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Abstract

The main result of this paper is a limit theorem which shows the
convergence in law, on a Hölderian space, of filtered Poisson processes
(a class of processes which contains shot noise process) to filtered Brow-
nian motion (a class of processes which contains fractional Brownian
motion) when the intensity of the underlying Poisson process is in-
creasing. We apply the theory of convergence of Hilbert space valued
semi-martingales and use some result of radonification.

1 Introduction
There already exists a few articles Pipiras & Taqqu (2000), Sherman, Taqqu
& Willinger (1997) where the fractional Brownian motion is shown to be
the weak limit of a sequence of (simpler) processes. The present work has
been inspired by a work of Szabados (2001) where a strong approximation of
the fractional Brownian motion is obtained by moving averages of a strong
approximation of an ordinary Brownian motion. We keep here the principle of
moving averages but we only have a weak convergence since we approximate
a Brownian motion by a sequence of renormalized Poisson processes.

More precisely, the Lévy fractional Brownian motion of Hurst index H ∈
(0, 1), denoted by BH , is defined by the following moving-average represen-
tation

BH
t =

1

Γ(H + 1/2)

∫ t

0

(t− s)H−1/2 dBs,

where B is a one dimensional standard Brownian motion. Since N̂λ :=
{λ−1/2(Nλ(s) − λ.s), s ≥ 0}, where Nλ is a Poisson process of intensity
λ, weakly converges to B, as λ goes to infinity, it is natural to hope that
{ 1

Γ(H+1/2)

∫ t
0
(t − s)H−1/2 dN̂λ

s , t ≥ 0} will converge to BH . Convergence is
here understood as weak convergence in law on C([0, 1],R). We then have to
distinguish between two situations. When H is greater than 1/2, the problem
can be treated by Kolmogorov tightness criterion and the answer is positive.
On the other hand, when H < 1/2, this latter result is no longer usable and
it is necessary to have another method. Actually, we will prove, in a unified
way, that in situations similar to the case H > 1/2, the weak convergence
mentioned above holds. We will also prove that we have weak convergence in
law on some Hölderian space, a result which can’t be proved with Kolmogorov
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criterion. In situations similar to the case H < 1/2, we have a similar
but weaker result (see Corollary 4) because of the potential singularity of
the process

∫ t
0
(t − s)H−1/2 dN̂λ

s , see Remark 3. The techniques, which seem
new and interesting by themselves, involves a fine result on radonification
(see Jakubowski, Kwapien, de Fitte & Rosinski (2002), Badrikian & Üstünel
(1996), Schwartz (1994) ), that is, conditions under which a cylindric semi-
martingale on a space V1 is in fact a Hilbert valued semi-martingale on a
space V2.

Consider a kernel K satisfying some hypothesis developed below, we can
define the family of processes indexed by λ ∈ R+ :{

Y λ
t =

∫ t

0

K(t, s)dN̂λ
s , t ≥ 0

}
, (1)

where

N̂λ
s =

Ñn
s√
λ

=
Nλ
s − λs√
λ

,

Nλ being a Poisson Process of constant intensity λ.
In Lane (1984), the convergence of finite-dimensional laws of Y λ to a

normal distribution when λ increases to infinity is shown. Here, we aim at
establishing the convergence in law in term of processes. Usual techniques
of martingale convergence seem at first glance unusable since Y λ is neither
a martingale nor a semi-martingale. However, if we freeze one of the t, i.e.,
if we consider XN̂n

t (r) =
∫ t

0
K(r, s)dN̂λ

s for r fixed, we get a process which is
a martingale with respect to t and Y λ is nothing but XN̂n

t (t). This remark
(already used in Coutin & Decreusefond (1999, Eqn. (19))) is the basis of
our strategy. We will transform the original problem in a Hilbert-valued
martingale convergence problem and then derive the convergence of Y λ by
a contraction property. One of the key problem is to prove that XN̂λ is a
cadlag semi-martingale in a convenient Hilbert space and that is achieved
using radonification result.

Actually, the paper was originally written with the above mentioned ap-
plication in mind. During the refereeing process, one referee kindly pointed
out to us that the result of radonification from Badrikian & Üstünel (1996)
and Schwartz (1994) we were using, had been just extended from martin-
gales to semi-martingales (see Jakubowski et al. (2002)). We then decided
to modify our proofs to encompass a wider class of approximation schemes
but the main motivation remains the same.
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In the next section, we introduce the notations and main tools. In
the third section, we’ll show the convergence of the Hilbert valued semi-
martingales and then apply this result to our original problem.

2 Preliminary results
For f ∈ L1([0, 1]), the left and right fractional integrals of f are defined by :

(Iα0+f)(x) =
1

Γ(α)

∫ x

0

f(t)(x− t)α−1 dt, x ≥ 0,

(Iαb−f)(x) =
1

Γ(α)

∫ b

x

f(t)(t− x)α−1 dt, x ≤ b,

where α > 0 and I0 = Id. For any α ≥ 0, any f ∈ Lp([0, 1]) and g ∈ Lq([0, 1])
where p−1 + q−1 ≤ α, we have :∫ 1

0

f(s)(Iα0+g)(s) ds =

∫ 1

0

(Iα1−f)(s)g(s) ds. (2)

The Besov space Iα0+(Lp) not
= Iα,p is usually equipped with the norm :

‖f‖Iα,p = ‖g‖Lp ,

where g is the unique element of Lp such that f ≡ Iα0+g. In particular Iα,2
is a (separable) Hilbert space and we have the following results (see Feyel &
de La Pradelle (1999), Samko, Kilbas & Marichev (1993)):

Proposition 1.

1. If α− 1/p < 0, then Iα,p is isomorphic to Iα1−(Lp).

2. For any 0 < α < 1 and any p ≥ 1, Iα,p is continuously embedded in
Hol(α−1/p) provided that α−1/p > 0. For 0 < ν ≤ 1, Hol(ν) denotes
the space of Hölder–continuous functions, null at time 0, equipped with
the usual norm :

||f ||Hol(ν) = sup
t6=s

|f(t)− f(s)|
|t− s|ν

.
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Our main references for Hilbert-valued martingales are Métivier (1988)
and Walsh (1986). We quote here the main results we need. Let (Ω,F =
(Ft)t≥0,P) be a filtered probability space. Let V be a separable Hilbert space,
a V -valued process X, is a F-martingale iff E [‖Xt‖V ] is finite for any t and
if for any s ≥ t,

E [Xt |Fs] = Xs,P a.s..

The analog of the square bracket is here defined as lXm, the unique pre-
dictable process with finite variation and with values in the space of positive
symmetric nuclear operators from V into V, such for u, v ∈ V,

{< Xt, u >V< Xt, v >V − < lX mt u, v >V , t ≥ 0},

is a martingale. Since lXmt is also a Hilbert-Schmidt operator, we can
take its square root, denoted by lXm1/2

t , which is Hilbert-Schmidt because
we deal with trace class and nonnegative definite operator. We denote by
L2(V ;V ), the space of Hilbert-Schmidt maps from V into V. The most im-
portant result for us is Theorem 6.8 of Walsh (1986, page 354) which states
that

Proposition 2. Let (Xn) be a sequence of cadlag V -valued processes. If the
following hypothesis are fulfilled:

• For each rational t ∈ (0, 1) the family of random variables (Xn
t ) is tight.

• There exists p > 0 and processes (An(δ), 0 < δ < 1) such that:

– E [||Xn(t+ δ)−Xn(t)||pV | Ft] ≤ E [An(δ) | Ft] ,
– lim

δ→0
lim sup
n→∞

E [An(δ)] = 0,

then the laws of the processes (Xn, n ≥ 1) form a tight sequence of probabil-
ities on D(R+; V ).

Beyond the trivial examples of V -valued Brownian motion or diffusions,
it is rather hard to determine whether a V -valued process is a V -valued semi-
martingale. On the other hand, it is very easy to see if it is a cylindrical semi-
martingale, i.e., if {< Xt, u >V , t ≥ 0} is a real-valued semi-martingale for
any u ∈ V. The following “radonification” result is thus of paramount interest
(see Jakubowski et al. (2002) for this very statement, Badrikian & Üstünel
(1996), Schwartz (1994) for the initial statement restricted to martingales):
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Theorem 1. Let E and F be two Hilbert spaces and consider u : E → F
an Hilbert-Schmidt operator. Let M([0, 1],R) be the space of cadlag square
integrable real semi-martingales equipped with the norm

‖M‖2
M([0,1],R) = E

[
sup
t∈[0,1]

|Ms|2
]
.

If L is in L(E∗;M([0, 1],R)), the set of linear continuous maps from the
dual of E, denoted by E∗, intoM([0, 1],R)), then u◦L is an F -valued cadlag
semi-martingale.

Assume that we are given a Hilbert-Schmidt map from L2 into itself, de-
noted by K, such that

Hypothesis 1. There exists α > 0 such that K is a continuous one-to-one
linear map from L2 into Iα+1/2,2.

Remarnk 1. Since the embedding from Iα+1/2,2 into L2 is Hilbert-Schmidt,
it guarantees that K is a Hilbert-Schmidt map from L2 into itself. Thus there
is a kernel, still denoted by K, such that the operator K takes the form:

(Kf)(t) =

∫ 1

0

K(t, s)f(s)ds with

∫ 1

0

∫ 1

0

K(t, s)2dt ds < ∞.

Hypothesis 2. We also assume that

1. K is triangular, i.e., K(t, s) = 0 for any s ≥ t ≥ 0.

2. There exists γ > 0 such that for any (s, t) ∈ [0, 1]2,∫ t

s

∫ t

s

K(u, r)2 du dr ≤ c|t− s|γ.

Remarnk 2. Note that these two hypothesis are satisfied for any α, by the
kernel K(t, s) = 1

Γ(α+1/2)
(t − s)α−1/21[0,t)(s), which corresponds to Bα since

in this case, K, as a map, coincides with Iα+1/2

0+ . The process usually called
fractional Brownian motion admits the representation

∫ t
0
Jα(t, s) dBs, with

Jα, an (H − 1/2)-homogeneous function of the form

Jα(t, s) = Lα(t, s)(t− s)α−1/2s−|α−1/2|,
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where Lα is a bicontinuous function (see Coutin & Decreusefond (1999)).
Moreover, following Samko et al. (1993), we know that Jα is an isomorphism
from L2([0, 1]) onto I

α+1/2

0+ (L2([0, 1])). It follows from that Jα satisfies the
two hypothesis 1 and 2 for any α ∈ (0, 1) with γ = 2α + 1.

We denote by K∗, the adjoint of K in L2.

Lemma 1. Let X = M+A a cadlag semi-martingale: M denotes the martin-
gale part and A the finite variation process. Assume that < M >t=

∫ t
0
V (s)ds

and At =
∫ t

0
Ȧ(s)ds. Consider the following hypothesis:

1. V is bounded P-p.s. by a constant c > 0,

2. E
[
sup
s≤t
|∆Xs|

]
<∞,

3. E
[∫ 1

0
|Ȧ(s)|2ds

]
<∞.

Let K satisfy hypothesis 1 and 2. Then, for any Φ ∈ (Iα+1/2,2)∗,{
ZXt (Φ) :=

∫ t

0

K∗Φ(s) dXs, t ∈ [0, 1]

}
is a cadlag semi-martingale. Moreover, for any ε ∈ (0, α], there is a cadlag,
Iα−ε,2-valued semi-martingale XX , such that, for all Φ ∈ (Iα−ε,2)∗ we have:

ZXt (Φ) =< Φ,XX
t >(Iα−ε,2)∗,Iα−ε,2 .

Proof. Fix ε ∈ (0, α]. Consider the linear map

L : (Iα+1/2,2)∗ −→ M([0, 1],R)
Φ −→

{
ZXt (Φ), t ∈ [0, 1]

}
.
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According to Hypothesis 1 and 2, there exists a constant m such that :

L(Φ) = E
[
sup
t≤1
|ZXt (Φ)|2

]
≤ 1

2

(
E
[
sup
t≤1
|
∫ t

0

K∗Φ(s)dMs|2
]

+ E
[
sup
t≤1
|
∫ t

0

K∗Φ(s)dAs|2
])

≤ 1

2

(
E
[∫ 1

0

(K∗Φ(s))2|V (s)| ds
]

+ E
[
(

∫ 1

0

|K∗Φ(s)||Ȧs| ds)2

])
≤ 1

2

(
c‖K∗Φ‖2

L2 + ‖K∗Φ‖2
L2 E

[∫ 1

0

|Ȧs|2 ds)
])

≤ m ‖K∗Φ‖2
L2

≤ m ‖Φ‖2
(Iα+1/2,2)∗ .

Thus L belongs to L((Iα+1/2,2)∗,M([0, 1],R)). Since the embedding of Iα+1/2,2

into Iβ+1/2,2 is Hilbert-Schmidt for β < α−1/2, the result follows by Theorem
1.

Remarnk 3. We denote by εt, the Dirac mass at time t. When α > 1/2, for
ε sufficiently small, α − 1/2 − ε > 0, εt belongs to (Iα−ε,2)∗ and a fortiori
to (Iα+1/2−ε,2)∗. Hence, ZXt (εt) is well defined, is equal to

∫ t
0
K(t, s) dXs by

definition and is equal to < εt, X
X
t > by Lemma 1.

When α ≤ 1/2, εt does not belong to (Iα−ε,2)∗ and we can’t give a sense to
ZXt (εt). By the way, when K(t, s) = (t− s)α−1/2 and X is a Poisson process,
when α < 1/2,

∫ .
0
K(., s) dXs is a process which is positively infinite after each

jump time and then takes finite values everywhere else. On the other hand,
ε−1
∫ t+ε
t−ε Z

X
t (s) ds is well defined and may serve, for small ε, as a substitute

to
∫ t

0
K(t, s) dXs.

3 Convergence
Consider a sequence of semi-martingales Xn = Mn + An with

< Mn >t=

∫ t

0

V n(s)ds and Ant =

∫ t

0

Ȧn(s)ds.

Hypothesis 3. We assume that
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1. sup
n≥1

V n is bounded P-p.s. by a constant c > 0,

2. sup
n≥1

E
[
sup
s≤t
|∆Xn

s |
]
<∞,

3. sup
n≥1

E
[∫ 1

0
|Ȧn(s)|2ds

]
<∞.

Suppose that Xn converge to X = M + A in D([0, 1]; R). From lemma
1, we define two Iα−ε,2-valued processes XXn and XX defined with respect to
the semi-martingales Xn and X.

Our key result is the following.

Theorem 2. For any ε > 0 sufficiently small, as n goes to infinity, the laws
of XXn in D([0, 1]; Iα−ε,2) converge to the law of XX .

Proof. K is supposed to be continuous from L2 into Iα+1/2,2, thus K∗ is
continuous from (Iα+1/2,2)∗ into L2. Denote by ‖K∗‖, the corresponding
operator-norm. Since the embedding of Iα+1/2,2 into Iα−ε,2 is Hilbert-Schmidt
thus radonifying, it follows from Schwartz (1994, Theorem I) and Hypothesis
3, that

E
[
‖XXn

t ‖2
Iα−ε,2

]
≤ c sup

‖f‖(Iα+1/2,2)
∗=1

E
[
(

∫ 1

0

K∗f(s) dXn
s )2

]
≤ c‖K∗‖2.

It then follows that for any η > 0, there exists M such that

sup
n

P
[
‖XXn

t ‖Iα−ε,2 > M
]
≤ η

and that, for any N > 0,

lim
r→+∞

sup
n

∞∑
k=r

E
[
< XXn

t , fk >
2 1‖XXnt ‖Iα−ε,2≤N

]
= 0,

where (fk, k ≥ 1) is a CONB of (Iα−ε,2)∗. According to Gihman & Skorohod
(1980, Theorem 2, page 377), this implies that for each t ∈ [0, 1], (XXn

t , n ≥
1) is a tight sequence in Iα−ε,2.
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On the other hand, we have,

||XXn

t+s − XXn

t ||2Iα−ε,2 =
∞∑
k=1

| < XXn

t+s − XXn

t , fk > |2

=
∞∑
k=1

|
∫ t+s

t

K∗fk(r)dX
n
r |2.

According to Hypothesis 2, we have:

E

[
∞∑
k=1

|
∫ t+s

t

K∗fk(r)dX
n
r |2
]
≤ m

∞∑
k=1

∫ t+s

t

|K∗fk(r)|2 dr

≤ m || I[t,t+s] K
∗ ||2HS

≤ m |t− s|γ.
This relation obviously implies the second point of proposition 2 and the
sequence {XXn

: n ≥ 1} is thus tight in D([0, 1], Iα−ε,2).
Let {XXnk : k ≥ 1} a subsequence which converges to a limit denoted

by L. We have for any u ∈ (Iα−ε,2)∗, < u,L >=< u,XX >. That is to say
that all convergent subsequence converge to the same limit. It follows that
the laws of XXn in D([0, 1]; Iα−ε,2) converges to the law of XX .

Corollary 1. Under Hypothesis 1 and 2 with α > 1/2, the laws of the pro-
cesses

{∫ t
0
K(t, s)dXn

s , t ∈ [0, 1]
}
in Hol(α− 1/2− ε), converge to the law of{∫ t

0
K(t, s)dXs, t ∈ [0, 1]

}
.

Proof. For ε sufficiently small, α − 1/2 − ε > 0 and for any f ∈ Iα−ε,2,
|f(s)− f(t)| ≤ c‖f‖Iα−ε,2|t− s|α−1/2−ε. Thus, the following map

B : Iα−ε,2 −→ Hol(α− 1/2− ε)
f −→ (s 7→ f(s) =< εs , f >(Iα−ε,2)∗,Iα−ε,2),

is well defined and continuous. Hence for F bounded and continuous from
Hol(α−1/2−ε) into R, F ◦B is continuous from Iα−ε,2 into R. By Theorem
2, we have:

E
[
F ◦B(XXn

)
]
−→
n→∞

E
[
F ◦B(XX)

]
,

this amounts to say that

E
[
F (

∫ .

0

K(t, s)dXn
s )

]
−→
n→∞

E
[
F (

∫ .

0

K(t, s)dXs)

]
.

The proof is thus complete.
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4 Application
The space of simple, locally finite on [0, 1] integer-valued measure is denoted
Ω. We define the probability P as the unique measure on Ω such that the
canonical measure ω is a Poisson random measure of compensator λ ds. The
canonical filtration F is defined by:

F0 = {∅,Ω} and Ft = σ

{∫ s

0

ω(ds), s ≤ t

}
, for all t ∈ [0, 1].

We set Nλ
s = ω([0, s]). Our basic object is the process Xλ, defined by

Y λ
t = λ−1/2

∫ t

0

K(t, s)(dNλ
s − λ ds)

=
1√
λ

∑
n≥1

K(t, Tn)I[Tn≤t] −
∫ t

0

K(t, s)
√
λ ds,

where K satisfies hypothesis 1 and 2.
From lemma 1, we define two Iα−ε,2-valued processes XN̂n and XB defined

with respect to the martingales N̂n and B, a standard Brownian motion. It
is clear that Hypothesis 3 are satisfied by XN̂n

. We now have to distinguish
two cases according to the position of α with respect to 1/2. Actually, when
α > 1/2, Iα−ε,2 is a subset of the set of continuous functions and thus its
dual contains Dirac measures. On the other hand, when α < 1/2, the map
s 7→ f(s) =< εs , f >(Iα−ε,2)∗,Iα−ε,2 is not defined for f ∈ Iα−ε,2.

Proposition 3. Under Hypothesis 1 and 2 with α > 1/2, the laws of the
processes

{
Y n
t =

∫ t
0
K(t, s)dN̂n

s , t ∈ [0, 1]
}

in Hol(α − 1/2 − ε), converge to

the law of
{
Yt =

∫ t
0
K(t, s)dBs, t ∈ [0, 1]

}
.

Remarnk 4. As a consequence, we have the convergence in law on C([0, 1],R).
We now show how Hypothesis 1 and Kolmogorov criterion are sufficient to
prove this result. Since K(t, s) = K∗(εt), we have

E
[
|Y n
t − Y n

s |2
]

=

∫ 1

0

|K(t, r)−K(s, r)|2 dr

≤ c ‖K∗(εt − εs)‖2
L2

≤ c ‖εt − εs‖2
(Iα+1/2,2)′

= c |t− s|2α.
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It is sufficient, according to Kolmogorov criterion, to show that Y n converges
in law to Y, on C([0, 1],R).

Following the same lines, we have

Proposition 4. Let α ∈ (0, 1/2) and let η be continuous from [0, 1] into
I∗α−ε,2. Assume that the hypothesis 1 and 2 hold. Then, the laws of the pro-
cesses

{
< ηt,X

n
t >(Iα−ε,2)∗,Iα−ε,2 , t ∈ [0, 1]

}
in C([0, 1];R) converge to the law

of
{
< ηt,Xt >(Iα−ε,2)∗,Iα−ε,2 , t ∈ [0, 1]

}
.

For instance, we can choose η as

< ηt, f >(Iα−ε,2)∗,Iα−ε,2 = ε−1

∫ (t+ε)∧1

(t−ε)∨0

f(s) ds

= ε−1(I1
0+f((t+ ε) ∧ 1)− I1

0+f((t− ε) ∨ 0)).

Since f ∈ Iα−ε,2, I1
0+f belongs to I1+α−ε which is a subset of Hol(1/2+α−ε).

It is then clear that η is continuous from [0, 1] into I∗α−ε,2. As a consequence,

the law of the process
{
ε−1
∫ t+ε
t−ε X

n
t (s) ds, t ∈ [0, 1]

}
in C([0, 1];R), converges

to the law of the process
{
ε−1
∫ t+ε
t−ε Xt(s) ds, t ∈ [0, 1]

}
.

Thanks : the authors would like to thank Professor A.S. Üstünel for
explaining them some of the subtleties of radonification.
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