N
N

N

HAL

open science

On the Connections between Relational and XML
Probabilistic Data Models

Antoine Amarilli, Pierre Senellart

» To cite this version:

Antoine Amarilli, Pierre Senellart. On the Connections between Relational and XML Probabilis-
tic Data Models. BNCOD (British National Conference on Databases), Jul 2013, Oxford, United

Kingdom. pp.121-134. hal-00874445

HAL Id: hal-00874445
https://imt.hal.science/hal-00874445
Submitted on 1 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://imt.hal.science/hal-00874445
https://hal.archives-ouvertes.fr

On the Connections between
Relational and XML Probabilistic Data Models

Antoine Amarilli! and Pierre Senellart?

1 Ecole normale supérieure, Paris, France
& Tel Aviv University, Tel Aviv, Israel
antoine.amarilli@ens.fr
http://a3nm.net/

2 Institut Mines—Télécom; Télécom ParisTech; CNRS LTCI, Paris, France
& The University of Hong Kong, Hong Kong
pierre.senellart@telecom-paristech.fr
http://pierre.senellart.com/

Abstract. A number of uncertain data models have been proposed,
based on the notion of compact representations of probability distribu-
tions over possible worlds. In probabilistic relational models, tuples are
annotated with probabilities or formulae over Boolean random variables.
In probabilistic XML models, XML trees are augmented with nodes
that specify probability distributions over their children. Both kinds of
models have been extensively studied, with respect to their expressive
power, compactness, and query efficiency, among other things. Proba-
bilistic database systems have also been implemented, in both relational
and XML settings. However, these studies have mostly been carried out
independently and the translations between relational and XML models,
as well as the impact for probabilistic relational databases of results
about query complexity in probabilistic XML and vice versa, have not
been made explicit: we detail such translations in this article, in both
directions, study their impact in terms of complexity results, and present
interesting open issues about the connections between relational and
XML probabilistic data models.

Keywords: probabilistic data, relational data, XML

1 Introduction

A variety of systems have been put forward to represent probabilistic data and
cover the needs of the various applications that produce and process uncertain
data. In particular, both relational [1] and XML [2] probabilistic data models
have been studied in depth, and have been investigated in terms of expressive
power, query complexity, underlying algorithms, update capabilities, and so on.
Similarly, systems have been developed to query probabilistic relational databases
(e.g., MayBMS [3] and Trio [4]) or probabilistic documents (e.g., ProApproX [5]
and [6]). By and large, these two lines of work have been conducted independently,
and the results obtained have not been connected to each other.
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The purpose of this article is to give a general overview of probabilistic
relational and XML data models, describe the various query languages over these
models, present how one can encode queries and probabilistic instances of each
one of these models into the other, and investigate the consequences of these
encodings in terms of complexity results. We focus specifically on the existence
and efficiency of translations across models, and on the transposition of query
complexity results, rather than on a systems aspect. Section 2 introduces the
probabilistic representation systems we consider, and Section 3 the corresponding
query languages. We describe encodings of relations into XML in Section 4, and
of XML into relations in Section 5.

2 Data Models

Probabilistic data models are a way to represent a probability distribution over
a set of possible worlds that correspond to possible states of the data. We focus
on the discrete and finite case where the set of possible worlds is finite; each
possible world is associated with a probability value, i.e., a rational in (0, 1], such
that the sum of probabilities of all possible worlds is 1. States of the data that
are not part of the set of possible worlds have a probability of 0.

A straightforward probabilistic data model is to materialize explicitly the
collection of possible worlds with their probability. However, this straightforward
representation is not compact; it is as large as the number of possible worlds, and
any operation on it (such as answering a query) must iterate over all possible
worlds. For this reason, probabilistic data models usually represent the set of
possible worlds and the probability distribution in an implicit fashion.

Probabilistic data models usually achieve a trade-off between expressiveness
and computational complexity: ability to represent as many different kinds of
distributions as possible on the one hand, tractability of various operations on
the model, such as querying, on the other hand. In this section, we present
probabilistic data models for relational data and for XML data: in both settings,
we will move from the less expressive to the more expressive.

2.1 Relational models

Probabilistic models for relational data have usually been built on top of models
for representing incomplete information. Incomplete information defines a set
of possible worlds (the possible completions of the existing information), and
probabilistic models usually add some probability scores for each of the possible
worlds. See [1] for a general survey of probabilistic relational models.

The tuple-independent model. One of the simplest ideas to define a probabilistic
relational model is the tuple-independent model [7,8] (also known as tables with
maybe tuples [9] or probabilistic ?-tables [10]). In this model, a probabilistic
database is an ordinary database where tuples carry a probability of actually
occurring in the database, independently from any other tuple. Formally, given
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a relational schema X, an instance D of the probabilistic relational schema
Y is defined as a X-instance in which every tuple R(a) is annotated with a
rational probability value Prz(R(a)) € (0,1] (with tuples absent from D having
probability 0). The probability of a Y-instance D according to D is then defined
as Pr5(D) = [[p(a)ep Pra(f(@) [re@en (1—Prz(R(a))), the product of the
probabilities in D of retaining the tuples occurring in D and dropping the others
(note that the second product is infinite but has finite support). Since each

tuple is either retained or dropped, there are 91D possible worlds of non-zero
probability, and we can check that their probabilities sum to 1.

This model is simple but not very expressive because of the independence
assumption. As an example, if the original schema has a predicate R(A, B) with a
key constraint A — B, we cannot give non-zero probability to instances {R(a, b)}
and {R(a,b’)} without giving non-zero probability to instance {R(a,b), R(a,b’)}
that violates the key constraint.

The block-independent-disjoint model. An extension of the tuple-independent
model to support simple mutually exclusive choices is the block-independent
disjoint model [11,12]. In this variant, we assume that every predicate R of X' is
of the form R(K, A), where the attributes have been partitioned into two sets:
K, the possible worlds key, and A, the value atiribute set. Besides, we require
that the key constraint K — A holds. The BID schema X' is defined as before

with the added constraint that ) ., Prp(R(k,a)) < 1 for every predicate

R(K,A) and possible worlds key k € K. Intuitively, for each k, there is a
probability distribution on the possible ezclusive choices of a (including the default

option of choosing no a). A S-instance D defines the probability distribution

Prp(D) = Mrgeaen Pro (R0 a) [Trgeergn (1= Lganen Pro(flk a)
with the added constraint that there are no duplicate facts R(k,a) and R(k,a’)
for any R(K,A) € Y KeK,aa €A, ata (otherwise the probability is 0).

An example BID database, consisting of a single Customer(Id, Name, City)
relation (where Id is the key) is given in Fig. 1. Mutually exclusive names and
cities are given for the two customers, with the possibility also that neither
customer exists in a possible world. Such an uncertain table may be obtained,
for instance, following a data integration process from conflicting sources.

Intuitively, instances are drawn from a BID instance by picking one of the
mutually exclusive choices of a within each block defined by a choice of k, and
doing so independently across the blocks. The BID model is more expressive
than the tuple-independent model (which can be seen as the case in which all
attributes of every predicate are taken as the possible worlds key K).

Of course, the structure of the BID model is still unable to represent many
kinds of probability distributions. For instance, if instance {R(a,b), R(a’,b')} has
non-zero probability in a relation whose possible worlds key is the first attribute,
then instances {R(a,b)} and {R(a’,b')} will also have non-zero probability.
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Customer (T)
Id Name City Pr

1 John New York 0.4
1 Johny New York 0.2

1 John Boston 0.1
2 Mary Boston 0.4
2 Maria Boston 0.1 (Customer) (Customer)

Fig. 1. Example BID
database
(1d)
Fig. 2. Example of ‘ / \ / \
a TPQJ to encode 04 02 1 0. 01

1 ind ind ind 2 ind |nd

Customer(z, y, Boston) N\, ./ \, /N, /N,

M <Name (City) <Nan1e} (City) (Name) (City) <Name (City) <Name> Clty}

(Customer) .
/ ‘ \ John New York Johny New York John Boston Mary Boston Maria Boston

(Id)  (Name) (City) . {ind, mux} .
‘ ‘ ‘ Fig. 3. Example PrXMLY"" tree encoding the BID database

T Y Boston of Flg 1

The pc-tables model. We will now present a much more expressive model: proba-
bilistic c-tables (a.k.a. pc-tables) [9,3]. To simplify the writing, we will restrict
our exposition to Boolean pc-tables, that are known to be as expressive as general
pe-tables [9].

Given a relational schema X, an instance D of the probabilistic relational
schema X' is a Y-instance which annotates every tuple R(a) with a Boolean
formula Conp(R(a)) over a global finite set of variables V and provides an
additional relation B assigning a probability value Prp(z) € (0,1] to each
variable € V occurring in the instance (intuitively, the probability that x
is true). Given an assignment v from the set V of Boolean assignments (i.e.,
functions from V to Boolean values {t,f}), we define D, to be the X-instance
obtained from D by removing each fact R(a) such that Con »(R(a)) evaluates
to f under v. We then define the probability of assignment v as: Prp(v) =

(Hmvs_t_y(m):t Prﬁ(x)> (Hme\)s.t.y(z):f (1- Prﬁ(x))). The probability of a

Y-instance D is then: Pr(D) =3 . p —p Prp(v). Intuitively, -instances
are obtained by drawing an assignment of the variables independently according
to B and keeping the facts where the condition is true.

It is not very hard to see that any probability distribution over any finite
set of possible worlds can be modeled with a pc-table, given sufficiently many
tuples and variables. In particular, BID tables can be expressed as pc-tables, and
a direct polynomial-time translation is straightforward.

2.2 XML Models

We will now present probabilistic models for XML data. This presentation is
inspired by [2] in which more details can be found. Given an infinite set of
labels £, an XML document is a rooted, unordered, directed, and finite tree
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where each node has a label in L. For simplicity, we will always require that the
root of an XML document (probabilistic or not) has a fixed label o, € £. We
denote by X the collection of XML documents over L.

The PrXMLYY data model. We define a probabilistic document in the PrXML{"d}
model as an XML document over £ U {ind} (ind for independent), where the
outgoing edges of ind nodes carry a rational number in (0, 1] as label. Such
documents will define a probability distribution over X that we will describe as
a sampling process: in a top-down fashion, for every ind node z, independently
choose to keep or discard each of its children according to the probability label
on each outgoing edge, and, in the father y of x, replace x by the descendants
of x that were chosen, removing x and its unchosen descendants. Perform this
process independently for every node ind.

Once all ind nodes have been processed and removed in this way, the outcome
is ar XML document over £, and its probability is the conjunction of the
independent events of all the results of the draws at ind nodes. The probability
of a document is the sum of the probability of all outcomes leading to it. Note
that multiple different outcomes may lead to the same document.

The PrXMLI™} data model. In the same fashion, we can define the PrXMLImux}
data model (mux for mutually exclusive), in which we also require that the
outgoing edges of each mux node x carry a rational number in (0, 1] as label such
that the labels of all the outgoing edges of x sum to at most 1. The sampling
process proceeds as described above, except that each mux node choses at most
one of its children according to the probability label on each outgoing edge.

Of course, we can define the PrXMLEM™} qata model as the data model in
which both ind and mux nodes are allowed, which was studied under the name
ProTDB in [13]. An example PrXMLUM™} g oiven in Fig. 3; as we shall see in
Section 4, it is an encoding of the BID database of Fig. 1.

The PrXMLY} data model. Finally, we define the PrXML® data model (fie
for formula of independent events), in which the outgoing edges of fie nodes are
labeled with Boolean formulae on some finite set V of Boolean variables and in
which we are given a rational probability value P(z) in (0, 1] for each variable
x € V. The sampling process is to draw independently the truth value of each
x € V according to the probability P(x), and replace each fie node by its children
for which the Boolean formula appearing as an edge label evaluates to t under
the assignment that was drawn.

FExpressive power and compactness. PrXMLEMY and PiXMLI™™ are incompa-
rable in terms of expressive power [14]: some probability distributions can be
expressed by one and not by the other. Thus, PrXMLEM™} g strictly more
expressive than these two, and it is easy to see that one can actually use it to
represent any finite probability distribution over X (recall that the root label of
all possible documents is fixed).
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Any PrXM Liindmuxt hrobabilistic document can be transformed in polynomial
time into an PrXMLY €} document (where all Boolean formulae are conjunctions)
which yields the same probability distribution: ind nodes can be encoded with fie
nodes by creating one Boolean variable for each of their descendants; a similar
encoding exists for mux nodes by first encoding n-ary mux nodes in a subtree
of binary mux nodes, and then replacing each binary mux node by one fie node
whose children are labeled by x and —x, where x is a fresh Boolean variable with
adequate probability.

On the other hand, no polynomial time translation exists in the other di-
rection [14], even when considering PrXML{f®} probabilistic documents with
conjunctions only. In other words, though PrXML{M ™} and PrxmLIfe} have
the same expressive power, the latter can be exponentially more compact than
the former.

3 Querying Probabilistic Data

Up to this point, we have described probabilistic data models that serve as a
concise representation of a probability distribution on a set of possible worlds.
However, the main interest of such models is to use them to evaluate queries on all
possible worlds simultaneously and return the aggregate results as a probability
distribution on the possible answers. For clarity of the exposition, we restrict
ourselves to Boolean queries, that are either true or false on a given possible
world. Extensions to non-Boolean queries are straightforward.

More formally, given some probabilistic data model, given a probabilistic
instance M defining a probability distribution over possible worlds X, and given
a Boolean query ¢ that can be evaluated on each X € X to produce either t
or f, we define the probability of ¢ on M as: G(M) = ZXGXS.t.q(X):t Pry7(X).

Evaluating ¢ on M means computing the probability of ¢ on M. This is called
the possible-worlds query semantics.

In this section, we present known results about the complexity of query
evaluation under this semantics. The query is always assumed to be fixed, i.e.,
we discuss the data complezity of query evaluation.

We will need some basic notions about complexity classes for computation and
counting problems [15]. The class FP is that of computation problems solvable in
deterministic polynomial time, while #P problems are those that can be expressed
as the number of accepting runs of a polynomial-time nondeterministic Turing
machine. A computation problem is in FP#P if it can be solved in deterministic
polynomial time with access to a #P oracle. A problem is FP#P-hard if there is
a polynomial-time Turing reduction from any FP#P problem to it.

3.1 Relational models

Typical query languages on relational data include conjunctive queries (CQs, i.e.,
select-project-joins), unions of conjunctive queries (disjunctions of conjunctive
queries, a.k.a. UCQs), and the relational calculus. A CQ is hierarchical if for any
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two variables x and y, either the intersection of the set of atoms that contain x
with that of y is empty, or one of them is contained in the other (this notion can
be extended to arbitrary relational calculus queries, see [1]). A CQ is without
self-join if all atoms bear distinct relation names.

For instance, a simple CQ for the database of Fig. 1, testing whether any
customer is located in Boston, is ¢poston = 3Ty Customer(x, y, Boston). This
query, having a single atom, is trivially hierarchical and without self-joins. It is
easy to see that qBoston([)) = 0.55, where D is the database of Fig. 1.

Extensive results exist about the complexity of evaluating the probability of
a query for these various query languages over the tuple-independent, BID, and
pe-tables models. We refer to [1] for a detailed overview and summarize here the
main results:

— Query evaluation for relational calculus queries over pc-tables is FP#P [16].

— CQs of only one atom are already FP#P-hard over pc-tables, even when the
Boolean formulae in the pc-table are restricted to conjunctions [17].

— For UCQs over tuple-independent databases, there is a dichotomy between
FP#P_hard queries and FP queries [18]; however, the only known algorithm
to determine the complexity of a query is doubly exponential in the query
size, and the exact complexity of this problem is unknown.

— A similar dichotomy, but with a polynomial-time test, holds for CQs without
self-joins over BIDs. [16]

— A CQ without self-joins is FP#P-hard over tuple-independent databases if
and only if it is not hierarchical. [8] Being non-hierarchical is a sufficient
condition for any relational calculus query to be FP#P-hard.

3.2 XML models

Tree-pattern queries with joins. The first query language that we will consider
on XML data are tree-pattern queries with joins (TPQJs). A TPQJ ¢ is a rooted,
unordered, directed and finite tree whose nodes are labeled either with elements
of L or with variable symbols taken from some infinite fixed set of variables V),
and whose edges are either child or descendant edges. Given an assignment
v:V — L, we define the application of v to g (written ¢[v]) as the tree where
each label z € V is replaced by v(z). A match of ¢ in an XML document d is
an assignment v and a mapping p from the nodes of ¢[v] to the nodes of d such
that:

1. For any child edge z — y in ¢[v], p(y) is a child of u(z) in d.

2. For any descendant edge  — y in ¢[v], pu(y) is a descendant of p(zx) in d.

3. For any node x of ¢[v], its label is the same as that of u(z) in d.
Intuitively, we match the query with some part of the document so that child,
descendant, and fixed label constraints are respected, and all the occurrences of a
variable are mapped to nodes with the same label. Tree-pattern queries (TPQs)
are TPQJs where all variable symbols are distinct.

We show in Fig. 2 an example TPQJ. Here, z and y are variables, all
other labels are from £. We can show that this query, when evaluated on the
PrXMLEndm} tree of Fig. 3, yields a probability of 0.55.
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Monadic second-order logic with joins. A more expressive query language for
XML documents is monadic second-order tree logic with value joins (MSOJ).
Remember that a monadic second-order formula is a first-order formula extended
with existential and universal quantification over node sets. An MSOJ query is a
monadic second-order formula over the predicates z — y (y is a child of z), A(z)
(x has label A), and « ~ y (z and y have same label, a.k.a. value join).

A MSO query is an MSOJ query without any value join predicate.

Query complexity. We refer to [2] for a survey of query complexity in probabilistic
XML and summarize here the main results:

— Query evaluation for TPQJs over PrXMLIfe} is FP#P [19].

— For MSO queries over PrXMLEM™X} - qyery evaluation is linear-time [20].

— Any non-trivial TPQ is FP#P-hard over PrXM L{ﬁe}, even when the Boolean
formulae of the document are restricted to conjunctions [21].

— If a TPQJ has a single join (i.e., a single variable appears twice in the query),
then the following dichotomy holds over PrXM | {ind,mux} [19]: if it is equivalent
to a join-free query, it is linear-time; otherwise it is FP#P-hard. Testing for
this equivalence is 5-complete. It is open whether this still holds for TPQJs
with more than one join.

Note that this list of results has some similarity with that in the relational
setting: a broad FP#P membership result, hardness of models with Boolean
formulae, even with just conjunctions, and a dichotomy between FP#P-hard
queries and FP queries for some class of queries over “local” models. In the
following, we establish connections between relational and XML settings, exploring
whether this yields any connections between these complexity results.

4 From Relations to XML

We explain here how to encode probabilistic relational data models into proba-
bilistic XML.

Encoding instances. Given a relational schema X’ = {(R;(A}))}, we will define the
node labels (T), (R;), (A;-), along with labels representing all possible constants
as text values. The root label of XML documents will always be (T). XML
representations of instances of the schema will obey the following DTD:

<T> : (<R1>*,"'7 <Rn>*)
Vi, j, (A?) : #PCDATA

We now define the encoding (D) of an instance D of X. The encoding
(Ri(aq,...,an,)) of the fact R;(a,...,ay,;) is the subtree whose root has label
(R;) and children (A%), each child (A%) having as child one text node with a
label (a;) representing the corresponding a;. The encoding (D) of a full instance
D is the XML document whose root has one child (R;(ay,...,an,)) per fact
Ri(al, . Cbni) eD.
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~

Encoding probabilistic instances. We will now define the encoding (D) of proba-
bilistic instances D for the various probabilistic relational data models that we
described in Section 2.1. The encodings will be given in the probabilistic XML
data models of Section 2.2. When we say that we “encode” one probabilistic data
model into another, we mean that the following property holds:

VD, D, Pr ) ((D)) = Pr(D) (1)

Proposition 1. Any tuple-independent database can be encoded in linear time
as a PEXMLY™Y probabilistic document.

Proof. Given a tuple-independent probabilistic instance ﬁ, we encode it as a
PrXMLYE"Y document (ﬁ) whose root has an ind node as its only child. We root
as children of this node the subtrees encoding each of the tuples of 13, where the
probability of the tuple is indicated on the edge attaching it to the ind node. It
is easy to see that Equation (1) holds with this encoding. O

Proposition 2. Any BID can be encoded in linear time as a PrXMLIndmux}
probabilistic document.

Proof. Consider a BID probabilistic S-instance D. We will first define an encoding
for the blocks of D, before defining the encoding (D) of D.

For all R(K,A,P) € ¥, for all k € K such that R(k,a,p) € D for some
(a,p) € A x P, we first define (R(k,_,-)) as the subtree whose root has label
(R), has |K]| children (K;) whose children are text nodes (k;) representing the
associated k;, and has as (|K|+ 1)-th child a mux node; as children of this mux
node, we put one ind node per a € A such that p = Prs(R(k,a)) is > 0, with p
as edge label. As children of each of these ind nodes, with edge probability 1, we
put |A| nodes (A;) with children text nodes (a;).

Hence, for each R(K, A, P) € f, for each choice of k € K, the mux node will
select one of the possible choices of a € A based on their probability in B7 those
choices being independent between all of the mux nodes.

As expected, we define (D) to be the PEXMLI™} document whose root has
one child (R(k, _,_)) per possible choice of R(K, A, P) € £ and R(k,_,_) € D.

O

This construction is illustrated in Fig. 3, which is a PPXMLUM™X} epcoding
of the BID database in Fig. 1.

Proposition 3. Any pc-table can be encoded in linear time as a PrxmL{fiet
probabilistic document with the Boolean formulae unchanged.

Proof. Consider a probabilistic Sinstance D in the pc-table formalism. We will
set (V) (the variable set for the PPXML®} formalism) to be the variable set V
of D, and will simply take (P)((z)) to be Pry(x).

We now define (D) as the PrXML{®} document whose root has a fie node as
its only child. This node has as descendants the subtrees encoding each of the
tuples of D, where the condition of the tuple is indicated on the edge attaching
it to the fie node. O
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Encoding queries. We will now show how a query ¢ on a relational instance D is
encoded as a query (g) on its XML encoding (D). Of course, we will ensure that
queries commute with encodings, i.e., the following property holds:

B.0.0(5) = 0 ((5)) ®

Proposition 4. A CQ can be encoded as a TPQJ in linear time.

Proof. The encoding (a) of a constant a is its textual representation, and the
encoding (z) of a variable z of the query is a TPQJ variable. The encoding (F") of
an atomic formula F' = R(z1, ..., z,) over the relation R(Aq, ..., A,,) is the subtree
whose root has label (R) and has n children; each child has label (A;) and has
one child (z;). The encoding (¢) of a CQ ¢ is a tree whose (T)-labeled root has
one child (F) per atomic formula F in q. O

This encoding is shown in Fig. 2, a TPQJ that encodes g¢poston. We rediscover
with this result the FP#P membership of CQ evaluation over pc-tables given
that of TPQJ over PrXM Lfie} . We also obtain the FP#P-hardness of TPQJ over
PrxmLtind} given that of CQs over tuple-independent databases. We can finally
use this result to find individual hard TPQJ queries as those that are encodings
of hard CQs over tuple-independent databases (e.g., non-hierarchical CQs).

Proposition 5. A query in the relational calculus can be encoded as an MSOJ
query in linear time; the resulting query does not have any second-order quantifier,
i.e., it is actually a first-order query with joins.

Proof. Let q be a relational calculus query. We denote by V and C' respectively
the set of variables and constants appearing in q. For each variable x in V,
and each occurrence of z in ¢, we introduce a new variable x;. We encode
subgoals R(z1,...,2,) for the relation R(A4,...,A,) by the following formula:
Jy (R)(y) AN 3w (y = w A (Aj)(w) Aw — (z;)) where the encoding (z;) of a
constant a is a fresh variable ¢, and the encoding of a variable z is the encoding
(x;) of the fresh variable for this specific occurrence of z. Let (¢)’ be the MSO
formula obtained from ¢ by encoding all of its subgoals in this way. The MSOJ
query (q) is (¢)' A (Nyey 2 N\jz ~ xi) A (/\Ca a(c,)) where all z;’s and ¢,’s are
existentially quantified at the top level. a

As an immediate consequence of this encoding, if the original first-order
query is read-once (no query variable is used twice), it is linear-time to evaluate
it over BIDs thanks to the linear-time evaluation of MSO over PrXML{ndmux},
Read-once queries are of limited interest, however.

5 From XML to Relations

We now show, in the reverse direction, how to encode probabilistic XML instances
into probabilistic relational models. This problem has been explored in [6] with
two solutions proposed:
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Schema-based: adapted inlining Assume we have a DTD for possible XML
documents. This method transforms a PrXMLIM ™} brobabilistic document
(but it is easy to adapt the technique to PrXM L{ﬁe}) into a pc-table whose
schema is derived from the DTD, adapting techniques from [22] for storing
XML documents into relations. Queries are translated as in [22], which may
result in queries involving a fixpoint operator in the case of recursive DTDs.

Schemaless: adapted XPath accelerator In the absence of a schema, Hol-
lander and van Keulen propose to transform PrXM | {ind,mux} probabilistic
documents (again, the same would hold with PrXMLe}) into pe-tables by
using a pre/size/level encoding as in MonetDB/XQuery [23]. Queries are
then translated into queries with inequality predicates and arithmetic.

These two translations are used to show that probabilistic XML can be queried on
top of a probabilistic relational engine, Trio in [6] or MayBMS in [24]. However,
we present here an alternative translation that has the advantage of transforming
TPQJs into CQs, without any need for recursion or inequality predicates.

Encoding instances. Let d be an XML document. We construct the relational
schema X = {Label(id, lab), Child(id, cid), Desc(id, did), Root(id)} and encode
each node n by a unique ID (n). The encoding (d) of d is a relation over X
defined as follows:

— for every node n of d with label [, we add a fact Label({n), (1));

— for every edge (n,n’) in d, we add a fact Child({n), (n'));

— for every node n and descendant n’ of n in d, we add a fact Desc((n), (n'}));

— we add a single fact Root({r)) for the root r of d.
Note that this construction is quadratic at worst since we may add linearly many
Desc facts for every node n.

Encoding probabilistic instances. We will now encode a probabilistic XML docu-
ment d from Section 2.2 into a probabilistic relational instance (d) of Section 2.1.
Again, the goal is to have an encoding that satisfies (1).

We start with a negative result that shows that tuple-independent databases

or even BIDs are unusable for encoding even simple probabilistic documents:

Proposition 6. No probabilistic document of PrxXMLEnmut itk more than
one possible world can be encoded as a BID (with the instance encoding above).

Proof. Assume by way of contradiction we have such a document d and its
encoding <d> Since d has more than one possible world, it contains at least one
ind or mux node, say z, and there is a child y of = such that the edge probability
label between x and y is p < 1. Let z be the lowest ancestor of = that is neither
an ind or mux node; if y is itself an ind or mux node, we take y to be its highest
descendant that is neither an ind or mux node.

There exists possible worlds d and d’ of d such that, in (d), Child({z), (y))
and Desc((z), (y)) holds, while in (d’), neither of these facts hold. But then, since
the Child and Desc tables are fully independent in a BID, there is a possible

world of (d) where Child({z), (y)) holds and Desc({z), (y)) does not, which is
absurd, since no encoding of a possible world of d verifies this. a
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This result may seem to be an artifact of the particular encoding of instances
we chose. However, there is something deeper happening here: BIDs are not able to
correlate probabilities of tuples, which means they will not be able in particular to
represent hierarchies of ind nodes [14]. More generally, the main issue comes from
the fact that BIDs are not a strong representation system [10] for the language of
(non-Boolean) conjunctive queries: the output of a conjunctive query over BIDs
cannot in general be represented as a BID; on the other hand, PrXM | {ind,mux}
can represent any discrete probability distribution, and can therefore represent
the output of any query over PrXMLI™ ™} Thig mismatch means it is hopeless
to come up with an alternative way of encoding instances that would make BIDs
sufficient to encode PrXMLIdmux},

On the other hand, pc-tables can encode probabilistic XML documents:

Proposition 7. Any PrXMLIM™} o pex MLl probabilistic document can
be encoded as a pc-table in cubic time.

Proof. We restrict to PrXMLf€} since PrXMLIM ™%} can be tractably encoded
into PrXML{f}, We first remove every fie node of the probabilistic document by
connecting each non-fie descendant n’ of a fie node to its lowest non-fie ancestor
n, labeling the edge (n,n’) with the conjunction of all formulae appearing as
labels on the edges of the original path from n to n’. We then construct a pc-table
from this document as if it were a non-probabilistic document, except that to
each tuple Child({(n), (n')) we add the Boolean condition that appears as label on
(n,n’), and to each tuple Desc((n), (n’)) we add the conjunction of all Boolean
conditions that appear as labels on the edges of the path between n and n'. At
worst, this results in a cubic construction: for every node, for every descendant
of this node, we have a condition that has at most linear size. a

Encoding queries. Again, our goal is an encoding of tree queries that satisfies (2).
Proposition 8. A TPQJ can be encoded as a CQ in linear time.

Proof. Let ¢ be a TPQJ. The CQ (g) is the conjunction of the following atomic
formulae:
— for every node n of ¢ with constant or variable label [, an atom Label({n), (});
— for every child edge (n,n’), an atom Child({n), (n'}))
— for every descendant edge (n,n’), an atom Desc({n), (n'}). O

This can be used to reestablish the FP#P membership of TPQJ over PrxXML{fie}
from the similar result over relations, or, for example, the FP#P-hardness of any
encoding of a TPQJ with a single join. Note that the encoding of any TPQ with
depth greater than 1 will be non-hierarchical but still tractable on the encodings
of PrXMLENmMeXE. we cannot just use the fact that non-hierarchical queries are
intractable since we are working with a specific class of databases.

MSOJ queries cannot be encoded into the relational calculus, since they can
express such things as the existence of a path between nodes of a graph (this
graph being represented as a tree, e.g., as in Section 4), which is impossible to
test in first-order logic. [25]



On the Connections between Relational and XML Probabilistic Data Models 13

6 Conclusion

We have thus established connections between probabilistic relational and XML
models, showing how probabilistic instances and queries from one model can be
encoded into the other. Though we can rediscover some general results in this
way (such as the FP#P-completeness of query evaluation), we also see that results
over probabilistic XML (such as the linear-time evaluation of MSO queries, or
the dichotomy for TPQJ queries with a single join) are not direct translations of
similar results in the relational case but deep consequences of the true structure.

To go further, one direction would be to look at the tree-width (of the
data structure, of the queries, of the Boolean formulae) as an indicator of the
tractability of a query; Jha and Suciu have shown [26] that it is tractable to
evaluate the probability of a bounded tree-width Boolean function. It is still an
open problem to understand the dependency between the tree-width of a query
lineage and the tree-width of the query, of the data and of the Boolean formulae.
This could suggest new tractable classes of probabilistic relational databases,
inspired by the tractable classes of probabilistic XML.

We have restricted our study to discrete finite probabilistic distributions;
models for discrete infinite distributions arise naturally in probabilistic XML [27]
by adding probabilities to an XML schema [28]; their meaning is less clear in the
relational setting. Probabilistic models with continuous distributions can also be
defined in the relational [29] and XML [30] cases, though the precise semantics
can be tricky. Moreover, no strong representation systems (say, for conjunctive
queries) involving continuous distributions have been put forward yet.
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