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ABSTRACT

In this paper, we address the problem of OFDM channel estimation

in the presence of phase noise (PHN) and carrier frequency offset

(CFO). For OFDM systems, PHN and CFO cause two effects: the

common phase error (CPE) and the intercarrier interference (ICI)

which severely degrade the accuracy of the channel estimate. In lit-

erature, several algorithms have been proposed to solve this problem.

Here, we propose the joint estimation of channel impulse response

(CIR), CFO and PHN with no prior statistical knowledge of PHN

and SNR. The proposed approach uses a training OFDM symbol

to track and estimate these many unknowns in the time domain by

particle filtering. The particle filter is efficiently implemented by

combining the principles of the Rao-Blackwellization technique and

the hybrid importance function which encompasses the advantages

of both the optimal and the prior importance functions. Simulation

results are provided to illustrate the effectiveness of the proposed

algorithm.

Index Terms— Communication systems, Estimation, Phase

noise, Monte Carlo methods.

1. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is known to be

an efficient technique for high-rate transmission that can overcome

the intersymbol interference (ISI) resulting from the time dispersion

of multipath fading channels. It has been adopted as the transmission

method of many standards in wireline and wireless communications,

such as digital subscriber lines (DSL), digital and audio broadcasting

(DAB/DVB), wireless area networks (IEEE 802.11) and broadband

wireless access (IEEE 802.16).

Unfortunately, OFDM systems are very sensitive to phase noise

(PHN) and to carrier frequency offset (CFO) respectively caused

by oscillator imperfections and Doppler shifts [1–3]. Indeed, these

phase distortions destroy the orthogonality of the OFDM subcarriers

and lead both to rotation of every subcarrier by a random phase,

called common phase error (CPE), and to intercarrier interference

(ICI).

Many approaches have been proposed to estimate and compen-

sate PHN [4–6] or both CFO and PHN [7]. Nevertheless in these

algorithms, the channel impulse response (CIR) is assumed to be

known prior to phase distortion suppression. Channel estimation in

the presence of both PHN and CFO has been adressed in [8,9]. In [8],

the authors focus principally on both channel and CFO estimation.

Recently, in [9], a maximum a posteriori estimator of channel re-

sponse, PHN and CFO incorporating prior knowledge of SNR and

PHN statistics is proposed through the maximization of a complete

likelihood function.

In this paper, we consider the channel estimation problem in the

presence of PHN and CFO with no a priori knowledge of operat-

ing SNR and PHN statistics. To estimate these unknown states with

a single OFDM symbol, we propose a marginalized particle filter

based on the hybrid importance function. To allow the use of this

hybrid importance function, we derive an approximation of the opti-

mal importance function for sampling the PHN distortions.

The paper is organized as follows. The OFDM system model

and the PHN model are introduced in Section 2 leading to the dy-

namic state space representation. Section 3 is devoted to the particle

filtering. We describe the proposed marginalized particle filter for

joint channel, CFO, PHN and a priori statistics estimation. The sim-

ulation results are provided in Section 4 showing the effectiveness of

the proposed algorithm. Finally, conclusions are given in Section 5.

2. SYSTEM MODEL

2.1. Signal Model

We consider an OFDM system with N subcarriers. The transmitted

OFDM signal sk is generated via an inverse FFT operation applied

on the subcarrier symbols dk. To prevent intersymbol interference

(ISI), a cyclic prefix of length Ncp is placed in front of the useful

part of duration T of the signal.

We assume a slow fading frequency-selective channel with L
paths. The CIR remains constant during one transmission packet

including several OFDM symbols. Assuming perfect timing syn-

chronization and L ≤ Ncp, the complex baseband received OFDM

signal can be written, after removal of the cyclic prefix :

rk = ej(θk+2πkǫ/N)
L−1X

l=0

hlsk−l + bk (1)

where k denotes the k-th sample of the OFDM symbol and {hl}
L−1
l=0 ,

{sk}
N−1
k=0 , {θk}

N−1
k=0 and {bk}

N−1
k=0 denote respectively the CIR, the

known transmitted signal, the PHN and a circular zero mean gaus-

sian white noise with power σ2
b . ǫ = ∆fT is the normalized carrier

frequency offset (CFO). Equation (1) can be written in the matrix

form as :

rk = ej(θk+2πkǫ/N)
Skh + bk (2)

where Sk =
ˆ
sk · · · sk−L+1

˜
is the transmitted OFDM signal

vector and h =
ˆ
h0 · · · hL−1

˜T
is the CIR vector.

2.2. Phase Noise Model

In a baseband complex equivalent form, the carrier delivered by the

noisy oscillator can be modeled as p(t) = exp(jθ(t)), where the



phase distortion θ(t) is a Brownian process [1, 2]. Its power spec-

tral density has a Lorentzian shape controlled by the parameter β
representing the two-sided 3dB bandwidth. This model produces a

1/f2 type noise power behavior that agrees with experimental mea-

surements carried out on real RF oscillators. The phase noise rate

is characterized by the bandwidth β normalized with respect to the

OFDM symbol rate 1/T , namely by the parameter βT . In a discrete

form, the phase distortion can be written as :

θk = θk−1 + vk (3)

where vk is a zero mean gaussian variable with variance

σ2
v = 2πβT/N .

2.3. Dynamic State-Space Model

This paper focuses on accurate estimation of CIR, CFO and PHN

from a single OFDM symbol. At the receiver, the transmitted OFDM

signal {sk}
N−1
k=0 is perfectly known. However, both the instanta-

neous PHN power σ2
v and the AWGN power σ2

b are assumed un-

known. The mathematical foundation of our solution is the Bayesian

theory. This theory requires a dynamic state-space (DSS) modeling

both the observation and hidden process.

By combining (3) and (2) and by using the fact that one dynamic

state θk and four static parameters (h, ǫ, σ2
v and σ2

b ) are unknown,

we obtain the following dynamic state-space model :

State equations :


θk = θk−1 + vk

ǫk = ǫk−1, σ
2
v,k = σ2

v,k−1, σ
2
b,k = σ2

b,k−1

(4)

Measurement Equation : rk = ej(θk+2πkǫk/N)
Skh + bk (5)

Let us introduce the state vector xk defined as xk =
ˆ
h, θk, ξk

˜
with

ξk the vector of static parameters : ξk =
ˆ
ǫk, σ2

v,k, σ2
b,k

˜
. Time in-

dex k are inserted on static parameters ξ and ǫ in order to clearly dis-

tinguish parameter estimation at the k-th index. Our main objective

is to estimate xk using the a posteriori probability density function

(pdf) p(x0:k|r0:k). Unfortunately, this pdf is analytically intractable,

so we propose a numerical approximation via particle filtering [10].

Remark : With this joint estimation, it can be shown that the

phase distortions can be accurately estimated, but with a constant

gap Φ from the real phase distortions. This rotation can be estimated

during the data detection step using pilot symbols [9].

3. PARTICLE FILTERING

3.1. Introduction

Particle filtering is a sequential Monte Carlo sampling method built

on the Bayesian paradigm [10]. From the Bayesian theory, at sample

k , the posterior distribution p(x0:k|r0:k) is the main entity of inter-

est. However, due to the nonlinearity of the measurement equation

(5), its analytical expression is not tractable. Alternatively, particle

filtering can be applied to approximate this pdf by stochastic samples

generated using a sequential importance sampling strategy.

Particle filtering is an extension of the sequential Monte Carlo

methodology [10]. It consists in recursively estimating the required

posterior density function p(x0:k|r0:k) by a set of M random sam-

ples with associated weights, denoted by {x(m)
0:k , w

(m)
k }

m=1..M
:

bp(x0:k|r0:k) =

MX

j=1

δ(x0:k − x
(j)
0:k) ew(j)

k (6)

where x
(j)
k is drawn from the importance function π(xk|x

(j)
0:k−1, r0:k),

δ(.) is the Dirac delta function and ew(j)
k = w

(j)
k /

PM
m=1 w

(m)
k is the

normalized importance weight associated with the j-th particle.

The weights w
(m)
k are updated according to the concept of im-

portance sampling :

w
(m)
k ∝

p(rk|x
(m)
0:k )p(x

(m)
k |x(m)

0:k−1)

π(x
(m)
k |x(m)

0:k−1, r0:k)
w

(m)
k−1 (7)

After a few iterations, particle filtering is known to suffer from

degeneracy problems. So we integrate a resampling step to select

particles for new generations in proportion to the importance weights

[10]. Liu and Chen [11] have introduced a measure known as the

effective sample size, Neff = [
PM

m=1( ew(m)
k )2]−1, and have pro-

posed to apply the resampling procedure whenever Neff is below a

predefined threshold. For the resampling step, we use the Residual

Resampling scheme described in [12]. This scheme outperforms the

simple random sampling scheme with a small Monte Carlo variance

and a favorable computational time [11].

3.2. Particle Filter for Joint CIR, CFO and PHN Estimation

Previously, we have seen how particle filtering can be used to ob-

tain the posterior density function p(x0:k|r0:k). In order to reduce

the state dimension for the particle filter, the Rao-Blackwellization

technique, also known as the marginalized particle filter [10,13,14],

marginalizes out conditionally linear-Gaussian state variables from

the joint posterior distribution. This strategy is shown to reduce the

variance of the state estimates obtained via the particle filter [13].

This is due to the fact that the particle filter is then only used to

estimate the nonlinear states, while the remaining conditional linear-

Gaussian states are estimated using the closed-form Kalman filter. In

our case, conditionally on the nonlinear state variables θk and ξk the

DSS model contains a linear substructure on h, subject to gaussian

noise. Using the Bayes’ theorem, the posterior density function of

interest can be written as :

p(x0:k|r0:k) = p(h|θ0:k, ξ0:k, r0:k)p(θ0:k, ξ0:k|r0:k) (8)

where p(h|θ0:k, ξ0:k, r0:k) is analytically tractable and can be ob-

tained via a Kalman filter associated with each particle. Indeed, the

j-th pdf is a multidimensional gaussian probability density function.

The mean h
(j)

k|k and the covariance Σ
(j)

k|k can be obtained using the

Kalman filtering equations given by the time update equations :

h
(j)

k|k−1 = h
(j)

k−1|k−1

Σ
(j)

k|k−1 = Σ
(j)

k−1|k−1

(9)

and the measurement update equations :

χ
(j)
k = SkΣ

(j)

k|k−1S
H
k + σ

2(j)
b,k

K
(j)
k = Σ

(j)

k|k−1(e
j(θ

(j)
k

+2πkǫ
(j)
k

/N)
Sk)H(χ

(j)
k )−1

h
(j)

k|k = h
(j)

k|k−1 + K
(j)
k (rk − ej(θ

(j)
k

+2πkǫ
(j)
k

/N)
Skh

(j)

k|k−1)

Σ
(j)

k|k = Σ
(j)

k|k−1 − K
(j)
k ej(θ

(j)
k

+2πkǫ
(j)
k

/N)
SkΣ

(j)

k|k−1

(10)

where χ
(j)
k and K

(j)
k are respectively the residual covariance and the

optimal Kalman gain associated with the j-th particle.



In addition, the marginal posterior distribution p(θ0:k, ξ0:k|r0:k)
in (8) can be approximated with a particle filter as :

bp(θ0:k, ξ0:k|r0:k) =
MX

j=1

δ(θ0:k − θ
(j)
0:k; ξ0:k − ξ

(j)
0:k) ew(j)

k (11)

where δ(.; .) is the two-dimensional Dirac delta function. Then, our

objective is to generate samples from the distribution p(θ0:k, ξ0:k|r0:k).

The choice of the importance function is essential because it deter-

mines the efficiency as well as the complexity of the particle filter-

ing algorithm. Here, we adopt the hybrid importance function [15],

which encompasses the advantages of both the posterior and the

prior importance functions. The proposed hybrid importance func-

tion is expressed as :

π(θk, ξk|θ
(j)
0:k−1, ξ

(j)
0:k−1, r0:k) = p(θk|θ

(j)
0:k−1, ξ

(j)
0:k, r0:k)

×p(ξk|ξ
(j)
0:k−1)

= p(θk|θ
(j)
0:k−1, ξ

(j)
0:k, r0:k)

×δ(ξk − ξ
(j)
0:k−1) (12)

where (12) is obtained using the state equations in (4). The corre-

sponding unnormalized weights are then computed by :

w
(j)
k ∝ w

(j)
k−1p(rk|θ

(j)
0:k−1, ξ

(j)
0:k, r0:k−1) (13)

Now, we discuss the sampling of θk and ξk from (12). First,

let’s note that for ξk no sampling is needed, i.e. ξ
(j)
k = ξ

(j)
k−1 so

that the time update of ξ
(j)
k is not performed and the accuracy of the

final estimates greatly depends on the initial samples. To adress this

problem, kernel smoothing techniques or Markov chain Monte Carlo

(MCMC) moves [10] can be used during the resampling procedure.

However, in our context, such methods bring no improvement.

The sampling of θk requires the analytical expression of the op-

timal importance function. This pdf can be rewritten as :

p(θk|θ
(j)
0:k−1, ξ

(j)
0:k, r0:k) ∝ p(rk|θk, θ

(j)
0:k−1, ξ

(j)
0:k, r0:k−1)

×p(θk|θ
(j)
0:k−1) (14)

with

p(θk|θ
(j)
0:k−1) = N (θk; θ

(j)
k−1, σ

2(j)
v,k ) (15)

and,

p(rk|θk, θ
(j)
0:k−1, ξ

(j)
0:k, r0:k−1) = Nc(rk; ρ

(j)
k , χ

(j)
k ) (16)

where ρ
(j)
k = ej(θ

(j)
k

+2πkǫ
(j)
k

/N)
Skh

(j)

k|k−1 and χ
(j)
k are given by

the Kalman filter associated with the j-th particle as described in

(9)-(10). Nc(.) and N (.) denote respectively the circular gaussian

distribution and the gaussian distribution. According to (15)-(16),

an analytical form for (13) remains untractable due to the double

exponential in ρ
(j)
k . However, by linearizing the noise term vk in

(3), the mean of (16) is approximated by :

ρ
(j)
k = ej(θ

(j)
k−1

+vk+2πkǫ
(j)
k

/N)
Skh

(j)

k|k−1

≈ (1 + jvk)ej(θ
(j)
k−1

+2πkǫ
(j)
k

/N)
Skh

(j)

k|k−1 (17)

This approximation holds when the phase noise rate is small and

is more accurate than the usual approximation ejθk ≈ 1+jθk. Using

(15), (16) and (17) and after several algebraic manipulations, (14)

can be simplified as :

p(θk|θ
(j)
0:k−1, ξ

(j)
0:k, r0:k) ∝ C

(j)
k e

− 1

2Λ
(j)
k

2

4

|rk−Γ
(j)
k

|2

|Γ
(j)
k

|2σ
2(j)
v,k

+χ
(j)
k

−(µ
(j)
k

)2

3

5

×N (θk; µ
(j)
k + θ

(j)
k−1, Λ

(j)
k ) (18)

where C
(j)
k =

q
Λ

(j)
k /(2πχ

(j)
k σ

2(j)
v,k ), µ

(j)
k =

ℑ(Γ
(j)∗
k

rk)σ
2(j)
v,k

|Γ
(j)
k

|2σ
2(j)
v,k

+χ
(j)
k

(with ℑ(.) the imaginary part), Λ
(j)
k =

χ
(j)
k

σ
2(j)
v,k

|Γ
(j)
k

|2σ
2(j)
v,k

+χ
(j)
k

and Γ
(j)
k =

ej(θ
(j)
k−1

+2πkǫ
(j)
k

/N)
Skh

(j)

k|k−1.

The sampling distribution of θk is now identified in (18) and thus

only the analytical expression to update the importance weights is

missing for the implementation of the particle filter. The pdf required

in (13) can be rewritten as :

p(rk|θ
(j)
0:k−1, ξ

(j)
0:k, r0:k−1) =

Z

R

p(rk|θk, θ
(j)
0:k−1, ξ

(j)
0:k, r0:k−1)

×p(θk|θ
(j)
0:k−1)dθk (19)

Using (18), it is straightforward to show that (19) can be approx-

imated as :

p(rk|θ
(j)
0:k−1, ξ

(j)
0:k, r0:k−1) ≈ C

(j)
k e

− 1

2Λ
(j)
k

2

4

|rk−Γ
(j)
k

|2

|Γ
(j)
k

|2σ
2(j)
v,k

+χ
(j)
k

−(µ
(j)
k

)2

3

5

(20)

Each element required in the implementation of the particle fil-

tering algorithm has been identified. Finally, the minimum mean

square error (MMSE) estimate of h is easily calculated according to

bh =
MX

j=1

h
(j)

N−1|N−1 ew(j)
N−1 (21)

The proposed marginalized particle filter algorithm is summed

up in Table 1.

Table 1. Marginalized Particle Filter Algorithm

Initialization, for m =, 0..., M

ǫ
(m)
−1 ∼ U [−0.5; 0.5], σ

2(m)
v,−1 ∼ U [0; 0.1], σ

2(m)
b,−1 ∼ U ]0; 1]

h
(m)

−1|−1
= 0L×1, Σ

(m)

−1|−1
=

1

L
IL, ew

(m)
k

= 1/M

For k = 0, ..., N − 1
For m = 0, ..., M

1. Sample the static paramaters from their prior

distribution, i.e. ξ
(m)
k

= ξ
(m)
k−1

2. Update the predicted Kalman equations using (9)

3. Sample θ
(m)
k

from the optimal importance function

using (18)

4. Update the filtered kalman equations using (10)

5. Evaluate the corresponding weights using (20)

6. Resampling step if Neff < N/2

Evaluate the channel estimate bh using (21).



4. SIMULATIONS

In this section, the performance of the proposed MPF is studied

through simulations. The following system parameters are assumed :

a Rayleigh multipath channel with a delay of L = 10 taps and a uni-

form power delay profile, an OFDM training symbol with N = 64
subcarriers and a cyclic prefix of Ncp = 16 samples. Each subcar-

rier is arbitrarily modulated in QPSK. The CFO ǫ is drawn for each

OFDM symbol from a uniform distribution in [−0.5; 0.5]. The pro-

posed marginalized particle filter is implemented with 100 particles.

Since no algorithms have been proposed to solve this problem

without prior statistical knowledge of PHN and SNR, the mean square

error (MSE) of the channel estimation is compared to the posterior

Cramér-Rao Bound (CRB) for an OFDM channel estimator without

PHN and CFO distortions. Since the DSS model (4) becomes linear

and gaussian, it can be shown that the CRB is equal to the covariance

of p(h|θ0:k, ξ0:k, r0:k) defined in (10) [16] :

MSECRB = E
ˆ
trace

ˆ
ΣN−1|N−1

˜˜
(22)
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Fig. 1. MSE of channel estimation vs. SNR for different phase

noise rates βT with only σ2
v unknown (solid lines) or both σ2

v and

σ2
b unknown (dashed lines).

Fig. 1 shows the channel estimation accuracy as a function of

phase noise rate βT and SNR. The MSE is obtained using :

MSE =
1

X

XX

n=1

L−1X

l=0

(hn
l − bhn

l )2 (23)

where X is the number of OFDM symbols used in simulations. The

results demonstrate the robustness of the proposed MPF algorithm

when the a priori statistics of the model are not perfectly known.

As can be seen from this figure, for a SNR less than 15 dB, the

proposed MPF optimally estimates the CIR and leads to the same

performances whatever the degree of assumption about prior statis-

tics. CIR estimation performs better when only phase noise rate is

unknown. For a large SNR, MSE curve tends towards a minimum

MSE threshold depending on the phase noise rate. This is due to the

fact that the covariance matrix of each Kalman filter doesn’t depend

on θ
(j)
k and ǫ

(j)
k and consequently the Kalman filter has the same

convergence speed whatever phase noise rate.

5. CONCLUSION

In this paper, we consider the problem of OFDM channel estima-

tion in the presence of CFO and PHN. Moreover, we study the dif-

ficult task where prior statistics of PHN and AWGN is assumed un-

known at the receiver. To solve this problem, we propose an original

marginalized particle filter based on the hybrid importance function.

The use of this hybrid importance function is made possible by deriv-

ing an approximate optimal importance function for PHN. Numeri-

cal simulations demonstrate the effectiveness and the robustness of

the proposed MPF algorithm for OFDM channel estimation in the

presence of CFO and PHN without knowledge of prior statistical in-

formation. A such algorithm can be efficiently used for the design of

OFDM receivers in wireline and wireless communication systems.
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