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Estimating an AR Model with Exogenous Driver

In this paper, we introduce an autoregressive model which has an evolution that is driven by an exogenous pilot signal. This model shares some properties with TAR (Threshold Auto Regressive) models and STAR (Smooth Transition Auto Regressive) models.

This text denes the model, it presents an estimator for this model, and an estimator for the variance of the innovation, which is not constant in this model. An exact computation of the likelihood of this driven autoregressive model is then presented. Two appendices present a state-space realization of this model and the expression of a Kalman lter for such a model.

Résumé

Dans cet article, nous introduisons un modèle auto régressif dont l'évolution est pilotée par un signal exogène. Ce modèle présente des analogies avec les modèles autorégressifs à seuil (TAR, Threshold AutoRegression) ainsi que les modèles STAR (Smooth Transition Autoregressive).

Le texte présente le modèle, puis un estimateur pour ce modèle ainsi que pour la variance de son innovation, qui n'est pas constante dans ce modèle. Un calcul exact de la vraisemblance du modèle autorégressif sera ensuite présenté. Deux annexes montreront la réalisation de ce type de modèle autorégressif sous forme de modèle d'état ainsi que l'expression du ltre de Kalman reposant sur ce modèle.

1 Autoregressive model with exogenous pilot

Model denition

Let us consider a signal y t , t ∈ [0, T ], and a representation of this signal as a non stationary autoregressive process with coecients a i (t), its innovation being denoted e t : y t + a 1 (t -1)y t-1 + • • • + a p (t -p)y t-p = e t We assume that the innovation is a non-stationary white noise, which is centered (E(e t ) = 0), with variance

σ 2 t : E(e t e t ′ ) = δ t,t ′ σ 2 t
We also assume that we observe a second signal x t , that is taken as deterministic; this signal drives the coecients a i (t) of the autoregressive model of the rst signal y t :

a i (t) = g i (x t )
where g i (x), i ∈ [1, p] are nonlinear functions of x; for instance, we could assume that these functions have a simple parametric representation only depending on a set of functions f m (.) such as:

a i (t) = M m=0 a im f m (x t )
Most often, we will take f m (x) = (x/α) m where α will be a normalization coecient applied to the signal x t . The autoregressive model which is written:

y t + p i=1 a i (t -i)y t-i = e t
may be rewritten (if we omit the normalization parameter α) as follows:

y t + p i=1 M m=0
a im x(t -i) m y t-i = e t [START_REF] Grenier | Time-dependent ARMA Modeling of Nonstationary Signals[END_REF] Let us dene a vector signal Y t build from the signal y t (which we want to model) and from the signal x t (which drives the model):

Y t =        y t x t y t x 2 t y t . . . x M t y t       
Given the expression of the autoregressive model and this denition of Y t , the model of y t driven by x t is rewritten as a linear regression of signal y t on the p past samples of the non stationary vector signal Y t :

y t + p i=1 A i Y t-i = e t

Similar models

This model is inspired by the time-varying autoregressive model described in [START_REF] Grenier | Time-dependent ARMA Modeling of Nonstationary Signals[END_REF]. In this reference, the coecients of the model a i (t) were represented through combinations of functions of time. In the current model, they are represented through combinations of functions of the exogenous variable x t .

The idea of expressing the coecients in terms of an exogenous variable appears in the denition of Threshold AutoRegression by Tong and Lim [START_REF] Tong | Threshold Autoregression, Limit Cycles and Cyclical Data[END_REF] which, after adaptation to the notations of the current paper, may be written as:

y t + a (j) 1 y t-1 + • • • + a (j) p y t-p = ε t ,
conditional on y t-d ∈ R j where the R j form a partition of the real line, dened by {r 0 , r 1 , . . . , r m }, a linearly ordered subset of the real numbers (r 0 = -∞, r m = ∞, r j < r j+1 ); the a i form a discrete set of m vectors. In the discussion of this paper, Priestley proposes to write a similar model, where the a i form a continuous set:

y t + a 1 (Y t )y t-1 + • • • + a p (Y t )y t-p = ε t , with Y t = [y t y t-1 • • • y t-p ] T , a i (Y t ) = a (0) i + Y T t-1 β i .
Many variants of the above models have been created (see [START_REF] Tong | Threshold Models in Time Series Analysis -30 Years on[END_REF]). The Smooth Threshold AutoRegressive model (STAR) 1 presented in [START_REF] Chan | On Estimating Thresholds in Autoregressive Models[END_REF] may be written:

y t + a 1 y t-1 + • • • + a p y t-p + (b 1 y t-1 + • • • + b p y t-p ) F (γ(y t-d -c)) = ε t .
In this model, the autoregressive coecients appear a a smooth transition between the set of {a i } and the set of {b i }, with a weight given by some function of the threshold variable y t-d . The function F (.) is chosen as the distribution function of the standard normal distribution in [START_REF] Chan | On Estimating Thresholds in Autoregressive Models[END_REF]. Other variants (see [START_REF] Van Dijk | Smooth Transition Autoregressive Models -a Survey of Recent Developments[END_REF]) include the logistic STAR model and the exponential STAR model: we obtain them by rewriting the model as:

y t + (a 1 y t-1 + • • • + a p y t-p ) (1 -G(z t , γ, c)) + (b 1 y t-1 + • • • + b p y t-p ) G(z t , γ, c) = ε t ,
where γ > 0, z t is the exogenous variable and c is a centering value. In the logistic STAR, the function is taken as:

G(z t , γ, c) = 1 1 + exp(-γ(z t -c))
In the exponential STAR, the function is taken as:

G(z t , γ, c) = 1 -exp(-γ(z t -c) 2 ).
Multiple regime STAR models are dened in [START_REF] Van Dijk | Smooth Transition Autoregressive Models -a Survey of Recent Developments[END_REF] as:

y t + ϕ T 1 Y t + (ϕ 2 -ϕ 1 ) T Y t G 1 (z t ) + (ϕ 3 -ϕ 2 ) T Y t G 2 (z t ) + • • • + (ϕ m -ϕ m-1 ) T Y t G m (z t ) = ε t ,
where ϕ i is the vector containing the autoregressive coecients of the i-th model, and G i (z t ) is a shortcut for G i (z t , γ, c).

A third-order Taylor expansion of these functions in [START_REF] Luukkonen | Testing Linearity against Smooth Transition Autoregressive Models[END_REF] leads to an equation (in the case where the exogenous variable z t is equal to a T Y t ) with the following expression:

y t + β T Y t + p i=1 p j=1 ξ ij y t-i y t-j + p i=1 p j=1 ψ ij y t-i y 2 t-j + p i=1 p j=1 κ ij y t-i y 3 t-j = ε t . (2) 
This last model is a special case (when z t = a T Y t and M = 3) of the model that we introduced in equation (1). The expansion was introduced in [START_REF] Luukkonen | Testing Linearity against Smooth Transition Autoregressive Models[END_REF] for the purpose of designing a statistical test of linearity and was not intended for estimation. 2 2 Estimation of the autoregressive coecients

Normal (Yule-Walker) equations

To estimate the autoregressive coecients, we will assume in a rst approach that the innovation variance

σ 2 t is constant (σ 2 t = σ 2
). We can then estimate the A i coecients in a least squares sense by minimizing

E(e 2 
t ), or by maximizing an approximated likelihood. The likelihood of the model (where θ is the vector of A i coecients) is written as:

L(θ) = p(y 0 , y 1 , • • • y T |θ).
We approximate it by:

L(θ) ≃ p(y p , y 1 , • • • y T |θ, y 0 , • • • y p-1 ).
Using the fact that the innovation is a white noise, and assuming that this innovation is Gaussian:

1. The STAR model is now rather called Smooth Transition AutoRegressive. 2. It is clear that a model dened as in equation ( 1), as well as a model described by equation ( 2) is no longer stable when zt grows. We consider this as a minor problem when using this model on a given signal which remains bounded.

L(θ) = T t=p p(ε t |θ, y 0 , • • • y p-1 ) = T t=p 1 √ 2πσ 2 e -1 2 e 2 t σ 2 log L(θ) = - 1 2 log(2πσ 2 ) - 1 2 T t=p e 2 t σ 2 .
Maximizing the (approximate) log likelihood is equivalent to minimizing a least squares criterion:

J(θ) = T t=p e 2 t
If we introduce the value of the innovation in this criterion:

e t = y t + p i=1 A i Y t-i = y t + θ T      Y t-1 Y t-2
. . .

Y t-p     
the minimization leads to Yule-Walker equations:

T t=p      Y t-1 Y t-2
. . .

Y t-p      Y T t-1 Y T t-2 • • • Y T t-p θ = T t=p      Y t-1 Y t-2
. . .

Y t-p      y t .

Weighted estimation of the autoregressive coecients

If the variance of the innovation is no longer constant, we can still estimate the autoregressive coecients, conditionally to σ 2 t (assuming it is known). The criterion being:

J(θ) = T t=p e 2 t σ 2 t ,
the Yule-Walker equations will be written:

T t=p 1 σ 2 t      Y t-1 Y t-2 . . . Y t-p      Y T t-1 Y T t-2 • • • Y T t-p θ = T t=p 1 σ 2 t      Y t-1 Y t-2 . . . Y t-p      y t .
Through these equations, we may estimate the autoregressive coecients as soon as the values of the variances σ 2 t are known. We will see in the next section that it is possible to estimate these values through a model which is also driven by the exogenous signal x t . This estimation will assume that the autoregressive coecients are already know. This allows us to consider an iterative estimator that will alternate two phases: 1. estimate the autoregressive coecients, given the model of the variance σ 2 t , 2. estimate the model of the variance, given the autoregressive coecients.

3 Estimation of the innovation variance

Model for the innovation variance

Let e t be a centered, Gaussian, non-stationary white noise; we want to estimate its variance σ 2 t . In order to build an estimate on an interval [0, T ], we will assume a model for the variance that will be:

σ t = exp M m=0 b m f m (t) ↔ log(σ t ) = M m=0 b m f m (t)
where {f m (t), m ∈ [0, M ]} is a set of known functions of time. The unknown parameters in the model are the b m coecients, and we will group these parameters in a vector θ:

θ =      b 0 b 1 . . . b M      .

Estimation of the variance

In a Gaussian framework, we can derive a maximum likelihood estimation. The likelihood is:

p(e 1 , • • • , e T |θ) = T t=0 1 2πσ 2 t e -1 2 
e 2 t σ 2 
t .

The log-likelihood is:

L = log(p(e 1 , • • • , e T |θ)) = T t=0 - 1 2 
e 2 t σ 2 t -log(σ t ) - T 2 log(2π).
By taking the expression of σ t into account, the log-likelihood becomes:

L = T t=0 - 1 2 e 2 t e -2 M m=0 bmfm(t) - M m=0 b m f m (t) - T 2 log(2π),
or:

L = - 1 2 T t=0 e 2 t M m=0 e -2bmfm(t) - T t=0 M m=0 b m f m (t) - T 2 log(2π).
The gradient of the log-likelihood can be computed without any diculty:

∂L ∂b m = T t=0 e 2 t f m (t) M q=0 e -2bqfq(t) - T t=0 f m (t).
Writing that this gradient is zero does not permit to derive a simple estimate. But since the computation of the Hessian is not complicated, a Newton-Raphson technique can be used to maximize the log-likelihood:

∂ 2 L ∂b m ∂b m ′ = -2 T t=0 e 2 t f m (t)f m ′ (t) M q=0
e -2bqfq(t) .

Initial estimation

Using a Newton-Raphson procedure for the maximization of the likelihood can be very ecient, provided that the procedure starts from a good guess of the solution. A simple manner to obtain this initial guess is to perform a regression of the standard deviation of a set of slices from the innovation signal, over the basis of functions f m (t) taken at instants corresponding to the slices. The idea would be to split the set of samples {ε t ; t ∈ [0, T ]} into K subsets S 1 , ..., S K , associate one instant τ k , k ∈ [1, K] to each subset, evaluate the variance of the samples in each subset:

σ 2 k = t∈S k e 2 t ,
and perform a regression of the values of the logarithm of the standard deviations over the basis:

        f 0 (τ 1 ) f 1 (τ 1 ) • • • f M (τ 1 ) f 0 (τ 2 ) f 1 (τ 2 ) • • • f M (τ 2 ) . . . . . . . . . . . . . . . . . . . . . . . . f 0 (τ K ) f 1 (τ K ) • • • f M (τ K )              b 0 b 1 . . . b M      =         1 2 log σ 2 1 1 2 log σ 2 2 . . . . . . 1 2 log σ 2 K         .
Such an initial guess is satisfactory as soon as K is more than 3 or 4 times M + 1, the number of unknowns. How can we choose the subsets S 1 , ..., S K ? It would be wrong to split the time interval [0, T ] into K successive intervals with equal length given by T /K. Considering the fact that the exogenous signal x t drives the model, a better choice would be to select the slices from the amplitudes of {x t , t ∈ [0, T ]}. Let us sort the values of x t in increasing order. This denes a new set of indexes t ′ = o(t), such that:

∀t ∈ [0, T -1] : x o(t) ≤ x o(t+1) .
With this new set of indexes, we dene the slice S k by:

S k = t : kT K ≤ o(t) < (k + 1)T K ,
and the representative instant τ k by:

τ k : o(τ k ) = (k + 1 2 )T K .
This way to split the values of the driving signal into K slices is clearly inspired by the denition of the Threshold AutoRegressive (TAR) model.

Likelihood of the model

In this section, we describe an exact computation of the likelihood of the model. For completeness, we not only assume an autoregressive model but also an autoregressive moving-average model.

State equations for the ARMA model

An ARMA model written as:

y t + n i=1 a i (t -i)y t-i = n j=0 b j (t -j)e t-j
has a state-space representation (see appendix A):

X t+1 =         -a 1 (t) 1 0 • • • 0 -a 2 (t) 0 1 . . . 0 . . . . . . . . . . . . . . . -a n-1 (t) 0 • • • 0 1 -a n (t) 0 • • • • • • 0         X t +        β 1 (t) β 2 (t)
. . .

β n-1 (t) β n (t)        e t ( 3 
)
y t = 1 0 • • • • • • 0 x t + b 0 (t)e t (4) 
where:

β i (t) = b i (t) -a i (t)b 0 (t)
and

E(e 2 t ) = 1.
This state-space representation is a modied version of the canonical observable representation given in [7, page 374]. In order to compute the likelihood of the model, we will apply a Kalman lter based upon this representation, to compute the innovation and deduce from it the likelihood. The representation in [7, page 374] does not easily allow the use of the Kalman lter.

State estimation through Kalman lter

We will use the formulation of the Kalman lter given by [8, pp 105 et seq.] and rewrite equations ( 3) and (4), introducing obvious notations F t , G t and H:

X t+1 = F t X t + G t e t (5) 
y t = H T X t + b 0 (t)e t (6) 
With these notations, the lter is summarized by (see appendix B where w t = e t , v t = b 0 (t)e t and the time index on H t may be dropped here):

ε t = y t -H T X t/t-1 Γ t = H T Σ t/t-1 H + b 0 (t) 2 K t = F t Σ t/t-1 H + G t b 0 (t) Γ -1 t X t+1/t = F t X t/t-1 + K t ε t Σ t+1/t = F t -K t H T Σ t/t-1 F t -K t H T T + [G t , -K t ] 1 b 0 (t) b 0 (t) b 0 (t) 2 G T t -K T t = F t -K t H T Σ t/t-1 F t -K t H T T + (G t -b 0 (t)K t ) (G t -b 0 (t)K t ) T .
where ε t is the innovation, Γ t = E(ε 2 t ) is the variance of the innovation, K t is the Kalman gain, X t+1/t is the prediction of the state X t at time t + 1, given the observations up to t, Σ t+1/t is the variance of the state prediction error:

Σ t+1/t = E (X t+1/t -X t )(X t+1/t -X t ) T .
The Kalman lter has initial conditions X 0/-1 and Σ 0/-1 . We will use X 0/-1 = 0. Since we cannot make any assumption concerning the state, a realistic way to initialize Σ 0/-1 is to make this matrix proportional to the identity matrix Σ 0/-1 = λI where λ is a large value, for instance λ = 1000 × E(y 2 t ).

Estimation of the log likelihood

The likelihood is

L(θ) = p(y 0 , y 1 , • • • y T |θ) = p(ε 0 , ε 1 , • • • ε T |θ).
Given the orthogonality of the sequence {ε t , t ∈ [0, T ]}, under the assumption that the signals are Gaussian, this is:

L(θ) = T t=0 p(ε t |θ) = T t=0 1 √ 2πΓ t e -1 2 ε 2 t Γ t .
The log likelihood is therefore:

log L(θ) = - T 2 log 2π - 1 2 T t=0 ε 2 t Γ t + log Γ t A
State-space realization of a non-stationary ARMA model

We consider a signal y t that is described by the following ARMA model:

y t + n i=1 a i (t -i)y t-i = n j=0 b j (t -j)e t-j (7) 
The purpose of this section is to show that the model in equation ( 7) has a state-space representation that can be written as:

X t+1 =         -a 1 (t) 1 0 • • • 0 -a 2 (t) 0 1 . . . 0 . . . . . . . . . . . . . . . -a n-1 (t) 0 • • • 0 1 -a n (t) 0 • • • • • • 0         X t +        β 1 (t) β 2 (t)
. . .

β n-1 (t) β n (t)        e t , (8) 
y t = 1 0 • • • • • • 0 X t + b 0 (t)e t . (9) 
A.1 Expression of the state vector

The k-th component of the state vector X t will be denoted x t (k). Let us rst compute the values of the components x k (t). For k = 1, we may use the observation equation (9) which gives:

x t (1) = y t -b 0 (t)e t .
(10)

The rst row of matrix equation (3) links x t+1 (1) to x t (2):

x t+1 (1) = -a 1 (t)x t (1) + x t (2) + β 1 (t)e t . (11) 
We can then obtain the expression of x t (2) by mixing equations ( 10) and (11):

x t (2) = x t+1 (1) + a 1 (t)x t (1) -β 1 (t)e t , = y t+1 -b 0 (t + 1)e t+1 + a 1 (t)(y t -b 0 (t)e t ) -β 1 (t)e t = y t+1 + a 1 (t)y t -b 0 (t + 1)e t+1 -(a 1 (t)b 0 (t)e t + β 1 (t)) e t .

The same procedure leads to the successive components, and the expression of x t (k) is:

x t (k) = k-1 i=0 a i (t + k -1 -i)y t+k-1-i -b 0 (t + k -1)e t+k-1 - k-1 i=1 (a i (t + k -1 -i)b 0 (t + k -1 -i) + β i (t + k -1 -i)) e t+k-1-i , (12) 
where we assume that a 0 (t) = 1, ∀t.

Proof:

Equation is true for k = 1 (equation (12) coincides with equation (10)). It suces to prove that if equation ( 12) is true for k, it is also true for k + 1.

For k < n, the k-th row of matrix equation ( 3) is written as:

x t+1 (k) = -a k (t)x t (1) + x t (k + 1) + β k (t)e t .
Therefore:

x t (k + 1) = x t+1 (k) + a k (t)x t (1) -β k (t)e t = k-1 i=0 a i (t + k -i)y t+k-i + a k (t)y t -b 0 (t + k)e t+k - k-1 i=1 (a i (t + k -i)b 0 (t + k -i) + b i (t + k -i)) e t+k-i -(a k (t)b 0 (t) + β k (t)) e t
which is identical to equation (12) for k + 1.

A.2

Equivalence with the ARMA model It remains to show that the state-space equations ( 3) and ( 9) are a realization of the ARMA model in [START_REF] Grenier | Parametric Time-Frequency Representation[END_REF].

We will use the n-th row of equation ( 3):

x t+1 (n) = -a n (t)x t (1) + β n (t)e t .
Using equation (10) leads to:

x t+1 (n) = -a n (t) (y t -b 0 (t)e t ) + β n (t)e t = -a n (t)y t + (a n (t)b 0 (t) + β n (t)) e t . (13) 
Applying equation ( 12) for k = n at time t + 1 leads to:

x t+1 (n) = (a i (t + n -i)b 0 (t + n -i) + β i (t + n -i)) e t+n-i ,

Finally, equating the two expressions of x t+1 (n) in equations ( 13) and ( 14 

n- 1 i=0a

 1 i (t + n -i)y t+n-i -b 0 (t + n)e t+n -

  (t -i)b 0 (t -i) + β i (t -i)) e t-iwhich coincides with equation[START_REF] Grenier | Parametric Time-Frequency Representation[END_REF] provided that:b i (t) = a i (t)b 0 (t) + β i (t) ∀i ∈ [1, n], or β i (t) = b i (t) -a i (t)b 0 (t) + ∀i ∈ [1, n].Evolution of the covariance matrixThe evolution of the covariance matrix Σ t/t-1 is deduced from the evolution of the state error Xt/t-1 which is now seen as:Xt+1/t = X t+1 -Xt+1/t = F t X t + G t w t -F t Xt/t-1 -K t (y t -H T t Xt/t-1 ) = F t (X t -Xt/t-1 ) + G t w t -K t (H T t X t + v t -H T t Xt/t-1 ) = F t (X t -Xt/t-1 ) + G t w t -K t H T t (X t -Xt/t-1 ) -K t v t = (F t -K t H T t ) Xt/t-1 + G t w t -K t v t = (F t -K t H T t ) Xt/t-1 + [G t -K t ] w T t v T )(F t -K t H T t ) T + [G t -K t ] = (F t -K t H T t )Σ t/t-1 (F t -K t H T t ) T + [G t -K t ]

	B.2		
				T
				t
	Given the independence of Xt/t-1 and w T t v T t	T	, the covariance evolves as:
	Σ t+1/t = E( Xt+1/t	XT t+1/t )	
	= (F t -K t H T t )E( Xt/t-1	XT t/t-1 Q t S t S T t R t Q t S t G t S T t R t -K t	G t -K t

) gives:

n i=0 a i (t + n -i)y t+n-i = n i=1 (a i (t + n -i)b 0 (t + n -i) + β i (t + n -i)) e t+n-i +b 0 (t + n)e t+n ,

and replacing t + n by t gives:

n i=0 a i (t -i)y t-i = b 0 (t)e t + n i=1 (a i

B Kalman lter with correlated state and observation noises

In this section, we recall the expression of the Kalman lter as it is given in [8, section 8.4]. In this reference, contrary to most textbooks, the state noise and the observation noise are not assumed to be uncorrelated. Apart from that, their derivation also takes into account a known input sequence, but we shall ignore such an input in our presentation. The state equations are:

with correlated noises w t and v t :

B.1 Prediction and Kalman gain

A recursive equation is sought for the state prediction Xt/t-1 :

where {ỹ t } is the innovation sequence:

Dene the prediction error Xt/t-1 = X t -Xt/t-1 and its covariance Σ t/t-1 = E( Xt/t-1 XT t/t-1 ). We use the independence of the innovations (and the fact that the state is centered, E(X t+1 ) = 0, since the observations and noises are centered):

The rst term can be computed through the projection theorem:

The covariances are estimated as:

and (given that Xt and v t are independent):

Therefore equation (18) becomes:

Given that w t is independent of ỹ0 , ỹ1 , • • • ỹt-1 , the second term in equation ( 17) can be computed as:

The recursive equation ( 17) can now be written as:

where K t is the Kalman gain dened as: