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Abstract

In this paper, we introduce an autoregressive model which has an evolution that is driven by an exogenous
pilot signal. This model shares some properties with TAR (Threshold Auto Regressive) models and STAR
(Smooth Transition Auto Regressive) models.

This text de�nes the model, it presents an estimator for this model, and an estimator for the variance of
the innovation, which is not constant in this model. An exact computation of the likelihood of this driven
autoregressive model is then presented. Two appendices present a state-space realization of this model and
the expression of a Kalman �lter for such a model.

Résumé

Dans cet article, nous introduisons un modèle auto régressif dont l'évolution est pilotée par un signal
exogène. Ce modèle présente des analogies avec les modèles autorégressifs à seuil (TAR, Threshold AutoRe-
gression) ainsi que les modèles STAR (Smooth Transition Autoregressive).

Le texte présente le modèle, puis un estimateur pour ce modèle ainsi que pour la variance de son inno-
vation, qui n'est pas constante dans ce modèle. Un calcul exact de la vraisemblance du modèle autorégressif
sera ensuite présenté. Deux annexes montreront la réalisation de ce type de modèle autorégressif sous forme
de modèle d'état ainsi que l'expression du �ltre de Kalman reposant sur ce modèle.
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1 Autoregressive model with exogenous pilot

1.1 Model de�nition

Let us consider a signal yt, t ∈ [0, T ], and a representation of this signal as a non stationary autoregressive
process with coe�cients ai(t), its innovation being denoted et:

yt + a1(t− 1)yt−1 + · · ·+ ap(t− p)yt−p = et

We assume that the innovation is a non-stationary white noise, which is centered (E(et) = 0), with variance
σ2
t :

E(etet′) = δt,t′σ
2
t

We also assume that we observe a second signal xt, that is taken as deterministic; this signal drives the
coe�cients ai(t) of the autoregressive model of the �rst signal yt:

ai(t) = gi(xt)

where gi(x), i ∈ [1, p] are nonlinear functions of x; for instance, we could assume that these functions have
a simple parametric representation only depending on a set of functions fm(.) such as:

ai(t) =

M
∑

m=0

aimfm(xt)

Most often, we will take fm(x) = (x/α)m where α will be a normalization coe�cient applied to the signal
xt. The autoregressive model which is written:

yt +

p
∑

i=1

ai(t− i)yt−i = et

may be rewritten (if we omit the normalization parameter α) as follows:

yt +

p
∑

i=1

M
∑

m=0

aimx(t− i)myt−i = et (1)

Let us de�ne a vector signal Yt build from the signal yt (which we want to model) and from the signal xt
(which drives the model):

Yt =















yt
xtyt
x2tyt
...

xMt yt















Given the expression of the autoregressive model and this de�nition of Yt, the model of yt driven by xt is
rewritten as a linear regression of signal yt on the p past samples of the non stationary vector signal Yt:

yt +

p
∑

i=1

AiYt−i = et

1.2 Similar models

This model is inspired by the time-varying autoregressive model described in [1]. In this reference, the
coe�cients of the model ai(t) were represented through combinations of functions of time. In the current
model, they are represented through combinations of functions of the exogenous variable xt.

The idea of expressing the coe�cients in terms of an exogenous variable appears in the de�nition of Threshold
AutoRegression by Tong and Lim [2] which, after adaptation to the notations of the current paper, may be
written as:

yt + a
(j)
1 yt−1 + · · ·+ a(j)p yt−p = εt,

conditional on yt−d ∈ Rj where the Rj form a partition of the real line, de�ned by {r0, r1, . . . , rm}, a
linearly ordered subset of the real numbers (r0 = −∞, rm = ∞, rj < rj+1); the ai form a discrete set of
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m vectors. In the discussion of this paper, Priestley proposes to write a similar model, where the ai form a
continuous set:

yt + a1(Yt)yt−1 + · · ·+ ap(Yt)yt−p = εt,

with

Yt = [ytyt−1 · · · yt−p]
T
, ai(Yt) = a

(0)
i + Y T

t−1βi.

Many variants of the above models have been created (see [3]). The Smooth Threshold AutoRegressive
model (STAR) 1 presented in [4] may be written:

yt + a1yt−1 + · · ·+ apyt−p + (b1yt−1 + · · ·+ bpyt−p)F (γ(yt−d − c)) = εt.

In this model, the autoregressive coe�cients appear a a smooth transition between the set of {ai} and the
set of {bi}, with a weight given by some function of the threshold variable yt−d. The function F (.) is chosen as
the distribution function of the standard normal distribution in [4]. Other variants (see [5]) include the logistic
STAR model and the exponential STAR model: we obtain them by rewriting the model as:

yt + (a1yt−1 + · · ·+ apyt−p) (1−G(zt, γ, c)) + (b1yt−1 + · · ·+ bpyt−p)G(zt, γ, c) = εt,

where γ > 0, zt is the exogenous variable and c is a centering value. In the logistic STAR, the function is
taken as:

G(zt, γ, c) =
1

1 + exp(−γ(zt − c))

In the exponential STAR, the function is taken as:

G(zt, γ, c) = 1− exp(−γ(zt − c)2).

Multiple regime STAR models are de�ned in [5] as:

yt + ϕT
1 Yt + (ϕ2 − ϕ1)

T
YtG1(zt) + (ϕ3 − ϕ2)

T
YtG2(zt) + · · ·+ (ϕm − ϕm−1)

T
YtGm(zt) = εt,

where ϕi is the vector containing the autoregressive coe�cients of the i-th model, and Gi(zt)
is a shortcut for Gi(zt, γ, c).
A third-order Taylor expansion of these functions in [6] leads to an equation (in the case where the exogenous

variable zt is equal to a
TYt) with the following expression:

yt + βTYt +

p
∑

i=1

p
∑

j=1

ξijyt−iyt−j +

p
∑

i=1

p
∑

j=1

ψijyt−iy
2
t−j +

p
∑

i=1

p
∑

j=1

κijyt−iy
3
t−j = εt. (2)

This last model is a special case (when zt = aTYt and M = 3) of the model that we introduced in equation
(1). The expansion was introduced in [6] for the purpose of designing a statistical test of linearity and was not
intended for estimation. 2

2 Estimation of the autoregressive coe�cients

2.1 Normal (Yule-Walker) equations

To estimate the autoregressive coe�cients, we will assume in a �rst approach that the innovation variance
σ2
t is constant (σ2

t = σ2). We can then estimate the Ai coe�cients in a least squares sense by minimizing
E(e2t ), or by maximizing an approximated likelihood. The likelihood of the model (where θ is the vector of Ai

coe�cients) is written as:

L(θ) = p(y0, y1, · · · yT |θ).
We approximate it by:

L(θ) ≃ p(yp, y1, · · · yT |θ, y0, · · · yp−1).

Using the fact that the innovation is a white noise, and assuming that this innovation is Gaussian:

1. The STAR model is now rather called Smooth Transition AutoRegressive.
2. It is clear that a model de�ned as in equation (1), as well as a model described by equation (2) is no longer stable when zt

grows. We consider this as a minor problem when using this model on a given signal which remains bounded.
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L(θ) =
∏T

t=p p(εt|θ, y0, · · · yp−1)

=
∏T

t=p
1√

2πσ2
e−

1

2

e2t

σ2

logL(θ) = −1

2
log(2πσ2)− 1

2

T
∑

t=p

e2t
σ2
.

Maximizing the (approximate) log likelihood is equivalent to minimizing a least squares criterion:

J(θ) =

T
∑

t=p

e2t

If we introduce the value of the innovation in this criterion:

et = yt +

p
∑

i=1

AiYt−i = yt + θT











Yt−1

Yt−2

...
Yt−p











the minimization leads to Yule-Walker equations:

T
∑

t=p











Yt−1

Yt−2

...
Yt−p











[

Y T
t−1Y

T
t−2 · · ·Y T

t−p

]

θ =

T
∑

t=p











Yt−1

Yt−2

...
Yt−p











yt.

2.2 Weighted estimation of the autoregressive coe�cients

If the variance of the innovation is no longer constant, we can still estimate the autoregressive coe�cients,
conditionally to σ2

t (assuming it is known). The criterion being:

J(θ) =

T
∑

t=p

e2t
σ2
t

,

the Yule-Walker equations will be written:

T
∑

t=p

1

σ2
t











Yt−1

Yt−2

...
Yt−p











[

Y T
t−1Y

T
t−2 · · ·Y T

t−p

]

θ =

T
∑

t=p

1

σ2
t











Yt−1

Yt−2

...
Yt−p











yt.

Through these equations, we may estimate the autoregressive coe�cients as soon as the values of the variances
σ2
t are known. We will see in the next section that it is possible to estimate these values through a model which

is also driven by the exogenous signal xt. This estimation will assume that the autoregressive coe�cients are
already know.

This allows us to consider an iterative estimator that will alternate two phases:

1. estimate the autoregressive coe�cients, given the model of the variance σ2
t ,

2. estimate the model of the variance, given the autoregressive coe�cients.

3 Estimation of the innovation variance

3.1 Model for the innovation variance

Let et be a centered, Gaussian, non-stationary white noise; we want to estimate its variance σ2
t . In order to

build an estimate on an interval [0, T ], we will assume a model for the variance that will be:

σt = exp

(

M
∑

m=0

bmfm(t)

)

↔ log(σt) =
M
∑

m=0

bmfm(t)

where {fm(t), m ∈ [0,M ]} is a set of known functions of time. The unknown parameters in the model are
the bm coe�cients, and we will group these parameters in a vector θ:
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θ =











b0
b1
...
bM











.

3.2 Estimation of the variance

In a Gaussian framework, we can derive a maximum likelihood estimation. The likelihood is:

p(e1, · · · , eT |θ) =
T
∏

t=0

1
√

2πσ2
t

e
− 1

2

e2t

σ2
t .

The log-likelihood is:

L = log(p(e1, · · · , eT |θ)) =
T
∑

t=0

[

−1

2

e2t
σ2
t

− log(σt)

]

− T

2
log(2π).

By taking the expression of σt into account, the log-likelihood becomes:

L =

T
∑

t=0

[

−1

2
e2t e

−2
∑

M
m=0

bmfm(t) −
M
∑

m=0

bmfm(t)

]

− T

2
log(2π),

or:

L = −1

2

T
∑

t=0

e2t

M
∏

m=0

e−2bmfm(t) −
T
∑

t=0

M
∑

m=0

bmfm(t)− T

2
log(2π).

The gradient of the log-likelihood can be computed without any di�culty:

∂L

∂bm
=

T
∑

t=0

e2t fm(t)

M
∏

q=0

e−2bqfq(t) −
T
∑

t=0

fm(t).

Writing that this gradient is zero does not permit to derive a simple estimate. But since the computation
of the Hessian is not complicated, a Newton-Raphson technique can be used to maximize the log-likelihood:

∂2L

∂bm∂bm′

= −2
T
∑

t=0

e2t fm(t)fm′(t)
M
∏

q=0

e−2bqfq(t).

3.3 Initial estimation

Using a Newton-Raphson procedure for the maximization of the likelihood can be very e�cient, provided
that the procedure starts from a good guess of the solution. A simple manner to obtain this initial guess is
to perform a regression of the standard deviation of a set of slices from the innovation signal, over the basis
of functions fm(t) taken at instants corresponding to the slices. The idea would be to split the set of samples
{εt; t ∈ [0, T ]} into K subsets S1, ..., SK , associate one instant τk, k ∈ [1,K] to each subset, evaluate the
variance of the samples in each subset:

σ2
k =

∑

t∈Sk

e2t ,

and perform a regression of the values of the logarithm of the standard deviations over the basis:

















f0(τ1) f1(τ1) · · · fM (τ1)
f0(τ2) f1(τ2) · · · fM (τ2)

...
...

...
...

...
...

...
...

f0(τK) f1(τK) · · · fM (τK)



























b0
b1
...
bM











=

















1
2 log σ

2
1

1
2 log σ

2
2

...

...
1
2 log σ

2
K

















.

Such an initial guess is satisfactory as soon as K is more than 3 or 4 times M +1, the number of unknowns.
How can we choose the subsets S1, ..., SK? It would be wrong to split the time interval [0, T ] into K

successive intervals with equal length given by T/K. Considering the fact that the exogenous signal xt drives
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the model, a better choice would be to select the slices from the amplitudes of {xt, t ∈ [0, T ]}. Let us sort the
values of xt in increasing order. This de�nes a new set of indexes t′ = o(t), such that:

∀t ∈ [0, T − 1] : xo(t) ≤ xo(t+1).

With this new set of indexes, we de�ne the slice Sk by:

Sk =

{

t :
kT

K
≤ o(t) <

(k + 1)T

K

}

,

and the representative instant τk by:

τk : o(τk) =
(k + 1

2 )T

K
.

This way to split the values of the driving signal into K slices is clearly inspired by the de�nition of the
Threshold AutoRegressive (TAR) model.

4 Likelihood of the model

In this section, we describe an exact computation of the likelihood of the model. For completeness, we not
only assume an autoregressive model but also an autoregressive moving-average model.

4.1 State equations for the ARMA model

An ARMA model written as:

yt +

n
∑

i=1

ai(t− i)yt−i =

n
∑

j=0

bj(t− j)et−j

has a state-space representation (see appendix A):

Xt+1 =

















−a1(t) 1 0 · · · 0

−a2(t) 0 1
. . . 0

...
...

. . .
. . .

...
−an−1(t) 0 · · · 0 1
−an(t) 0 · · · · · · 0

















Xt +















β1(t)
β2(t)
...

βn−1(t)
βn(t)















et (3)

yt =
[

1 0 · · · · · · 0
]

xt + b0(t)et (4)

where:

βi(t) = bi(t)− ai(t)b0(t)

and

E(e2t ) = 1.

This state-space representation is a modi�ed version of the canonical observable representation given in [7,
page 374]. In order to compute the likelihood of the model, we will apply a Kalman �lter based upon this
representation, to compute the innovation and deduce from it the likelihood. The representation in [7, page
374] does not easily allow the use of the Kalman �lter.

4.2 State estimation through Kalman �lter

We will use the formulation of the Kalman �lter given by [8, pp 105 et seq.] and rewrite equations (3) and
(4), introducing obvious notations Ft, Gt and H:

Xt+1 = FtXt +Gtet (5)

yt = HTXt + b0(t)et (6)

With these notations, the �lter is summarized by (see appendix B where wt = et, vt = b0(t)et and the time
index on Ht may be dropped here):
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εt = yt −HTXt/t−1

Γt = HTΣt/t−1H + b0(t)
2

Kt =
(

FtΣt/t−1H +Gtb0(t)
)

Γ−1
t

Xt+1/t = FtXt/t−1 +Ktεt

Σt+1/t =
(

Ft −KtH
T
)

Σt/t−1

(

Ft −KtH
T
)T

+ [Gt,−Kt]

[

1 b0(t)
b0(t) b0(t)

2

] [

GT
t

−KT
t

]

=
(

Ft −KtH
T
)

Σt/t−1

(

Ft −KtH
T
)T

+ (Gt − b0(t)Kt) (Gt − b0(t)Kt)
T
.

where εt is the innovation, Γt = E(ε2t ) is the variance of the innovation, Kt is the Kalman gain, Xt+1/t is
the prediction of the state Xt at time t + 1, given the observations up to t, Σt+1/t is the variance of the state

prediction error: Σt+1/t = E
(

(Xt+1/t −Xt)(Xt+1/t −Xt)
T
)

.
The Kalman �lter has initial conditions X0/−1 and Σ0/−1. We will use X0/−1 = 0. Since we cannot make

any assumption concerning the state, a realistic way to initialize Σ0/−1 is to make this matrix proportional to
the identity matrix Σ0/−1 = λI where λ is a large value, for instance λ = 1000× E(y2t ).

4.3 Estimation of the log likelihood

The likelihood is

L(θ) = p(y0, y1, · · · yT |θ) = p(ε0, ε1, · · · εT |θ).
Given the orthogonality of the sequence {εt, t ∈ [0, T ]}, under the assumption that the signals are Gaussian,

this is:

L(θ) =

T
∏

t=0

p(εt|θ) =
T
∏

t=0

1√
2πΓt

e−
1

2

ε2t
Γt .

The log likelihood is therefore:

logL(θ) = −T
2
log 2π − 1

2

T
∑

t=0

(

ε2t
Γt

+ log Γt

)
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A State-space realization of a non-stationary ARMA model

We consider a signal yt that is described by the following ARMA model:

yt +

n
∑

i=1

ai(t− i)yt−i =

n
∑

j=0

bj(t− j)et−j (7)

The purpose of this section is to show that the model in equation (7) has a state-space representation that
can be written as:

Xt+1 =

















−a1(t) 1 0 · · · 0

−a2(t) 0 1
. . . 0

...
...

. . .
. . .

...
−an−1(t) 0 · · · 0 1
−an(t) 0 · · · · · · 0

















Xt +















β1(t)
β2(t)
...

βn−1(t)
βn(t)















et, (8)

yt =
[

1 0 · · · · · · 0
]

Xt + b0(t)et. (9)

A.1 Expression of the state vector

The k-th component of the state vector Xt will be denoted xt(k). Let us �rst compute the values of the
components xk(t). For k = 1, we may use the observation equation (9) which gives:

xt(1) = yt − b0(t)et. (10)

The �rst row of matrix equation (3) links xt+1(1) to xt(2):

xt+1(1) = −a1(t)xt(1) + xt(2) + β1(t)et. (11)

We can then obtain the expression of xt(2) by mixing equations (10) and (11):

xt(2) = xt+1(1) + a1(t)xt(1)− β1(t)et,

= yt+1 − b0(t+ 1)et+1 + a1(t)(yt − b0(t)et)− β1(t)et

= yt+1 + a1(t)yt − b0(t+ 1)et+1 − (a1(t)b0(t)et + β1(t)) et.

The same procedure leads to the successive components, and the expression of xt(k) is:

xt(k) =

k−1
∑

i=0

ai(t+ k − 1− i)yt+k−1−i

−b0(t+ k − 1)et+k−1

−
k−1
∑

i=1

(ai(t+ k − 1− i)b0(t+ k − 1− i) + βi(t+ k − 1− i)) et+k−1−i, (12)

where we assume that a0(t) = 1, ∀t.

Proof: Equation is true for k = 1 (equation (12) coincides with equation (10)). It su�ces to prove that if
equation (12) is true for k, it is also true for k + 1.

For k < n, the k-th row of matrix equation (3) is written as:

xt+1(k) = −ak(t)xt(1) + xt(k + 1) + βk(t)et.

Therefore:
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xt(k + 1) = xt+1(k) + ak(t)xt(1)− βk(t)et

=

k−1
∑

i=0

ai(t+ k − i)yt+k−i + ak(t)yt

−b0(t+ k)et+k

−
k−1
∑

i=1

(ai(t+ k − i)b0(t+ k − i) + bi(t+ k − i)) et+k−i

− (ak(t)b0(t) + βk(t)) et

which is identical to equation (12) for k + 1.

A.2 Equivalence with the ARMA model

It remains to show that the state-space equations (3) and (9) are a realization of the ARMA model in (7).
We will use the n-th row of equation (3):

xt+1(n) = −an(t)xt(1) + βn(t)et.

Using equation (10) leads to:

xt+1(n) = −an(t) (yt − b0(t)et) + βn(t)et

= −an(t)yt + (an(t)b0(t) + βn(t)) et. (13)

Applying equation (12) for k = n at time t+ 1 leads to:

xt+1(n) =
n−1
∑

i=0

ai(t+ n− i)yt+n−i

−b0(t+ n)et+n

−
n−1
∑

i=1

(ai(t+ n− i)b0(t+ n− i) + βi(t+ n− i)) et+n−i, (14)

Finally, equating the two expressions of xt+1(n) in equations (13) and (14) gives:

n
∑

i=0

ai(t+ n− i)yt+n−i =

n
∑

i=1

(ai(t+ n− i)b0(t+ n− i) + βi(t+ n− i)) et+n−i

+b0(t+ n)et+n,

and replacing t+ n by t gives:

n
∑

i=0

ai(t− i)yt−i = b0(t)et +

n
∑

i=1

(ai(t− i)b0(t− i) + βi(t− i)) et−i

which coincides with equation (7) provided that:

bi(t) = ai(t)b0(t) + βi(t) ∀i ∈ [1, n],

or

βi(t) = bi(t)− ai(t)b0(t) + ∀i ∈ [1, n].
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B Kalman �lter with correlated state and observation noises

In this section, we recall the expression of the Kalman �lter as it is given in [8, section 8.4]. In this reference,
contrary to most textbooks, the state noise and the observation noise are not assumed to be uncorrelated. Apart
from that, their derivation also takes into account a known input sequence, but we shall ignore such an input
in our presentation. The state equations are:

Xt+1 = FtXt +Gtwt (15)

yt = HT
t Xt + vt (16)

with correlated noises wt and vt:

E

([

wt

vt

]

[

wT
t′ vTt′

]

)

=

[

Qt St

ST
t Rt

]

δt,t′ .

B.1 Prediction and Kalman gain

A recursive equation is sought for the state prediction X̂t/t−1:

X̂t/t−1 = E(Xt|y0, y1, · · · yt−1) = E(Xt|ỹ0, ỹ1, · · · ỹt−1)

where {ỹt} is the innovation sequence:

ỹt = yt − E(yt|y0, y1, · · · yt−1).

De�ne the prediction error X̃t/t−1 = Xt − X̂t/t−1 and its covariance Σt/t−1 = E(X̃t/t−1X̃
T
t/t−1). We use the

independence of the innovations (and the fact that the state is centered, E(Xt+1) = 0, since the observations
and noises are centered):

E(Xt+1|ỹ0, ỹ1, · · · ỹt) = E(Xt+1|ỹt) + E(Xt+1|ỹ0, ỹ1, · · · ỹt−1). (17)

The �rst term can be computed through the projection theorem:

E(Xt+1|ỹt) = E(Xt+1ỹ
T
t )E(ỹtỹ

T
t )

−1ỹt. (18)

The covariances are estimated as:

E(Xt+1ỹ
T
t ) = E

(

(FtXt +Gtwt)(H
T
t X̃t + vt)

T
)

= E

(

FtXtX̃
T
t Ht

)

+GtSt

= Ft

(

E(X̂t/t−1X̃
T
t ) + E(X̃tX̃

T
t )
)

Ht +GtSt

= FtΣt/t−1Ht +GtSt

and (given that X̃t and vt are independent):

E
(

ỹtỹ
T
t

)

= E

(

(HT
t X̃t + vt)(H

T
t X̃t + vt)

T
)

= HT
t Σt/t−1Ht +Rt

Therefore equation (18) becomes:

E(Xt+1|ỹt) = (FtΣt/t−1Ht +GtSt)(H
T
t Σt/t−1Ht +Rt)

−1ỹt.

Given that wt is independent of ỹ0, ỹ1, · · · ỹt−1, the second term in equation (17) can be computed as:

E(Xt+1|ỹ0, ỹ1, · · · ỹt−1) = E(FtXt +Gtwt|ỹ0, ỹ1, · · · ỹt−1)
= FtE(Xt|ỹ0, ỹ1, · · · ỹt−1)

= FtX̂t/t−1

The recursive equation (17) can now be written as:

X̂t+1/t = FtX̂t/t−1 +Kt(yt −HT
t X̂t/t−1)

where Kt is the Kalman gain de�ned as:

Kt = (FtΣt/t−1Ht +GtSt)(H
T
t Σt/t−1Ht +Rt)

−1
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B.2 Evolution of the covariance matrix

The evolution of the covariance matrix Σt/t−1 is deduced from the evolution of the state error X̃t/t−1 which
is now seen as:

X̃t+1/t = Xt+1 − X̂t+1/t

= FtXt +Gtwt − FtX̂t/t−1 −Kt(yt −HT
t X̂t/t−1)

= Ft(Xt − X̂t/t−1) +Gtwt −Kt(H
T
t Xt + vt −HT

t X̂t/t−1)

= Ft(Xt − X̂t/t−1) +Gtwt −KtH
T
t (Xt − X̂t/t−1)−Ktvt

= (Ft −KtH
T
t )X̃t/t−1 +Gtwt −Ktvt

= (Ft −KtH
T
t )X̃t/t−1 + [Gt −Kt]

[

wT
t v

T
t

]T

Given the independence of X̃t/t−1 and
[

wT
t v

T
t

]T
, the covariance evolves as:

Σt+1/t = E(X̃t+1/tX̃
T
t+1/t)

= (Ft −KtH
T
t )E(X̃t/t−1X̃

T
t/t−1)(Ft −KtH

T
t )

T + [Gt −Kt]

[

Qt St

ST
t Rt

] [

Gt

−Kt

]

= (Ft −KtH
T
t )Σt/t−1(Ft −KtH

T
t )

T + [Gt −Kt]

[

Qt St

ST
t Rt

] [

Gt

−Kt

]
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