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Clipping Demapper for LDPC Decoding in Impulsive Channel

Hassen Ben Mâad, Alban Goupil, Laurent Clavier, Member, IEEE, and Guillaume Gellé

Abstract—This paper deals with the performance of Low-
Density Parity-Check codes in impulsive interference modeled
by α-stable random variables. In case of α-stable noise, the
optimal inputs of the belief propagation decoder are complex
to obtain. We propose to use the simple clipping approach that
reduces the impact of large noise values. Our main contribution
is to give three different approaches to obtain the parameters
of the clipping function and to assess the performance of the
decoder. We show that a look-up table whose values are pre-
determined, thanks to the Density Evolution tool, is the most
efficient approach.

Index Terms—LDPC codes, α-stable interference, density evo-
lution, clipping.

I. INTRODUCTION

DENSER deployment of wireless networks makes inter-

ference the main limitation to the system performance.

Despite the limits due to the unbounded path-loss model

assumption [1], an α-stable distribution can give a relevant

insight and a powerful tool to analyze the effect of this

aggregate interference, for instance in wireless ad hoc or

sensor networks[2], [3].

As packet retransmissions induce an important energy dissi-

pation, we suggest to use an efficient channel coding scheme to

reduce them. We are interested in Low Density Parity Check

(LDPC) codes for their good performances and their itera-

tive decoding. However, the decoding process is particularly

sensitive to the noise model and, if the noise is impulsive,

performance is significantly degraded when receivers based

on belief propagation (BP) are designed under Gaussian noise

assumption [4].
As the LDPC decoder performance strongly depends on its

input, the likelihood ratio to transform the received symbols

must be carefully calculated in order to obtain a satisfactory

complexity-performance trade-off. The design of optimal or

suboptimal receivers is extensively studied in literature, e.g.

in [5] for RAKE combiner and the scope of the paper is to

focus on the simple and easy to implement clipping approach.

This choice is justified by the necessity to clip the noise

pulses and by the difficulty to implement the natural demapper.

Our contribution is to study different strategies to obtain the

different parameters of the clipping demapper —its slope and
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its threshold,— which highly influence the performance of the

decoding algorithm.

Section II presents the model of the system; Section III

deals with the optimization of the clipping demapper. Some

simulations illustrate the performance obtained in Section IV

before the conclusion.

II. SYSTEM MODEL

A. Impulsive noise channel

We assume the model Y = X +N . Input X belongs to a

simple BPSK constellation, +1 or −1. As mentioned in the

introduction, N is an i.i.d. noise following symmetric α-stable

distribution. Many papers have proposed justification for such

a model [2] and we do not discuss it in this letter. The model is

well adapted to several contexts when the noise is impulsive.

It can be the case in ad hoc networks but also, for instance,

in power line communications [6].

This distribution is stable in the sense that the sum of

stable random variables is still stable [7]. Unfortunately, most

often, no closed-form of its probability density function (pdf)

is available. Nevertheless, we can express the characteristic

function of symmetric α-stable distribution by ϕN (t) =

E

[

eitN
]

= e−|γt|α.

This SαS distribution depends on two parameters: the

exponent, or index, α and the scale factor γ. In wireless

context, α is directly associated with the pathloss exponent of

the radio channel [2]. The noise is all the more impulsive as α
is closer to 1. The scale parameter γ measures the spread of the

noise. The special case of Gaussian and Cauchy distributions

are given by α = 2 and α = 1 respectively.

The n-th moment of a non-Gaussian α-stable distribution is

finite only for n < α. Thus, if α < 2, the power is infinite and

the signal to noise ratio is meaningless. Moreover, comparison

of the scale parameters between two systems is meaningful

only when they share the same index α. Several papers deal

with this aspect and propose other “power” measurements

[8]. To make things simple we will only consider γ as a

measurement of the strength of the noise.

In order to give an exact impact of impulsiveness, we

assume that no additive thermal noise contaminate the channel.

We call this special case Additive Independent Stable Noise

(AISN) channel.

B. Channel capacity

Due to symmetry, the capacity of the channel is the mutual

information between the binary input and the noisy output

of the channel. As generating α-stable samples is easy [7], a

Monte-Carlo method can be used to numerically compute it

[4]. Other more general methods may be considered [9] but
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Fig. 1. Capacity of the channel with respect to α.
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Fig. 2. LLR demapper.

are not necessary for our purpose which is simply to give

some reference curves. The results are given in Fig. 1.

The capacity curves do a smooth transition between 0 and 1

bit per channel use according to γ. As expected, this transition

spreads more when the impulsiveness increases. We can also

notice that when the code rate, given by C, decreases the

impact of α is weaker.

C. Channel-decoder mapping

To implement the BP decoder we first encode the channel

outputs by their log-likelihood ratios (LLR),

LLR(Y ) = log
Pr(Y |X = +1)

Pr(Y |X = −1)
. (1)

The additive white Gaussian noise channel has the specific

feature that the LLR expression has a closed and simple

form: the LLR is proportional to the input. Thus, the input

of the LDPC decoder is given by the received word rescaled.

Unfortunately, this linear demapper is not suited to the more

general case of AISN channels: when α < 2, rescaling leads

to poor performance [4].

The paper deals mainly with the transformation between the

output of the channel and the input of the decoder. It is called

in the rest of the paper demapping. The LLR expression (1)

involves the pdf of the noise which is usually not accessible in

closed-form. The demapper using LLR is thus only available

through numerical approximation. Fig. 2 shows that the LLR

demapper is highly non-linear when the noise is not Gaussian

(α �= 2). Moreover, it depends on both channel parameters:

the index α and the noise spread γ.

As expected, when the noise is impulsive, high value of

the output should not be trusted; the LLR decreases. Beside,

the span where the LLR demapper can be approximated

with a linear function near 0 grows with the decrease of the

impulsiveness of the noise. The limit case is the Gaussian case

where the LLR is linear.

III. CLIPPING OPTIMIZATION

To implement the demapper, using lookup tables or some

approximations, would induce too much complexity. More-

over, the robustness and the efficiency of the channel parame-

ters’ estimation [10] has a significant impact on the demapper

performance. The choice of another kind of demapper is then

salutary. In this section, a simple clipping demapper is used

and its parameters are optimized.

The clipping demapper scales the input by the “slope”

P and clips values whose absolute value are greater than a

threshold H , that is,

Clip(y) =

{

P y if −H < P y < +H ,

H sign(y) otherwise.
(2)

Implementation of the clipping demapper is simple but

the two parameters P and H have to be chosen in order

to optimize the decoder performance. However, we cannot

address this optimization problem in a direct manner due

to the numerous parameters (α, γ,H, P ) and the complexity

of the LDPC decoding. To tackle the problem, we propose

three different solutions: the LLR approximation, noise power

reduction and an approach based on the density evolution.

We have two main concerns:

1) the efficiency of the decoding process;

2) can we find H and P values which do not depend on

the channel parameters?

A. LLR function approximation

A first idea is to keep the clipping demapper close to the

LLR. This can be done by choosing P as the slope of the

tangent at the origin of the LLR. Indeed, we can see in Fig. 2

that a linear function is a good approximation of the LLR

around 0. The clipping threshold H is then chosen as the

maximum value of the LLR. Due to the symmetry of the

channel, the slope is analytically expressed with the pdf of

the noise, fN , and its derivative f ′
N ,

P = LLR′(0) = −2f ′
N(1)/fN(1). (3)

To compute H and P , Fourier integrals of the characteristic

function ϕN (t) and of itϕN (t) are obtained through numerical

integration, respectively for the pdf and its derivative.

The slope P depends on α as well as on γ. Fig. 3 shows

two regimes: when γ � 0.8, the slope is almost independent

of γ and when γ � 0.8 the relation is of power-law kind.

The P value at the frontier of both regimes is around 3.25.

This aspect can be taken into account in order to reduce the

size of lookup tables. The Gaussian case α = 2 is still special

because the optimal slope is inversely proportional to γ2.

To obtain the threshold H , the maximum value of the LLR

has to be numerically obtained by binary search algorithm.

This parameter depends also on both α and γ. As expected,

H decreases when γ increases or when α decreases.
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Fig. 3. Slope P wrt α and γ.
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Fig. 4. H/P with respect to α for γ = 0.7.

B. Noise power minimization

The previous solution suffers from the dependency of H and

P on the channel parameters α and γ. Especially, the noise

spread γ may be difficult to estimate correctly and could be a

fast changing parameter in a wireless communication networks

as it involves the interfering neighbors [2]. To overcome this

obstacle, we propose another solution. Except for the Gaussian

case, the noise is impulsive and its power is infinite; however,

the noise power after clipping, because of its finite support,

is well defined and easy to estimate by standard methods. We

propose to minimize it.

The noise estimation procedure is as follows: using a

training sequence, the signal may be removed from the clipped

channel output. We present in Fig. 4 the arithmetic power of

the clipped noise as a function of the ratio H/P for different

α. It shows that a specific value of H/P minimizes the clipped

noise power. A similar behavior is observed whatever γ.

An optimal ratio H/P can be found but not optimal P and

H . Consequently, once the optimal H/P is obtained, we still

have to choose the slope P or the threshold H by another

method. We propose to use the result from section III-A that

links the slope to the LLR (see (3)). The relevance of this

choice is that the slope depends mainly on α and much less

on γ and α is a slow varying environmental parameter. To even

avoid the dependency on α we propose to choose P = 3.25
which seems a reasonable value. In that way, this method does

not necessitate any channel parameter estimation.

C. Density evolution

Asymptotically, BP decoding of infinite length LDPC un-

dergoes a phase transition behavior: as for the Shannon’s

coding theorem, if the noise is too strong no correct decoding

is possible; if however it is weak, the decoding must be perfect.

Exponent α being fixed, the boundary of this two behaviors

is given by a threshold θ on the value of γ. If γ > θ then

the perfect decoding is not possible but it is if γ < θ. The
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Fig. 5. Contour of the asymptotic performance of regular (3,6)-LDPC codes
in AISN channel for α = 1.2.

0
.3

0
.3

0
.3

0.3 0.3 0.3

0
.5

0
.5

0.5 0.5 0.5

0
.5

5

0
.5

5

0.550.55

0
.5

5

0.5
5

0.55

0.57

0
.5

7

P

H
1 3 5 7

1

3

5

7

Fig. 6. Contour of the asymptotic performance of regular (3,6)-LDPC codes
in AISN channel for α = 1.8.

threshold θ depends on the LDPC code family. However,

because of the finiteness of the codewords, the phase transition

is not as sharp. But the threshold θ is nevertheless a good

criterion for optimization.

This threshold is computable thanks to the density evolution

(DE) method. Most of the time, this method permits to opti-

mize the parameters of the LDPC code in order to approach

the Shannon capacity of the channel [11]. In this paper, we do

not use it to optimize the LDPC, supposed fixed, but we use it

to optimize the parameters P and H . The main advantage is

that, because of the existence of the threshold, the parameter

γ does not influence the best clipping parameters’ choice.

For each value of H and P , we obtain the threshold θ.

Their optimal values are then computed by a maximization of

θ(H,P ). This choice asserts that if the noise level is below

the threshold, then the BP decoder must decode perfectly an

infinite length LDPC code. In Fig. 5, the contours of the

thresholds found by the DE method when α = 1.2 are drawn.

The optimal H and P are P ≈ 4 and H ≈ 3. We observe a

similar behavior on Fig. 6 for α = 1.8. The chosen values are

in this case P ≈ 3.2 and H ≈ 4.

Furthermore, a flat area around the optimal values can be

observed. It means that a small error on H and P will not

significantly degrade the decoding performance.

Table I records the optimal values of H and P for different

channel parameters α. Interestingly, we can observe that when

the noise is sufficiently impulsive, α � 1.7, the clipping level

is below the signal level.
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TABLE I
CLIPPING DEMAPPER PARAMETERS ACCORDING TO α

α 1.0 1.2 1.4 1.6 1.8 2.0
H ≈ 2.8 ≈ 3 ≈ 3 ≈ 3.2 ≈ 3.5 ∞
P ≈ 4 ≈ 4 ≈ 4 ≈ 3.5 ≈ 3.2 ≈ 2.5
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Clipping based on power minimization (P=3.25)
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Fig. 7. Comparison of the methods on channel with α = 1.2.

IV. SIMULATIONS

In this section, we compare in terms of bit error rate

(BER) the clipping demappers obtained by the three methods

previously presented. The code is a (3, 6)-regular LDPC code

of length 20000 bits. The channels are AISN channels with

α = 1.2 (Fig. 7) and α = 1.8 (Fig. 8). These values were

chosen because the results obtained are representative of the

behaviors under weak and strong impulsiveness respectively.

Note however, that the comparison of the results for different

values of alpha is not straightforward as the notion of SNR is

not well-defined [8].

The different solutions give close results. A slight advantage

can be observed for the approach based on DE. Moreover, this

approach is highly interesting because H and P only depends

on α and not on the dispersion. Besides, the dependence on α
of the clipping parameters is rather weak, as seen in table I,

except when α tends towards 2. Consequently, this method

can handle a reasonable estimation error on α.

The second approach, based on the arithmetic power of the

clipped noise, is also robust because, the noise power, and

consequently the optimal value of H/P , is simple to estimate

thanks to a training sequence. An efficient demapper is then

computed taking P = 3.25.

The last solution gives the poorest performance, especially

when impulsiveness increases. We have noticed that this is

essentially due to the choice of the threshold H . Besides, H
and P depend on the two channel parameters α and γ and

look-up tables will also be necessary due to the complexity of

the numerical evaluation of the parameters.

V. CONCLUSION

A careful design of the LLR calculation at the input of the

BP decoder of LDPC is necessary when noise is impulsive.

Based on a clipping approach, we propose three solutions

to obtain the two parameters (slope P and threshold H)

of the demapper: inspired by the optimal LLR, based on

the clipped noise power and using Density Evolution. If all

three solutions give relatively similar results, we prefer the

following approach: (a) if we can estimate α, a look-up
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Fig. 8. Comparison of the methods on channel with α = 1.8.

table defined thanks to the DE gives good performance. A

further study on the degradation of the performance when an

estimation error is done is necessary; (b) we can also link

the power of the clipped noise estimated thanks to a training

sequence to the value of H/P . Then, using a slope P = 3.25,

the obtained performance are very satisfying.
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