being

counted only for packets received successfully. However, the

choice of vector l[k0], does indirectly affect the selection

decision at k1, and hence, the future reward. The expected

discounted total reward of the POMDP over an infinite horizon

represents the expected total number of bits, after applying a

discounting factor for future rewards, that can be delivered.

5) Belief Vector: With a Markovian evolution of the

states, it is known that the entire decision and observation

history can be encapsulated in a belief vector b[km] ,

[bsm [km]]
sm∈S [13]. Here, bsm [km] ∈ [0, 1] denotes the

conditional probability, given the decision and observation

history, that the state of the system in decision period km
is sm, after taking some action at the start of km, and

making an observation in km. Thus, bsm [km] , P
{

S[km] =

sm
∣

∣b[0], {l[νµ], n[νµ],Θ[νµ], Z[νµ]}km

νµ=10

}

, where b[0] is

the initial belief vector, i.e., the a priori distribution on the

system state just before the start of frame k = 1. If no

information on the initial channel state vector is available,

this can be set to the stationary distribution of the underlying

Markov chain.

6) Policy: A policy π specifies the action to be taken at each

decision point, in order to meet some objective. The optimal

policy for infinite horizon problems is a stationary mapping

from the belief space to the action space [14], and hence the

optimal policy at decision point km maps the belief vector

b[km − 1] to an action A[km] = {l[km], n[km]} ∈ A.

7) Objective: It is desired to design the optimal policy

π that maximizes the long-term reward, measured as the

expected total number of bits that can be received, i.e., the

expected total discounted reward of the POMDP, over an
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infinite horizon. Thus, the optimal policy is given by

π∗ = argmax
π
❊π







∑

km=10,11,...

βqR (sm[km], A[km])
∣

∣b[0]







where β ∈ [0, 1) is the discount factor [23], and the exponent

q , 2(k − 1) +m, ∀k,m.

IV. SOLVING THE POMDP

Let V (b[km]) denote the value function [14], which rep-

resents the maximum expected discounted reward that can

be obtained, starting in the belief state b[km]. According to

the notation introduced here, when the receiver takes action

A[km+1] = A ∈ A and observes z[km+1] = z ∈ Ωm′ , where

m′ = 1−m, m ∈ {0, 1}, the reward that can be accumulated

starting from point km + 1 consists of two parts:

• the immediate reward R (s′m′ [km + 1], A) = m′✶{z=1} ·1
and

• the maximum expected future reward V (b[km + 1]),

where km+1 is as defined in (3) and s′m′ denotes the new state

in km+1 that the system transitions to, starting from sm in km.

Also, b[km + 1] ,
[

bs′
m′
[km + 1]

]

s
′

m′
∈S

= f(b[km], A, z),

represents the updated knowledge of the state of the system,

after incorporating action A[km+1] = A at the start of period

km + 1, and observation z[km + 1] = z, obtained during

period km +1. Averaging over all possible states sm ∈ S and

observations z ∈ Ωm′ , and then maximizing over all actions

A ∈ A, the optimality equations can be written as:

V (b[k0]) = max
A∈A

∑

s0∈S

bs0 [k0]
∑

z∈Ω1

PA {z|b[k0]} [z · 1+

βV (f(b[k0], A, z))], (5)

and

V (b[k1]) = max
A∈A

∑

s1∈S

bs1 [k1]
∑

θ∈Ω0

βPA {θ|b[k1]}

V (f(b[k1], A,θ)). (6)

Here, ∀z ∈ Ωm′ , and ∀A ∈ A,

PA {z|b[km]} =
∑

sm,s′
m′

∈S

PA {z|s′m′} bsm [km]P {s′m′ |sm}.

Note that two equations are needed to represent the value

function updates in the training and data phases to account for

the dual observations, actions, decision points and immediate

rewards, and these need to be simultaneously satisfied, as

opposed to the traditional POMDP value updates, where only

one equation is needed.

The term PA {θ|s′m′} =
PA {Θ[km + 1] = θ|S[km + 1] = s′m′} denotes the

conditional probability mass function (pmf) of the

channel state observation vector, given the landing state

S[km + 1] = s′m′ and action A[km + 1] = A, and

PA {z|s′m′} = PA {Z[km + 1] = z|S[km + 1] = s′m′}
denotes the corresponding pmf of the packet error indication.

Since the channels are independent, given l, the observations

Θi depend only on the corresponding states Si, and hence

PA {Θ[k0] = θ|s0} =
N
∏

i=1

Pℓi {Θi[k0] = θi|s0,i} . (7)

Similarly,

PA {Z[k1] = z|s1} = Pn {Z[k1] = z|s1,n} , (8)

where n[k1] = n is the antenna selected in subframe k1.

The updated belief vector, b[km+1], is obtained by applying

Bayes’ rule, as

bs′
m′
[km + 1] = P {S[km + 1] = s′m′ |b[km], A, z}

=

PA {z|s′m′}
∑

sm∈S

bsm [km]P {s′m′ |sm}
∑

s
′

m′
∈S

PA {z|s′m′}
∑

sm∈S

bsm [km]P {s′m′ |sm}

(9)

Since the channels at the antennas are assumed to be indepen-

dent, P {s′|s} =
∏N

i=1P {s′i|si}. Probabilities P {s′i|si} can

be obtained from the transition probabilities of the FSMCs.

Observation probabilities PA {z|s′} can be obtained using the

ML criterion as described in Appendix B, from (18), (19)

and (20) for the data phase, or from (7) and (17) for the

training phase.

Except for small problems with less than 10 states and

actions, exact algorithms [13], [24], [25] for solving POMDPs

are computationally infeasible, and hence for larger problems,

point-based algorithms [16], [26], [27] are preferred. The latter

apply the value backup operation in (5) and (6) only on a

finite subset of carefully chosen belief points. An example is

the Successive Approximation of the Reachable Space under

Optimal Policies (SARSOP) algorithm [16], which is used in

this work to solve the POMDP formulated in Section III. SAR-

SOP has been demonstrated to outperform recent point-based

POMDP solvers in terms of computational efficiency [16].

However, any other efficient POMDP solving algorithm may

also be used to solve the problem under consideration. In this

context, it is important to note that the complexity of finding

the solution does not impose a computational burden on the

receiver, as this can be performed offline given the channel

model. The real-time computations that need to be performed

at the receiver involve updating the belief vector using (9),

and then applying the solution to the POMDP corresponding

to the updated belief, possibly by using a look-up table.

V. DISCUSSION

The joint problem of pilot allocation and antenna selection

in a time-correlated channel is solved using a decision the-

oretic framework for the first time in this work. A POMDP

solution fully exploits the information from past pilot alloca-

tion and AS decisions, training and data observations, and the

statistics of the channel variations at the antenna elements,

and hence outperforms all other methods as illustrated in

Section VI.
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As mentioned in Section II, the time overhead for switching

between antennas is neglected in this work. However, with the

model under consideration, this can be included by accounting

for the loss of, for example, M pilot symbols for each switch

between antennas in the training phase. This would imply a

correspondingly lower pilot SNR on the different antennas for

the particular frame, depending on the pilot allocation chosen.

In this paper, the pilot allocation for the whole training

period is decided at the start of the frame. Alternatively, one

could consider performing pilot allotment on a symbol-by-

symbol basis in the training period, based on beliefs that

are updated upon reception of each pilot symbol. An in-

depth analysis of such a scheme requires a new study, and

is relegated to future work.

The assumption that the channels at the antennas are mu-

tually independent is used to factorize the probabilities in (7)

and (8), and this simplifies the derivations in Appendix B.

Relaxing this assumption would affect the calculation of the

observation probabilities and the behavior of the optimal

policy. However, the POMDP framework in Section III can

still be applied when the channels are correlated.

The observations in the training phase are restricted to

a finite set in this work. This is necessary for POMDP

planning using existing algorithms. Dealing with continuous

observations requires different planning techniques [28] and

is a topic for future work. Further, the POMDP framework

is a model-based approach and needs a Markovian model

for the system. Model-free approaches require techniques like

reinforcement learning [29].

Given the large size of the state space, it is, in general,

difficult to obtain closed-form analytical solutions to the

POMDP. Here the number of variables is large due to the

several different pilot allocations possible and the number of

antennas. The relative impact of these on the observability

of the channels and other factors like channel correlation,

discount factor, etc. make it hard to analyze the nature of the

POMDP solution. However, one can come up with heuristic

policies that perform well, which give insights into the optimal

solution. This is elaborated in Section VI.

In the unrelated context of Cognitive Radios (CR), a

POMDP formulation has been followed earlier [30], where

the CR is required to sense a subset of potentially available

channels, but can access channel(s) for data transmission only

from the subset of channels that were sensed in the current

slot. In contrast, in this work the receiver can estimate the

channels at some or all the available antennas with varying

degrees of accuracy by using 0, 1, . . . , L pilot symbols on each

antenna. Also, it has the freedom to select an antenna that it

did not estimate during the training phase for data reception.

The problem is thus more general than that in Chen et al. [30].

VI. SIMULATION RESULTS

The POMDP formulated in Section III is solved using the

Approximate POMDP Planning Toolkit [31], implementing

the SARSOP algorithm [16]. In all cases described below, the

code is run until the error between value functions obtained in

consecutive steps falls below a tolerance limit of ǫ = 1. The

discount factor β = 0.99 in all cases, since a large value of β
is relevant for designing the policies that maximize the long-

term average performance of the receiver. The channels at all

the antennas are independent and assumed to have identical

statistics, modeled by a G-state Markov chain as described in

Section II. The number of antenna elements N = 2 and pilot

symbols in each frame L = 4 in all cases, except in Figures 5

and 6, where N = 4 and L = 4.

Performance is evaluated over 2 × 103 sub-frames and the

POMDP solution is compared with other existing schemes. In

the evaluations, the following curves are shown.

1) Max. (genie aided) shows the maximum attain-

able throughput when the receiver has perfect knowledge

of the channel states at all the antennas.

2) POMDP solution shows the performance of the pol-

icy obtained by solving the POMDP.

3) Equal allocation-POMDP selection is a

scheme that always uses an equal pilot allocation of

⌊ L
N
⌋ pilots on each antenna, but selects the antenna

optimally in each frame. This is a straightforward

modification of the POMDP solution, and is obtained

by solving a POMDP with a restricted action set that

has only one possible pilot allocation.

4) For the 2-state channel, a purely greedy policy [15]

labeled Myopic is also shown, which allots all L pilots

to the antenna that has the maximum likelihood of being

in the good state, and selects the antenna using the same

criterion, based on the current belief.

5) Equal allocation-MLS heuristic

selection uses an equal pilot allocation and

the Maximum Likelihood State (MLS) heuristic [32]

for AS. The MLS heuristic is a popular method used to

find heuristic solutions to POMDPs.

6) Equal allocation-No past info plots the

performance of a scheme that uses an equal pilot

allocation and makes AS decisions in each frame

based solely on the current training phase observation;

i.e., for a given observation θ, the AS decision is

n = argmaxi θi, where θi ∈ {1, . . . , G}. This is a

natural approach to antenna selection in a quasi-static

block-fading environment [33].

The effects of pilot power, the history as captured by the

belief updates and the future rewards, on the optimal policy are

investigated. Schemes 2 and 3 take into account both history

and future rewards, while 4, 5 and 6 do not account for future

rewards. Also, Schemes 3, 5 and 6 use equal pilot allocation

and focus on the AS decisions, while 2 and 4 use variable

pilot symbol allocation in addition to the AS decisions.

A. Variation of Throughput with Pilot SNR

1) 2-state Model: Figure 4 shows the variation of through-

put with the pilot SNR (dB). Here, the channel transition

probabilities are p12 = 0.2 and p22 = 0.8, and hence the

stationary probability of being in the good state is p̄2 = 0.5 for

each channel. At pilot SNRs of 3−5 dB, POMDP solution

offers a throughput gain of around 12% compared to Equal

allotment-No past info. Also, for the same packet
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Fig. 4. Avg. Throughput vs. Pilot SNR for 2-state model (N = 2, L = 4,
p01 = 0.2, p11 = 0.8).

success rate, POMDP solution requires a pilot SNR around

4−8 dB lower than that required by Equal allotment-No

past info. Equal allocation-POMDP selection

performs only slightly worse than POMDP solution, sug-

gesting that making the right AS decisions is more important

than making the right pilot allocation decisions. In the 2-state

model, the receiver gains perfect knowledge of the channel at a

selected antenna, and hence learns much more about the chan-

nel at a particular antenna from the error check observation

rather than the training phase observation. Myopic performs

slightly worse than POMDP solution. For channel sensing

in CR, Myopic was shown to be optimal when there are

only 2 channels to choose from [15]. From Figure 4, it can

be seen that when N = 2, the Myopic policy is a very good

heuristic for AS in the 2-state channel model as well. This is

not surprising, since the CRC bit provides accurate information

about the channel state, which makes a myopic policy that

is primarily based on observing the CRC bit nearly optimal.

At high pilot SNRs, all the schemes tend to the maximum

attainable limit.

2) FSMC Model: With the FSMC model, the packet suc-

cess rate depends on the SNR state the channel is in, and

hence, the variation of throughput is plotted against pilot SNR

for two cases. In Figure 5, the data SNR is also varied with the

pilot SNR, with N = 4 antennas and a pilot power boosting

of 3 dB relative to the data power. Here, the normalized

Doppler spread, fdTf = 0.01, which corresponds to a speed

of 3 m/s at a carrier frequency fc = 1 GHz, with Tf = 1 ms,

where fd is the maximum Doppler frequency. It can be seen

that Equal allocation-POMDP selection performs

as well as POMDP solution. As the data SNR ultimately

determines the achievable throughput, an optimal selection

policy is sufficient to ensure near-optimal performance, pro-

vided the channel is slowly-varying and the pilot SNR is

sufficiently higher than the data SNR.

In Figure 6, the data SNR is kept fixed at 0 dB while

the pilot SNR is varied, i.e., without pilot power boost-

ing. Here POMDP solution offers considerable savings in

pilot power, to achieve the same throughput as compared
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Fig. 5. Avg. Throughput vs. Pilot SNR for FSMC model (N = 4, L = 4,
G = 4, data SNR = pilot SNR − 3 dB, fdTf = 0.01).
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Fig. 6. Avg. Throughput vs. Pilot SNR for FSMC model (N = 4, L = 4,
G = 4, data SNR = 0 dB, fdTf = 0.01).

to Equal allocation-No past info. At lower pilot

powers, the difference between the schemes is more pro-

nounced. Equal allocation-POMDP selection per-

forms worse than POMDP solution at low pilot SNRs,

showing that pilot allocation is important in the low pi-

lot SNR regime. Equal allocation-MLS heuristic

selection offers considerable improvement over Equal

allocation-No past info, and hence it is a useful

scheme to follow in the moderate pilot power range.

From Figures 5 and 6, it can be concluded that with pilot

power boosting, equal allocation is sufficient provided AS is

done optimally and the channel is slowly varying. Varying the

pilot allocation is useful when there is no pilot power boosting.

B. Variation of Throughput with Switching Rate/Doppler

Spread

The switching rate between channel states is a measure

of the time correlation of the channel in the 2-state case.

When the switching rate p12 is low, the correlation between

successive states is high and it is important to take into account
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Fig. 7. Avg. Throughput vs. Switching rate p12(= 1 − p22 = p21) for
2-state model (N = 2, L = 4, p̄2 = 0.5, pilot SNR = 3 dB).

past information to make optimal decisions. When it is high,

greedy policies are expected to provide easily implementable

good solutions. In the FSMC case, varying the Doppler spread

has a similar effect.

1) 2-state Model: The variation of average throughput with

p12 is shown in Figure 7. Here, p̄2 = 0.5 and the pilot SNR is

fixed at 3 dB. Hence, p22 = 1−p12. With both p̄2 and the pilot

SNR fixed, Equal allotment-No past info does not

show any performance variation with p12. This is expected,

since this scheme does not use information from link-level

error checks to optimize AS or pilot allotment decisions. The

performance of POMDP solution decreases as p12 varies

from 0 to 0.5, and it provides maximum gain (≈ 22% over

Equal allocation-No past info) when p12 is low.

POMDP solution performs better than the equal allo-

cation schemes even when p12 = 0.5, and is matched by

Myopic as well. Thus, an unequal pilot allocation is beneficial

when p12 approaches 0.5. For p12 = 0.5, the POMDP solution

is observed to be somewhat simple, allotting all L = 4
pilots to the first antenna in every frame, and changing

only the selection decision based on the current belief state.

Thus, surprisingly, when the channels at the antennas are

equally likely to transition to either state, it is better to put

all the pilots on one antenna and track it constantly with

a high accuracy, rather than use an equal allocation and

get estimates that are less accurate. If the channel at this

antenna is observed to be in the good state in the training

phase, the receiver uses it for data reception, and otherwise,

it receives the data on the other antenna. Also, when an

equal pilot allocation is used, Equal allocation-POMDP

selection approaches Equal allocation-No past

info, and hence the optimal selection policy tends to a greedy

policy as p12 approaches 0.5. From Figure 7, close to optimal

behavior can be achieved for the whole range of p12 by the

Myopic policy.

2) FSMC Model: For the FSMC model, the variation of

throughput with fdTf is shown in Figure 8. As fdTf increases,

the channel approaches a block fading one, as the correlation

between successive frames decreases. Due to this, greedy AS
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Fig. 8. Avg. Throughput vs. fdTf for FSMC model (N = 2, L = 4,
G = 4, pilot SNR = 3 dB, data SNR = 0 dB).

schemes such as Equal allocation-No past info

perform well for large fdTf .

Thus, the simulation results illustrate that for receive AS, the

proposed POMDP approach leads to an improvement in the

long-term discounted throughput performance or a reduction

of the pilot SNR required to achieve a given performance,

relative to existing policies. The benefits arise from the fact

that the POMDP is able to fully exploit the information

obtained from past actions and observations, as well as the

statistical knowledge of the channel fading processes, to make

optimal pilot allocation and AS decisions.

VII. CONCLUSION

In this paper, the sequential decision problem faced by a

multiple antenna receiver with a single RF chain, of determin-

ing how accurately the channel at a particular antenna should

be estimated and selecting the best antenna in each frame, so

as to maximize throughput, was modeled as a POMDP. The

solution to the POMDP yielded the policy based on the past

decision and observation history for making the joint decision

of the number of pilot symbols to be used for estimating the

channel at each antenna, and the antenna to be used for data

reception. Through numerical examples, it was shown that for

the channel models considered, the solution to the POMDP

outperformed other existing schemes. The POMDP solution

is particularly useful when there is no pilot power boosting,

and can save several dB of pilot power to achieve the same

throughput as other existing schemes. For a 2-state Markov

channel model with N = 2 antennas and a switching rate

p12 = 0.5, the POMDP solution gave a surprising policy,

where the receiver allotted all the pilots to the same antenna

in all frames, and changed only the AS decision according to

the current belief state. Further, in the 2-state channel with

2 receiver antennas, simple greedy and myopic policies were

found to perform nearly optimally, and hence could be a good

alternative to finding and implementing more complex optimal

policies. Future work could consider continuous observations

in the training phase, selecting a subset of antennas, antenna
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selection at both the transmitter and receiver and in multi-user

communication systems.

APPENDIX A

OBSERVATION MODELS FOR THE TRAINING PHASE

Here, the observation models used for the FSMC and the

2-state channels are described.

1) FSMC Model: For the FSMC model of the channel,

when ℓi > 0 pilots are used on the ith antenna, the received

signal is yi =
√
γie

jφip + wi, where it is assumed that

p =
√

Ep

L
[1 1 · · · 1]T and wi ∼ CN (0, σ2Iℓi).

Dropping the subscript i for clarity, the ML estimate for

hi =
√
γie

jφi is a scaled version of y′ =
√
γejφ

√

Ep

L
ℓ+ w′,

where w′ ∼ CN
(

0, ℓσ2
)

, or, equivalently,

y =
√

γ′ejφ + w, (10)

with w ∼ CN (0, 2), and γ′ = γ
2ℓEp

Lσ2 . By the functional

invariance property of the ML, |y|2 yields an ML estimate

of γ′. However, the ML estimate is biased, since ❊
{

|y|2
}

−
❊ {γ′} = ❊ {w∗w} = 2. Hence, the quantity |y|2 − 2 is

an unbiased estimate for γ′, and is used to estimate the

received SNR state. In order to build a detector for the received

SNR states, the value of |y|2 − 2 is compared against the

received SNR thresholds for the model, scaled appropriately.

The detected state is d if γ′
d ≤ |y|2 − 2 < γ′

d+1. The

observation at antenna i in frame k is thus defined as

Θi[k] , d if γ′
d ≤ |yi[k]|2 − 2 < γ′

d+1, d = 1, . . . , G,
(11)

where yi[k] is given by (10). If ℓi = 0 pilots are used on some

antenna i, then no observations are obtained on that particular

antenna, and the transition probabilities of the channel state

are used to update the belief state in Sec. IV.

2) 2-state model: For the 2-state model, hi[k] ∈ {h1, h2},

with the values of h1 and h2, being known to the receiver. The

receiver then has a detection problem in the training phase,

and hi[k] can be written as hi[k] = x(h1−h2)+
1
2 (h1 + h2),

with x ∈
{

− 1
2 ,

1
2

}

being the value to be detected. Specifically,

x = + 1
2 corresponds to h1, while x = − 1

2 corresponds to h2.

Define Si[k] , 1 if hi[k] = h1 and Si[k] , 2 if hi[k] = h2.

Let v , h1−h2

|h1−h2|
p

‖p‖ , where p is as in (1), dropping the antenna

index i. Then, from (1),

ỹ , vH

[

y − 1

2
(h1 + h2)p

]

= x |h1 − h2| ‖p‖+ w,

where w ∼ CN (0, σ2). Since x is real-valued, ℜ{ỹ} is

sufficient [34] to detect x. Conditioned on x, ℜ{ỹ}|x ∼
N
(

x|h1 − h2|‖p‖, σ2

2

)

. In this case, obtaining a MAP deci-

sion rule is straightforward, and the observation of the channel

state of antenna i is given by

Θi[k] ,

{

2, if λi[k] ≥ ηi

1, otherwise,
(12)

where

λi[k] , ln
Pℓi {ỹi[k]|Si[k] = 2}
Pℓi {ỹi[k]|Si[k] = 1}

=

√

ℓiEp

L

|h1 − h2| ℜ{ỹi[k]}
σ2/2

,

and

ηi , ln
P {Si[k] = 1}
P {Si[k] = 2} = ln

1− p
(i)
22

p
(i)
12

. (13)

As before, if ℓi = 0 is used for some i, no observations are ob-

tained on that antenna, and the belief states are updated using

the transition probabilities of the Markov chain. In Appendix B

the observation probabilities PA {Θ[k0] = θ|S[k0] = s0} and

PA {Z[k1] = z|S[k1] = s1} are derived, for both the FSMC

as well as the 2-state channel models.

APPENDIX B

DERIVATION OF OBSERVATION PROBABILITIES FOR

TRAINING AND DATA PHASE

It can be seen from (7) and (8) that when the channels at the

antennas are mutually independent, it is sufficient to evaluate

Pℓi {Θi[k0] = θi|s0,i} and Pn {Z[k1] = z|s1,n} in order to

find the observation probabilities PA {θ|s0} and PA {z|s1}
as discussed in Section IV.

1) FSMC Model: For the training phase in the FSMC case,

the observation probabilities are

PA {Θi = θi|Si = s0,i}
= P

{

γ′
d ≤ |y|2 − 2 < γ′

d+1

∣

∣γ′
a ≤ γ′ < γ′

a+1

}

= P
{

γ̃d ≤ |y|2 < γ̃d+1

∣

∣γ′
a ≤ γ′ < γ′

a+1

}

, (14)

where the first equality is written taking θi = d and s0,i = a
for notational simplicity, and γ̃ = γ′ + 2. Since γ is expo-

nentially distributed with mean γ̄, γ′ is also exponentially

distributed with mean γ̄′ =
2ℓEp

Lσ2 γ̄. Thus,

PA {Θi = θi|Si = s0,i}

= P

{

γ̃d ≤
∣

∣

∣

√

γ′ejφ + w
∣

∣

∣

2

< γ̃d+1

∣

∣γ′
a ≤ γ′ < γ′

a+1

}

= P

{

γ̃d ≤
∣

∣

∣

√

γ′ + w
∣

∣

∣

2

< γ̃d+1

∣

∣γ′
a ≤ γ′ < γ′

a+1

}

=

∫ γ′

a+1

γ′

a

P

{

γ̃d ≤
∣

∣

√
γ′ + w

∣

∣

2
< γ̃d+1

∣

∣γ′
}

fΓ′(γ′)

e
−

γ′
a
¯γ′ − e

−
γ′

a+1
¯γ′

dγ′

(15)

where the second equality follows since |y| =
∣

∣

√
γ′ejφ + w

∣

∣ =
∣

∣

√
γ′ + we−jφ

∣

∣, from (10) and the

statistical equivalence of w and we−jφ. Now,
∣

∣

√
γ′ + w

∣

∣

2

has a normalized non-central chi-squared distribution with 2
degrees of freedom (d.o.f.) and non-centrality parameter γ′,
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and hence

PA {Θi = θi|Si = s0,i}

=
1

(

e
−

γ′
a
¯γ′ − e

−
γ′

a+1
¯γ′

)

[
∫ γ′

a+1

γ′

a

Q1

(

√

γ′,
√

γ̃d

) e
− γ′

¯γ′

γ̄′
dγ′

−
∫ γ′

a+1

γ′

a

Q1

(

√

γ′,
√

γ̃d+1

) e
− γ′

¯γ′

γ̄′
dγ′

]

, (16a)

where Q1

(

s,
√
y
)

is the first order Marcum-Q function [35,

Eq. (4.10)] that gives P{Y ≥ √
y} for a normalized non-

central chi-square distributed RV Y with 2 d.o.f. and non-

centrality parameter s2.

Performing a change of variable with x2 = γ′, the first

integral in (16a) can be written as T (γ̃d), and the second as

T (γ̃d+1), where

T (ζ) =

∫

√
γ′

a+1

√
γ′

a

2xQ1

(

x,
√

ζ
) e

− x2

¯γ′

γ̄′
dx, (16b)

which using the available result [36, Eq. (B.18)], becomes

T (ζ) = e
−

γ′

a
¯γ′ Q1

(

√

γ′
a,
√

ζ
)

− e
−

γ′

a+1
¯γ′ Q1

(√

γ′
a+1,

√

ζ
)

+ e
− ζ

¯γ′

(

1+ 2
¯γ′

)

[

Q1

(
√

γ′
a+1

(

1 +
2

γ̄′

)

,

√

ζ

1 + 2
γ̄′

)

−Q1

(
√

γ′
a

(

1 +
2

γ̄′

)

,

√

ζ

1 + 2
γ̄′

)

]

(16c)

Hence, using (16a) and (16c), with θi = d,

PA

{

Θi = d
∣

∣Si = s0,i = a
}

=
T (γ̃d)− T (γ̃d+1)
(

e
−

γ′
a
¯γ′ − e

−
γ′

a+1
¯γ′

) . (17)

For the data reception phase,

PA {Z = 1|Sn = s1,n} = 1− P̄e,j , (18)

where P̄e,j = P {Packet Error|Sn = s1,n = j}. Assuming

that the channel fading is frequency non-selective and slow

compared to the frame duration, the average SEP for each state

for a particular modulation scheme, Pe,j , can be obtained as

Pe,j =
1
p̄j

∫ γj+1

γj
Pe(γ)fΓ(γ)dγ, where γ denotes the received

SNR for the data, and Pe(γ) is the SEP for a particular value

of γ. Assuming an uncoded system with B data symbols in a

packet,

P̄e,j = 1− (1− Pe,j)
B . (19)

With BPSK signaling, Pe(γ) = Q(
√
2γ), and thus

Pe,j =
1

p̄j

∫ γj+1

γj

Q
(

√

2γ
) 1

γ̄
e−

γ
γ̄ dγ =

I (γj)− I (γj+1)

p̄j
,

(20)

where,

I(ζ) ,

∫ ∞

ζ

Q
(

√

2γ
) 1

γ̄
e−

γ
γ̄ dγ

=

[

e−
ζ
γ̄ −

(

1 +
1

γ̄

)− 1
2

]

Q
(

√

2ζ
)

(21)

PA {Z = 1|Sn = s1,n} can thus be found using (18), (19)

and (20).

2) 2-state Model: In the training phase, when the complex

channel gain in the good (bad) state is h2 (h1) respectively,

and a likelihood ratio-based detector of the channel state is

used as described in Section A-2, it can be shown that2

PA {Θi = 2|s0,i} = Q

(

κi

(

ηi
κ2
i

− xi

))

(22)

where Q(·) is the Gaussian Q-function, κi =

|h0 − h1|
√

2ℓiEp

Lσ2 , ηi is given by (13), and xi = − 1
2

for s0,i = 1 and xi = + 1
2 for s0,i = 2. For the data

reception phase, the observation Z = 1 only if Sn = 2. Thus,

PA {Z = 1|Sn = s1,n} = ✶{s1,n=2}.
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