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Monte Carlo Methods for Channel, Phase

Noise and Frequency Offset Estimation with

Unknown Noise Variances in OFDM Systems

François Septier, Yves Delignon, Member, IEEE, Atika Menhaj-Rivenq, Christelle Garnier

Abstract

In this paper, we address the problem of OFDM channel estimation in the presence of phase noise

(PHN) and carrier frequency offset (CFO). In OFDM systems, PHN and CFO cause two effects: the

common phase error (CPE) and the intercarrier interference (ICI) which severely degrade the accuracy

of the channel estimate. In literature, several algorithms have been proposed to solve this problem.

Nevertheless, in all these existing schemes, both the PHN and the Additive White Gaussian Noise

(AWGN) powers are assumed to be known. Because no a priori knowledge of PHN and AWGN powers is

available at the receiver, we propose different strategies for the estimation of channel impulse response

(CIR), CFO, PHN and also the PHN and the AWGN powers. Based on Monte Carlo methods, the

proposed approaches estimate these many unknowns in the time domain from a training OFDM symbol

using either off-line or on-line estimators. In the on-line case, we propose Sequential Monte Carlo

algorithms and especially an original maximization step of the joint a posteriori probability density

function for the unknown parameters. Simulation results are provided to illustrate the efficiency of the

proposed algorithms in terms of mean square error (MSE) on channel, phase distortions and also noise

power estimation.

Index Terms

Orthogonal frequency-division multiplexing (OFDM), channel estimation, phase noise, carrier fre-

quency offset, sequential Monte-Carlo methods, Rao-blackwellization, optimal importance function, on-
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line parameter estimation.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is known to be an efficient technique for high-rate

transmission that can overcome the intersymbol interference (ISI) resulting from the time dispersion of

multipath fading channels. It has been adopted as the transmission method of many standards in wireline

and wireless communications, such as digital subscriber lines (DSL), digital audio and video broadcasting

(DAB/DVB), wireless area networks (IEEE 802.11) and broadband wireless access (IEEE 802.16).

Unfortunately, OFDM systems are very sensitive to phase noise (PHN) and to carrier frequency offset

(CFO) respectively caused by oscillator imperfections and Doppler shifts [1]–[3]. Indeed, these phase

distortions destroy the orthogonality of the OFDM subcarriers and lead both to rotation of every subcarrier

by a random phase, called common phase error (CPE), and to intercarrier interference (ICI).

Many approaches have been proposed to estimate and compensate PHN [4]–[6] or both CFO and

PHN [7]. Nevertheless, the channel impulse response (CIR) is assumed known prior to phase distortion

suppression. Only two papers [8] and [9] deal with channel estimation in the presence of both PHN

and CFO. In [8], the authors mainly focus on channel and CFO estimation and in [9] a maximum a

posteriori estimator of CIR, PHN and CFO assuming prior knowledge of SNR and PHN statistics has

been proposed.

Unlike previous publications, we consider in this paper the channel estimation problem in the presence

of PHN and CFO with no a priori knowledge of AWGN and PHN powers. Their estimate must be

considered with care since both AWGN and PHN powers are required for optimal data detection step

of OFDM symbols. To estimate these many unknowns from a single training OFDM symbol, we

propose an off-line and an on-line estimator based on Monte Carlo (MC) methods. Firstly, we propose a

stochastic version of the Expectation-Maximization (EM) algorithm to perform an off-line estimation of

the unknown static parameters. Once these parameters have been estimated, the maximum a posteriori

estimator proposed in [9] can be used in order to obtain the other estimates of interest. Secondly, we

propose two different schemes based on Sequential Monte Carlo (SMC) methods for the joint and on-

line estimation of all the unknown states. Indeed, the sequential nature of SMC methods allows to

derive algorithms for on-line parameter estimation in hidden Markov models and thus reducing both the

complexity and the memory requirements of off-line parameter estimation techniques such as stochastic

version of the EM. More precisely, two different schemes based respectively on point estimation and

filtering method are derived for the considered problem. In order to improve the approximation of the
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static posterior distribution in the filtering method, we propose an original update of the parameters based

on the maximization of the posterior probability density function associated to each particle trajectory.

This scheme leads to a concentration of the search space in regions with high posterior probability and

consequently to a more accurate estimation.

This paper is organized as follows. In Section II, models of both the OFDM system and the phase

distortion are introduced, leading to the dynamic state space (DSS) representation. Section III is devoted

to the description of the estimation strategies based on Monte Carlo methods. The different solutions

for parameter estimation using MC methods are also described. In Sections IV and V, the different

approaches for the estimation problem are detailed. Section VII is devoted to the simulation results. The

efficiency of the proposed algorithms is assessed and strategies for parameter estimation are compared.

Finally, we focus on the performance of both phase distortion and channel estimation which is evaluated

by the mean square error (MSE). Conclusions are given in Section VIII.

II. SYSTEM MODEL

In this paper, N , Ncp and T denote respectively the number of subcarriers, the cyclic prefix length

and the OFDM symbol duration excluding the cyclic prefix. Let N (x;µ,Σ) and Nc (x;µ,Σ) represent

respectively real and circularly symmetric complex Gaussian random vectors with mean µ and covariance

matrix Σ. In and 0n×m are respectively the n×n identity matrix and the n×m matrix of zeros. Finally,

lower case bold letters are used for column vectors and capital bold letters for matrices. (.)∗ ,(.)T and

(.)H denote respectively conjugate, transpose, and Hermitian transpose.

A. Signal Model

We consider an OFDM system with N subcarriers. The transmitted OFDM signal sk is generated via

an inverse FFT operation applied on the subcarrier symbols dk. To prevent intersymbol interference (ISI),

a cyclic prefix of length Ncp is placed in front of the OFDM signal useful part of duration T .

We assume a slow fading frequency-selective channel with L paths. The CIR remains constant during

the transmission of one burst including several OFDM symbols. Assuming perfect timing synchronization

and L ≤ Ncp, the complex baseband received OFDM signal can be written, after removal of the cyclic

prefix :

rk = ej(θk+2πkǫ/N)
L−1∑

l=0

hlsk−l + bk (1)

where k denotes the k-th sample of the OFDM symbol, {hl}
L−1
l=0 , {sk}

N−1
k=0 , {θk}

N−1
k=0 and {bk}

N−1
k=0 are

respectively the CIR, the transmitted signal, the PHN and a circular zero mean gaussian white noise with
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power σ2
b , ǫ is the normalized carrier frequency offset. In the matrix form, equation (1) can be written

as :

rk = ej(θk+2πkǫ/N)
s
T
k h+ bk (2)

where sk =
[
sk · · · sk−L+1

]T
is the transmitted OFDM signal vector and h =

[
h0 · · · hL−1

]T
is

the CIR vector.

B. Phase Distortion Model

In a baseband complex equivalent form, the carrier delivered by the noisy oscillator can be modeled

as :

p(t) = exp(jφ(t)) (3)

where the phase distortion φ(t) represents both the phase noise (PHN) and the carrier frequency offset

(CFO) and can be written as follows :

φ(t) = θ(t) + 2π∆ft (4)

where θ(t) and ∆f correspond respectively to the PHN and the carrier frequency offset. The PHN is

modeled as a Brownian process [1], [2], i.e. for k = 0, ..., N − 1 :

θk = θk−1 + vk (5)

where k denotes the k-th time sample of the OFDM symbol and vk is an independent and identically

distributed (i.i.d.) zero mean Gaussian variable with variance σ2
v = 2πβT/N with βT the PHN rate.

As a consequence, using (4) and (5) and assuming the initial condition φ−1 = 0 due to perfect phase

synchronization at the beginning of the OFDM symbol as in [2], [6], a discrete recursive relation for

phase distortions including both PHN and CFO can be summarized as :

φk =





v0, for k = 0

φk−1 +
2πǫ

N
+ vk, for k > 0

(6)

where ǫ = ∆fT , denoted below by CFO, is the normalized carrier frequency offset with respect to the

subcarrier spacing.
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C. Dynamic State-Space Model

This paper focuses on the accurate estimation of CIR, CFO and PHN from a single OFDM symbol.

At the receiver, the transmitted OFDM signal {sk}
N−1
k=0 is perfectly known unlike both the instantaneous

PHN power σ2
v and the AWGN power σ2

b . The mathematical foundation of our solution is the Bayesian

theory which requires a dynamic state-space (DSS) modeling both the observation and the hidden process.

By combining (2) and (6), we obtain the following dynamic state-space model :





φk =





v0, for k = 0

φk−1 +
2πǫ

N
+ vk, for k > 0

rk = ejφks
T
k h+ bk

(7)

The PHN process φ is the only dynamic state and the others h, ǫ and σ2 =
{
σ2
v , σ

2
b

}
are static

parameters. In a Bayesian perspective, all necessary information is contained in the joint posterior proba-

bility distribution function (pdf), p(h, φ0:N−1, ǫ, σ
2|r0:N−1). Unfortunately, this distribution is analytically

intractable, so we propose its numerical approximation via Monte Carlo methods.

Let us remarked that when CIR, PHN and CFO are jointly estimated, it can be shown that the phase

distortions can be accurately estimated, but with a constant gap Φ from the true values :

φ̂0:k → φ0:k +Φ (8)

ĥ → e−jΦ
h (9)

Indeed, from the observation equation of the DSS model (7), introducing two opposite phase rotations

to PHN and CIR results in the same overall distortion ejφkh, and hence the likelihood function is

unchanged. The exact analysis of this residual common phase rotation is difficult, especially when PHN

and AWGN powers are assumed unknown. A fairly good understanding of its origin is proposed in [9]

where PHN and AWGN powers are perfectly known by the receiver. Nevertheless, this rotation can be

estimated during the data detection step using pilot symbols [9] and does not affect the final symbol

detection.

III. ESTIMATION APPROACHES BASED ON MONTE CARLO METHODS

A. Introduction

In this paper, we propose an off-line and an on-line estimator of the unknown states. Whereas off-line

estimation is done using a block of data which corresponds in our context to the entire OFDM symbol,

on-line estimation is recursive, i.e. the parameter estimates are updated at each time instant.
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In [9], the authors propose an off-line maximum a posteriori estimator of {φ0:N−1,h, ǫ}, the Joint

CFO/PHN/CIR Estimator (JCPCE) assuming that noise variances σ2 are perfectly known at the receiver

side. Moreover, since an analytical form of the optimal solution of the CFO cannot be found, an

optimization scheme such as conjugate gradient algorithm has to be carried out in a first step of the JCPCE.

Its complexity is scaled with the inverse of the resolution required for ǫ̂. In this paper, we deal with the

difficult task where the noise variances are unknown. As a consequence, we firstly propose an estimator

of λ =
{
σ2, ǫ

}
in a batch way, i.e. given the entire OFDM symbol r0:N−1 (off-line context), based on

the Expectation-Maximization algorithm. Due to the complex nature of the system, the expectation step

of the EM is analytically intractable, so we propose a stochastic version of EM, namely the Stochastic

Approximation of Expectation Maximization (SAEM). Once the parameter λ has been estimated after

I iterations of the SAEM algorithm, the JCPCE can be performed with the noise variance estimates.

Moreover, the estimate of ǫ can be used as the initial value of the search method proposed in the JCPCE

thus reducing its complexity.

On the other hand, we propose two different Sequential Monte Carlo (SMC) methods. In these schemes,

the estimation of unknown state and parameters is performed jointly and sequentially (on-line context)

thus reducing both the computational cost and the memory requirement induced by the use of the SAEM

in the first solution. Indeed in the on-line mode, the N observations contained in the OFDM training

symbol is only treated one time in sequential manner unlike in the off-line case. Indeed in the batch

mode, the algorithm requires several iterations over the block of N observations in order to converge.

In the following, we focus on the crucial point of our estimation problem which is the parameter

estimation task in hidden Markov model using Monte Carlo methods.

B. Parameter Estimation using Monte Carlo methods

In this section, MC-based algorithms for parameter estimation are reviewed in off-line and in on-line

framework. The off-line estimation can be done by stochastic versions of EM-type algorithms. For on-

line estimation, one can resort to SMC methods. In this case, we propose a new strategy to improve the

accuracy of the parameter estimates.

1) MC-based algorithms: Since the paper of Dempster et al. [10], the Expectation-Maximization (EM)

algorithm has become a highly appreciated tool for the estimation of parameters in models with missing

data. Each iteration of an EM algorithm formally consists of an E-step and a separate M-step. The E-step

calculates a conditional expectation while the M-step maximizes this expectation. Given an estimate λn−1
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of the parameter, the estimate at the next iteration (n) is given by :

λn = argmax
λ

Q(λ, λn−1) (10)

where

Q(λ, λn−1) =

∫
log p(z0:K , r0:K |λ)p(z0:K |r0:K , λn−1)dz0:k (11)

with K the length of observations available for the batch estimation.

However in many complex problems such as nonlinear and/or non-Gaussian models, at least one of

these steps is often analytically intractable. Many authors have suggested that E-step may be overcome

by approximating the expectation with the MC methods [11], leading to the principle of the Monte Carlo

EM (MCEM). Using MC methods and importance sampling for the estimation of p(z0:K |r0:K , λn−1),

Eq. (11) is approximated by :

Q̂(λ, λn−1) =

M(n)∑

j=1

w̃(j),n log p(z
(j),n
0:K , r0:K |λ) (12)

where
{
z
(j),n
0:K

}M(n)

j=1
and

{
w̃(j),n = w(j),n/

∑M(n)
i=1 w(i),n

}M(n)

j=1
are respecticely the M(n) samples of

missing data and the normalized importance weigths obtained at the n-th iteration. The importance

weigths are obtained as follows :

w̃(j),n =
p(z

(j),n
0:K |r0:K , λn−1)

π(z
(j),n
0:K |r0:K , λn−1)

(13)

where π(z
(j),n
0:K |r0:K , λn−1) is the importance function used for the generation of

{
z
(j),n
0:K

}M(n)

j=1
. If
{
z
(j),n
0:k

}M(n)

j=1

is either sampled directly from p(z0:K |r0:K , λn−1) or obtained using MCMC methods [12] then
{
w̃(j),n

}M(n)

j=1
=

1/M(n).

This function can be easily maximized when p(z
(j),n
0:K , r0:K |λ) belongs to the exponential family. In

this case, p(z0:K , r0:K |λ) depends on (z0:K , r0:K) only through a set of sufficient statistics.

However, when approximating Q by Q̂, the Monte Carlo sample size M(n) has to be increased as

the algorithm moves along. In fact, Booth et al. argue that MCEM will never converge if M(n) is held

fixed across iterations because of a persevering Monte Carlo error [13].

A variant of the basic approach is to use a stochastic approximation version of EM, the SAEM [14].

Delyon et al. have proved that, in contrast to MCEM, SAEM converges with a fixed Monte Carlo sample

size thus reducing the computational demand of the parameter estimation algorithm. Similarly to the

MCEM, the first step of the SAEM consists in generating realizations of the missing data vector under
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the posterior distribution using MC methodology. Then, the Monte Carlo integration (11) is replaced by

the following stochastic averaging procedure :

Q̂n(λ) = (1− γn)Q̂n−1(λ) + γn

M∑

j=1

w̃(j) log p(z
(j),n
0:K , r0:K |λ) (14)

where {γn}k≥1 is a sequence of positive step-size which is typically γn = n−α with α ∈ (1/2; 1]. The

new parameter estimate is obtained by maximizing the quantity Q̂n(λ).

In comparison with the MCEM algorithm, the SAEM makes more efficient the use of the imputed

missing values. At each new iteration of the MCEM algorithm, a whole set of missing values needs to be

simulated and all the missing values simulated during the previous iteration are dropped. In the SAEM

algorithm, all the simulated missing values contribute to the evaluation of the auxiliary quantity Q̂n(λ)

with a forgetting factor inversely proportional to the step-size.

2) SMC-based algorithms: Particle filtering algorithms are powerful tools for tracking time-varying

signals in random dynamic systems [15]. These methods, also called particle filters, have become very

popular over the last few years for non-Gaussian and nonlinear problems [16]. More precisely by

exploiting the principle of importance sampling, SMC methods approximate the sequence of probability

distribution {p(z0:k|r0:k), k = 0, 1, ...,K} without modifying the past simulated states
{
z
(j)
0:k−1

}M

j=1
:

p̂(z0:k|r0:k) =
M∑

j=1

w̃
(j)
k δ(z0:k − z

(j)
0:k) (15)

The Sequential Importance Sampling (SIS) algorithm is the basis for most sequential MC filters. The

SIS algorithm have two important operations : generation of new particles from an importance function

π(zk|z
(j)
0:k−1, r0:k) and computation of the particle weigths as follows :

w
(j)
k ∝

p(rk|z
(j)
0:k, r0:k−1)p(z

(j)
k |z

(j)
0:k−1)

π(z
(j)
k |z

(j)
0:k−1, r0:k)

w
(j)
k−1 (16)

After a few iterations, the SIS algorithm is known to suffer from degeneracy problems. To reduce these

problems, the Sequential Importance Resampling (SIR) integrates a resampling step to select particles

for new generations in proportion to the importance weights [15]. Liu and Chen [17] have introduced

a measure known as the effective sample size, Neff = [
∑M

m=1(w̃
(m)
k )2]−1, and have proposed to apply

the resampling procedure whenever Neff is below a predefined threshold. For the resampling step, we

use the Systematic Resampling scheme described in [18]. This scheme outperforms the simple random

sampling scheme with a small Monte Carlo variance and a favorable computational time [19], [20].

SMC methods are well adapted to problems such as optimal filtering where we are interested in

estimating a sequence of potentially quickly varying distributions whose dimension is increasing over
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time. However, parameter estimation using particle filtering is still a major issue. Since the problem we

deal with consists in estimating both one dynamic state and four static parameters, this task has to be

considered with care.

First, if the general model contains a linear Gaussian sub-structure, it can be exploited to derive an

accurate estimator with a lower computational demand. Using both the Bayes’ theorem and the DSS

model, the linear gaussian variables are marginalized out and estimated by a Kalman filter, which is the

optimal filter in this case. Also called Rao-Blackwellized or marginalized particle filter [15], [21]–[23],

this technique is mostly used for time-varying estimation but has also been achieved for fixed parameter

estimation [17], [24].

Secondly, we consider the case where no linear Gaussian sub-structure is contained in the DSS. In

this context, two different methodologies can be employed: the point estimation and the filtering method.

The first strategy aims to give point estimate of the parameter λ from {r0:k} without a preliminary

approximation of the posterior distribution p(λ|r0:k). As an example, maximum likelihood estimation

based on Expectation-Maximization (EM) technique using particle filtering has been proposed in [25]–

[29]. However, the slow convergence of the EM is known as a major drawback [30]. The second strategy

is filtering method which consists in approximating the joint posterior distribution of both the dynamic and

static states p(z0:k, λ|r0:k), and thus p(λ|r0:k) in order to deduce an estimation of λ. As a consequence,

particle method is required in the parameter space. A classical approach consists in exploring the parameter

space at the initialization step by setting up a prior distribution for the unknown parameters. However

this scheme is known to be inefficient since only one value of the parameter will survive after several

resampling steps. To adress this problem, kernel smoothing techniques [31], [32], artificial evolution of

parameters [32]–[34] and Markov chain Monte Carlo (MCMC) steps [35], [36] have been proposed.

However, such solutions do not solve the fixed-parameter estimation problem. In [37], Papavasiliou

proposes an adaptive particle filter which is a combination of the interacting particle filter and the Monte-

Carlo filter used respectively for the dynamic states and the static parameters. It consists in running one

particle filter for each Monte-Carlo sample of the static parameter. Uniform convergence of this algorithm

has been demonstrated. The only major disadvantage is its high complexity. In this paper, we propose

a new strategy for parameter estimation using filtering methods. In this filtering context, the particle

approximation of the posterior distribution is given by :

p̂(z0:k, λ|r0:k) =
M∑

j=1

δ(z0:k − z
(j)
0:k;λ− λ(j))w̃

(j)
k (17)
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with δ(.; .) the two-dimensional Dirac delta function and where λ(j) denotes the particles in the

parameter space. In our proposition, λ(j) are originally set to the maximum of the posterior distribution

associated to each particle trajectory, i.e. λ(j) = argmax
λ

{
p
(
z
(j)
0:k, λ|r0:k

)}
.

Consequently, the proposed scheme has the advantage of adding diversity in the search space in

comparison with point estimation method and especially of concentrating particles in regions with high

posterior probability.

IV. CIR, CFO, PHN AND NOISE VARIANCE ESTIMATION BASED ON SAEM AND JCPCE

A. Introduction

In this section, the off-line estimator is derived. Since an off-line maximum a posteriori estimator of

CIR, PHN and CFO assuming the noise variances known is described in [9], we propose a new strategy

in order to estimate them before the use of the JCPCE. The SAEM algorithm aims to iteratively estimate

noise variances and CFO from the received OFDM symbol r0:N−1 as shown in Fig. 1. The estimate

value of the CFO ǫ̃ is used as initial value of the search method proposed in [9] for finding ǫ̂ the optimal

solution of ǫ using the maximum a posteriori criterion.

SAEM

r

σ2
0

{
σ̂2, ǫ̃

} JCPCE

{
φ̂0:N−1, ǫ̂, ĥ

}

Fig. 1. Structure of the proposed SAEM-JCPCE

B. The proposed SAEM algorithm

Given an estimate of the noise variance obtained at the (n− 1)-th iteration and denoted by λn−1, the

SAEM requires the approximation of the posterior distribution p(φφφ,h|r, λn−1) using MC methods with

φφφ =
[
φN−1 · · · φ0

]T
and r =

[
rN−1 · · · r0

]T
. As detailed in Appendix A, the estimate of the

posterior distribution of interest obtained by the Monte Carlo filter is given by :

p̂(φφφ,h|r, λn−1) =

M∑

j=1

w̃(j),nδ(φφφ −φφφ(j),n)p(h|φφφ(j),n, r, λn−1) (18)

with p(h|φφφ(j),n, r, λn−1) defined in (59).
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Once the posterior distribution of interest has been approximated and given an estimate λn−1 of the

unknown parameters as described previously, the aim is to find an estimate of the noise variances and

the CFO at the current iteration, i.e.

λn = argmax
λ

{
Q̂n(λ)

}
(19)

where using (14) and (18),

Q̂n(λ) = (1− γn)Q̂n−1(λ)

+ γn

M∑

j=1

w̃(j),n

∫
log p(φφφ(j),n,h, r|λ)p(h|φφφ(j),n, r, λn−1)dh (20)

which can also be written as :

Q̂n(λ) = (1− γn)Q̂n−1(λ) + γn

(
A+ Q̂

′

(λ, λn−1)
)

(21)

where A is a constant. Since p(φφφ(j),n,h, r|λ) = p(r|φφφ(j),n,h, σ2
b )p(φφφ

(j),n|ǫ, σ2
v)p(h), Q̂

′

(λ, λn−1)

becomes :

Q̂
′

(λ, λn−1) =

M∑

j=1

w̃(j),n
[
log p(φφφ(j),n|ǫ, σ2

v)

+ log

(
1

(2πσ2
b )

N/2

)

−
1

2σ2
b

{
(r−C

(j),n
h
(j),n)H(r−C

(j),n
h
(j),n)

+trace
[
C

(j),n
Σ

(j),n(C(j),n)H
]}]

(22)

Finally, the maximization of Q̂n(λ) gives the following update equation of the CFO, PHN and AWGN

powers :

ǫn = (1− γn)ǫn−1

+ γn

M∑

j=1

w̃(j),nµµµ
T
Θ

−1φφφ(j),n + (φφφ(j),n)TΘ−1µµµ

2µµµTΘ−1µµµ
(23)
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σ2
v,n =

1

N

n−1∑

i=1

γi

n∏

k=i+1

(1− γk)

×
M∑

j=1

w̃(j),i
(
φφφ(j),i − ǫnµµµ

)T
Θ

−1
(
φφφ(j),i − ǫnµµµ

)

+ γn

M∑

j=1

w̃(j),n
(
φφφ(j),n − ǫnµµµ

)T
Θ

−1
(
φφφ(j),n − ǫnµµµ

)
(24)

σ2
b,n = (1− γn)σ

2
b,n−1 +

γn
N

M∑

j=1

w̃(j),n
(
(r−C

(j),n
h
(j),n)H

(r−C
(j),n

h
(j),n) + trace

[
C

(j),n
Σ

(j),n(C(j),n)H
])

(25)

The proposed SAEM algorithm is summed up in Table I.

TABLE I

THE PROPOSED SAEM ALGORITHM

Initialization :

Set
{
ǫ0;σ2

v,0;σ
2
b,0

}
= {0; 0.1; 1}

For n = 1...I

For m = 1...M

Sample φφφ(m),n from the prior distribution using (51)

Evaluate the a posteriori pdf of the CIR p(h|φφφ(m),n, σ2
b,n−1, r0:k)

using (60) and (61)

Evaluate the corresponding importance weights using (53)

end for

Normalize importance weights : w̃(j),n = w(j),n/
∑M

m=1 w
(m),n

Estimation of ǫn, σ2
v,n and σ2

b,n
using respectively (23), (24) and (25)

end for

Set
{
ǫ̃; σ̂2

}
=

{
ǫI ;σ

2
I

}

V. SMC METHODS FOR JOINT CIR, CFO, PHN AND NOISE VARIANCE ON-LINE ESTIMATION

We describe here in detail all the steps required in the implementation of algorithms for on-line

estimation of the unknown states. To allow this on-line estimation, SMC methods are proposed. Like in

the SAEM, the Rao-Blackwellization and importance sampling are respectively used for the channel and
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the phase distortions but in a sequential manner. Now, concerning both the noise variances and the CFO,

λ , two different strategies, namely point estimation or filtering methods, are derived in this section.

So, in a first time, we propose to describe the Rao-Blackwellization for the CIR and the SIS scheme

for the phase distortions which is common to these two on-line estimation strategies. Then, we describe

the proposed filtering scheme and a point-estimation method for parameter estimation using SMC algo-

rithms, respectively denoted in the following by the PMAP-SMC (Particle Maximum A Posteriori using

Sequential Monte Carlo) and the OEM-SMC (On-line Expectation Maximization using Sequential Monte

Carlo) algorithms1.

A. Rao-Blackwellization for the CIR estimation

The posterior distribution p(h|φ
(j)
0:k, λ

(j), r0:k) is obtained in a same way as in Appendix A-2 by

introducing the time domain index k since a sequential method is considered in this section. This posterior

pdf is Nc

(
h;h

(j)
k ,Σ

(j)
k

)
with :

h
(j)
k =

1

L

(
C

(j)
k

)H ( 1

L
C

(j)
k

(
C

(j)
k

)H
+ σ

2(j)
b Ik+1

)−1

rk (26)

and,

Σ
(j)
k =

1

L
IL −

1

L2

(
C

(j)
k

)H

(
1

L
C

(j)
k

(
C

(j)
k

)H
+ σ

2(j)
b Ik+1

)−1

C
(j)
k (27)

where rk =
[
rk · · · r0

]T
and

C
(j)
k =




ejφ
(j)
k 0

. . .

0 ejφ
(j)
0







s
T
k
...

s
T
0




B. Phase distortions importance sampling

The choice of the importance function is essential because it determines the efficiency as well as the

complexity of the particle filtering algorithm. In this paper, we consider the optimal importance function

1Let us remark that the Rao-Blackwellization and the SIS steps are derived in the following with particle index (j) for the

parameter λ. However, contrary to PMAP-SMC, OEM-SMC does not require the use of particles in the parameter space so the

adaptation of the two steps for the OEM-SMC is obtained by simply setting
{

λ(j)
}M

j=1
= λk−1 .
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for phase distortions which minimizes the variance of the importance weights conditional upon the particle

trajectories and the observations [38]. In our context, it is expressed as :

π(φk|φ
(j)
0:k−1, λ

(j), r0:k) = p(φk|φ
(j)
0:k−1, λ

(j), r0:k) (28)

The sampling of φk from (28) requires the analytical expression of the optimal importance function.

However, this pdf is analytically intractable. To derive an approximate optimal importance function, we

propose to linearize only the term with the phase distortions driving noise, such as ejvk = 1+ jvk where

vk is defined in (6). Generally, the usual linearization of the PHN term ejθk = 1+ jθk is employed but is

less accurate than the proposed one. As detailed in Appendix B, this pdf can thus be approximated by :

p(φk|φ
(j)
0:k−1, λ

(j), r0:k) ≈ N (φk;ϑ
(j)
k ,Λ

(j)
k ) (29)

where Λ
(j)
k = χ

(j)
k σ2(j)

v

|Γ(j)
k |2σ2(j)

v +χ(j)
k

and

ϑ
(j)
k =




Υ

(j)
0 , for k = 0

Υ
(j)
k + φ

(j)
k−1 + 2πǫ(j)/N, for k > 0

(30)

with χ
(j)
k = s

T
kΣ

(j)
k−1s

∗
k + σ

2(j)
b , Υ

(j)
k =

ℑ(Γ(j)∗
k rk)σ2(j)

v

|Γ(j)
k |2σ2(j)

v +χ(j)
k

(with ℑ(.) the imaginary part) and

Γ
(j)
k =




s
T
0 h

(j)
−1, for k = 0

ej(φ
(j)
k−1+2πǫ(j)/N)

s
T
k h

(j)
k−1, for k > 0

(31)

A Gaussian approximation of the optimal importance function is proposed in this paper for the phase

distortions. However since the likelihood function is multimodal in our model, the suitability of this

Gaussian approximation has to be considered with care [39]. As shown in Appendix C, the Gaussian

approximation is accurate in our context. Indeed, the prior distribution of the phase distortions is narrow

enough to ensure that only one mode is significant.

The sampling distribution of φk is now identified by (29). The corresponding unnormalized weights

are then computed by :

w
(j)
k ∝ w

(j)
k−1

p(rk|φ
(j)
0:k, λ

(j), r0:k−1)p(φ
(j)
k |φ

(j)
0:k−1, λ

(j))

p̂(φ
(j)
k |φ

(j)
0:k−1, λ

(j), r0:k)
(32)

with p̂(φ
(j)
k |φ

(j)
0:k−1, λ

(j), r0:k) the approximate optimal importance function given by (29),
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p(φk|φ
(j)
0:k−1, λ

(j)) =





N (φ0; 0, σ
2
v), for k = 0

N (φk;φ
(j)
k−1 +

2πǫ(j)

N
,σ2

v), for k > 0
(33)

p(rk|φ
(j)
0:k, λ

(j), r0:k−1) = Nc(rk; ρ
(j)
k , χ

(j)
k ) (34)

and ρ
(j)
k = ejφ

(j)
k s

T
k h

(j)
k−1.

C. Estimation of CFO and noise variances

In this section, the proposed scheme for parameter estimation based on the maximization of the posterior

distribution is described. For a fair comparison between our approach and a point estimation method, an

on-line adaptation of the expectation-maximization algorithm using particle filtering proposed in [25] is

derived.

1) The Particle Maximum A Posteriori (PMAP) Estimator : The main idea of our approach consists

in finding the most adapted noise variance value to each particle trajectory. In other words, our strategy

aims to concentrate particles in regions with high posterior probability. Therefore, the noise variance

value of the j-th particle is set to the maximum of the joint posterior distribution associated to the j

particle trajectory, i.e. :

λ(j) = argmax
λ

{
p
(
x
(j)
0:k, λ|r0:k

)}
(35)

Under the assumption of non-informative a priori distribution of λ and independence of noises in both

state and observation equations, the posterior distribution involved in (35) can be written as :

p
(
x
(j)
0:k, λ|r0:k

)
=

k∏

n=0

p
(
rn|φ

(j)
0:n,h

(j)
k , λ, r0:n−1

)

× p
(
φ(j)
n |φ

(j)
n−1, λ

)
(36)

where the pdfs involved in (36) are given respectively by (33) and (66) in Appendix B. Using (35) and

(66), the AWGN variance estimate, at time k and for the j-th particle, is given by :

σ
2(j)
b =

1

k + 1

k∑

n=0

∣∣∣rn − ejφ
(j)
n s

T
nh

(j)
k

∣∣∣
2

(37)

Since both φ
(j)
k and h

(j)
k are required in (37), the AWGN variance estimation should be performed

after the PHN sampling and the Rao-Blackwellization of the CIR. However, as shown by Eqs. (26),

(27) and (29), σ
2(j)
b is needed for these two steps. Consequently, both the Rao-Blackwellization and the
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importance sampling can be improved by using an AWGN variance estimate at time k which takes into

account the new observation rk. By replacing
{
φ
(j)
k ,h

(j)
k

}
with

{
φ
(j)
k−1 + 2πǫ(j)/N,h

(j)
k−1

}
in (37), the

observation noise variance update is finally expressed as :

σ
2(j)
b =

1

k + 1

(
k−1∑

n=0

∣∣∣rn − ejφ
(j)
n s

T
nh

(j)
k−1

∣∣∣
2

+
∣∣∣rk − ej(φ

(j)
k−1+2πǫ(j)/N)

s
T
k h

(j)
k−1

∣∣∣
2
)

(38)

Concerning the CFO and the PHN variance, their estimates are straightforwardly obtained using (33)

and (35) :

ǫ(j) =
N
∑k

n=1 φ
(j)
n − φ

(j)
n−1

2kπ
(39)

σ2(j)
v =

1

k + 1

(
k∑

n=1

∣∣∣φ(j)
n − φ

(j)
n−1 + 2πǫ(j)/N

∣∣∣
2
+ |φ0|

2

)
(40)

The PMAP-SMC is summed up in Table II.

2) The on-line EM estimator: In [25], Cappé and Moulines investigate the maximum likelihood

estimation of parameters based on the EM algorithm using particle filtering. Since they consider batch

estimation, we derive below an on-line adaptation of this approach for a fair comparison with the previous

filtering method. In this context, the maximum likelihood estimate of λ (e.g. λk at the k-th time domain

sample of the OFDM symbol) can be obtained by maximizing the following quantity

Q(λ, λk−1) =

∫
log p(x0:k, r0:k|λ)p(x0:k|r0:k, λk−1)dx0:k (41)

where p(x0:k|r0:k, λk−1) is approximated by the SMC principle. Using the particle approximation of

the posterior distribution p(x0:k|r0:k, λk−1), the estimation of λ is updated after each new received time

sample of the OFDM symbol and is given by :

ǫk =
N

2kπ

M∑

j=1

w̃
(j)
k

k∑

n=1

(
φ(j)
n − φ

(j)
n−1

)
(42)

σ2
v,k =

1

k + 1

M∑

j=1

w̃
(j)
k

(
k∑

n=1

∣∣∣φ(j)
n − φ

(j)
n−1 − 2πǫk/N

∣∣∣
2

+
∣∣∣φ(j)

0

∣∣∣
)

(43)
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TABLE II

PARTICLE MAXIMUM A POSTERIORI USING SEQUENTIAL MONTE CARLO ALGORITHM (PMAP-SMC)

Initialization :
{
θ
(m)
−1 ;h

(m)
−1 ;Σ

(m)
−1 ; w̃

(m)
k

}M

m=1
=

{
0;0L×1;

1
L
IL; 1/M

}

{λm}Mm=1 =
{
σ̂
2(m)
v ; σ̂

2(m)
b

; ǫm
}M

m=1
= {0.01; 1; 0}

For k = 0...N − 1

For m = 1...M

Estimation of the observation noise statistics using (38)

Sample φ
(m)
k

from the optimal importance function using (29)

Evaluate the a posteriori pdf of the CIR p(h|φ
(m)
0:k , λ(m), r0:k)

using (26) and (27)

Estimation of the CFO and PHN noise variance using

respectively (39) and (40)

Evaluate the corresponding importance weights using (32)

end for

Normalize importance weights : w̃
(j)
k

= w
(j)
k

/
∑M

m=1 w
(m)
k

If Neff < Nseuil then

Resample particle trajectories using systematic resampling

end if

end for

Evaluate the final smoothed estimates x̂0:N−1 using :

x̂0:N−1 =
∑M

j=1 w̃
(j)
N−1x

(j)
0:N−1

with x
(j)
0:N−1 =

{
φ
(j)
0:N−1, ǫ

(j),h(j), σ2(j)
}

σb,k
2 =

1

k + 1

M∑

j=1

w̃
(j)
k

(
k∑

n=0

∣∣∣rn − ejφ
(j)
n s

T
nh

(j)
k

∣∣∣
2

+trace
[
C

(j)
k Σ

(j)(C
(j)
k )H

])
(44)

Since the importance weights
{
w̃

(j)
k

}M

j=1
are required in the on-line EM, it is obvious that this on-

line expectation maximization estimation is performed after both the phase distortions sampling and the

Rao-Blackwellization for the CIR. The OEM-SMC is summed up in Table III.

VI. THE POSTERIOR CRAMÉR-RAO BOUND

In order to study the efficiency of an estimation method, it is of great interest to compute the variance

bounds on the estimation errors and to compare them to the lowest bounds corresponding to the optimal

estimator. For time-invariant statistical models, a commonly used lower bound is the Cramér-Rao bound
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TABLE III

ON-LINE EXPECTATION-MAXIMIZATION USING SEQUENTIAL MONTE CARLO ALGORITHM (OEM-SMC)

Initialization :
{
θ
(m)
−1 ;h

(m)
−1 ;Σ

(m)
−1 ; w̃

(m)
k

}M

m=1
=

{
0; 0L×1;

1
L
IL; 1/M

}

{λ−1} =
{
σ̂2
v,−1; σ̂

2
b,−1; ǫ−1

}
= {0.01; 1; 0}

For k = 0...N − 1

For m = 1...M

Sample φ
(m)
k

from the optimal importance function using (29)

Evaluate the a posteriori pdf of the CIR p(h|φ
(m)
0:k , λk−1, r0:k)

using (26) and (27)

Evaluate the corresponding importance weights using (32)

end for

Normalize importance weights : w̃
(j)
k

= w
(j)
k

/
∑M

m=1 w
(m)
k

On-line EM estimation of CFO and unknown noise statistics using (42),

(43) and (44)

If Neff < Nseuil then

Resample particle trajectories using systematic resampling

end if

end for

Evaluate the final smoothed estimates x̂0:N−1 using

x̂0:N−1 =
∑M

j=1 w̃
(j)
N−1x

(j)
0:N−1

with x
(j)
0:N−1 =

{
φ
(j)
0:N−1,h

(j)
}

(CRB), given by the inverse of the Fisher information matrix. In a time-varying context as we deal with

here, a lower bound analogous to the CRB for random parameters has been derived in [40]; this bound

is usually referred to as the Van Trees version of the CRB, or posterior CRB (PCRB) [41].

In this topic, the PCRB for the joint estimation of
{
φφφ,h, ǫ, σ2

}
is analytically intractable. Since the

CIR is the main quantity of interest, we derive in this paper the PCRB on the estimation error of h in

the absence of both CFO and PHN and where σ2
b is assumed perfectly known. In this context, the DSS

model is linear and Gaussian since the likelihood function of interest is given by :

p(r|h) = Nc

(
r;Sh, σ2

b IN

)
(45)

with

S =




s
T
N−1

...

s
T
0
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As a consequence, the Cramér-Rao bound for a given OFDM symbol is equal to the covariance matrix

Σ of the posterior pdf p(h|r) and is defined using (45) and (55) by :

Σ =
1

L
IL −

1

L2
S
H

(
1

L
SS

H + σ2
b IN

)−1

S (46)

where the elements of S correspond to the OFDM training signal. The PCRB is thus obtained through

numerical simulations by the expectation of (46) over the OFDM symbol S :

PCRB = E [trace [Σ]] (47)

VII. SIMULATIONS

In this section, performance of the proposed strategies is studied through numerical simulations. The

following system parameters are considered : a Rayleigh multipath channel with a delay of L taps and

a uniform power delay profile, an OFDM training symbol with N = 64 subcarriers and a cyclic prefix

of Ncp = 16 samples. Each subcarrier is arbitrarily modulated in quaternary phase-shift keying (QPSK).

For each OFDM symbol, the CFO ǫ is drawn from a uniform distribution in [−0.5; 0.5] and both SAEM

and SMC algorithms are implemented with M = 100 particles. Since the unresolvable residual common

phase rotation described in section II-C is not the subject of this paper, we assume that it can be perfectly

corrected to facilitate the analysis of channel estimation as in [9].
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Fig. 2. Box-and-whiskers plots of the estimate error of AWGN (top) and PHN (bottom) power obtained by SAEM (with

different numbers of iterations I), the PMAP-SMC and the OEM-SMC algorithms for several SNR values and with βT = 10
−3

and L = 10 paths.
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Fig. 3. Box-and-whiskers plots of the estimate error of AWGN (top) and PHN (bottom) power obtained by SAEM (with

different numbers of iterations I), the PMAP-SMC and the OEM-SMC algorithms for several SNR values and with βT = 10
−2

and L = 10 paths.

For comparison purposes between parameter estimators, we have firstly studied the distribution of

PHN and AWGN power estimate error. Box-and-whiskers plots of PHN and AWGN power estimate

errors of the SAEM, OEM-SMC and PMAP-SMC are drawn in Fig. 2 with βT = 10−3 and in Fig. 3

with βT = 10−2. A Box-and-whiskers plot is a convenient way of graphically depicting the five-number

summary including the smallest observation, the lower quartile, the median, the upper quartile and the

largest observation. It enables to display different types of populations, without any assumption on the

statistical distribution. The spacing between the different parts of the box helps to visualize variance,

skew and outliers. It can be logically denoted that the SAEM algorithm gives a more accurate parameter

estimate of both AWGN and PHN variances when the number of iterations increases. However, after 600

iterations, there is no more improvement in parameter estimation. Now concerning the on-line estimators

based on SMC methods, box-and-whiskers plots show that estimation of both PHN and AWGN powers

is better performed with the PMAP-SMC than with the OEM-SMC. Indeed, the biais obtained by the

PMAP-SMC is smaller than the one obtained by the OEM-SMC. Moreover, the PMAP-SMC offers

the smaller estimation variance. These remarks about bias and variance become more pronounced when

the SNR increases. Therefore, it is obvious that the diversity introduced in the search space of λ in the

PMAP-SMC significantly improves the precision of the final estimates for both PHN and AWGN powers.

Finally, the PMAP-SMC is more accurate in the estimation of AWGN variance than the SAEM, especially
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when both SNR and βT increase. Moreover, concerning the PHN variance, the SAEM achieves the best

estimation accuracy for small phase noise rate but in the case of βT = 10−2, the bias of the PMAP-SMC

estimator is smaller than the SAEM one. It can be explained by the sequential nature of the PMAP-SMC

which is more adapted to time-varying state estimation than MC methods. Indeed, the sampling step is

improved in the PMAP-SMC since the phase distortions values are simulated sequentially by using an

approximate optimal importance function which takes into account the observations.

The MSE of phase distortions (CFO + PHN) and channel estimation are respectively depicted in Figures

4 and 5 for several values of SNR and βT and for L = 10 paths. Performance of the JCPCE algorithm

using noise variance estimates of the SAEM with 600 iterations is also plotted. The MSE of the channel

estimation is also compared to the conditional posterior Cramér-Rao bound (PCRB). The MSE is obtained

by MSE = 1
Q

∑Q
n=1 trace

[(
h
n − ĥ

n
)(

h
n − ĥ

n
)H]

where Q is the number of OFDM symbols used

in simulations and n denotes the n-th OFDM symbol (Q = 10, 000). Firstly, the results point out the

robustness of the proposed algorithms when the a priori statistics of the model are not perfectly known.

As shown on this figure, for a SNR less than 20 dB, the proposed methods give results close to the

optimal bound whatever the PHN power. Moreover, the MSE of the PMAP-SMC is consistently lower

than the MSE of the OEM-SMC, especially for large SNR. Now concerning performance comparison

between off-line and on-line estimators, even if the PMAP-SMC is more accurate in the noise variance

estimation, the SAEM-JCPCE slightly outperforms the PMAP-SMC. It can be explained by the fact that

at the beginning of the OFDM symbol, the PMAP-SMC parameter estimates are less accurate than at the

end of the symbol due to the on-line nature of the proposed SMC methods. As a consequence, by taking

into account worse noise variance estimates, the first samples of the phase distortions are less accurate

than those obtained at the end of the OFDM symbol.

From these results, it can be concluded that PHN and AWGN power estimation has a significant impact

for both phase distortion and CIR estimation. In on-line case, the diversity introduced in the search space

of parameters clearly improves the parameter estimator performance, especially for a large SNR. The

combination of the SAEM and the JCPCE outperforms the two on-line schemes using SMC methods but

at the expense of higher complexity and memory requirements.

VIII. CONCLUSION

This paper deals with the major problem of OFDM channel estimation in the presence of CFO and

PHN. Unlike [9], we have considered the difficult task where prior statistics of PHN and AWGN are

assumed unknown at the receiver which is a more realistic case. We have proposed different strategies for
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(right).

off-line and on-line estimation based on Monte Carlo methods. Firstly in the off-line case, we propose

a combination of the SAEM and the JCPCE to perform a batch estimation of the quantities of interest.

Secondly for the on-line estimation, we propose two different approaches to jointly and sequentially

estimate the many unknowns using for parameters either point estimation or filtering method. In the

former case, an on-line adaptation of the EM method using particle filtering proposed in [25], called the
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OEM-SMC algorithm, is derived. In the latter case, an on-line maximum a posteriori update per particle

for the noise variances has been proposed leading to an efficient parameter estimator, the PMAP-SMC.

Numerical simulations demonstrate the efficiency of the proposed algorithms for OFDM channel esti-

mation in the presence of CFO and PHN when both PHN and AWGN powers are assumed unknown. We

have seen that the SAEM-JCPCE outperforms the SMC algorithms in the estimation of both the channel

impulse response and phase distortions. However compared to the PMAP-SMC, it should be denoted that

only a slight improvement is achieved, especially at high SNR. Because of both the computational cost

and the high memory requirements of the SAEM, the on-line SMC methods and particularly the PMAP-

SMC consequently offer a good compromise between performances and complexity. More precisely,

the proposed strategy in the PMAP-SMC algorithm for parameter estimation significantly outperforms

the point estimation method of the OEM-SMC. Such an algorithm can thus be efficiently used for the

design of OFDM receivers in wireline and wireless communication systems. Moreover in order to solve

the challenging problem of both on-line static and dynamic state estimation, the proposed scheme for

parameter estimation can be easily extended to many applications leading to efficient particle filters.

APPENDIX A

MONTE CARLO APPROXIMATION OF THE POSTERIOR DISTRIBUTION FOR THE SAEM ALGORITHM

In this appendix, we describe the Monte Carlo filter required in the SAEM in order to approximate

the posterior distribution p(φφφ,h|r, λn−1). Using the Bayes’ theorem, this target distribution can be

decomposed as :

p(φφφ,h|r, λn−1) ∝ p(h|φφφ, r, λn−1)p(φφφ|r, λn−1) (48)

Since p(h|φφφ, r, λn−1) is analytically tractable, only the posterior distribution of the phase distortions

is approximated by the principle of importance sampling.

1) Importance sampling of the phase distortions: The marginal posterior distribution p(φφφ|r, λn−1) is

approximated by Monte Carlo algorithm as :

p̂(φφφ|r, λn−1) =

M∑

j=1

w̃(j),nδ(φφφ− φφφ(j),n) (49)

The phase distortions values are sampled from its prior distribution,

π(φφφ|r, λn−1) = p(φφφ|λn−1) (50)
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where p(φφφ|λn−1) is obtained from the state equation (6) and is equal to

p(φφφ|λn−1) = N (φφφ; ǫn−1µµµ, σ
2
v,n−1Θ) (51)

with µµµ =
[
2π(N − 1)/N · · · 2π/N 0

]T
and

Θ =




N 2 1

. . .
...

...

2 · · · 2 1

1 · · · 1 1




Using (13), the unnormalized importance weights are given by:

w(j),n =
p(φφφ(j),n|r, λn−1)

π(φφφ(j),n|r, λn−1)
(52)

Since the prior importance function has been considered for phase distortions sampling, it is obvious

that the importance weights are obtained as follows :

w(j),n ∝ p(r|φφφ(j),n, λn−1) (53)

The distribution p(r|φφφ(j),n, λn−1) is obtained by marginalizing p(r,h|φφφ(j),n, λn−1). Because h is

independent of φφφ and λ,

p(r,h|φφφ(j),n, λn−1) = p(r|h,φφφ(j),n, λn−1)p(h) (54)

where

p(h) = Nc

(
0L×1,

1

L
IL

)
(55)

and the likelihood distribution is given by:

p(r|h,φφφ(j),n, λn−1) = Nc

(
r;C(j),n

h, σ2
b,n−1IN

)
(56)

with

C
(j),n =




ejφ
(j),n
N−1 0

. . .

0 ejφ
(j),n
0







s
T
N−1

...

s
T
0




As a consequence, we obtain :

w(j) ∝ Nc(r;0N×1, σ
2
b,n−1IN +

C
(j),n

(
C

(j),n
)H

L
) (57)
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2) Posterior distribution of the channel: Since the CIR h has a circular gaussian a priori pdf, the

posterior pdf p(h|φφφ(j),n, r, λn−1) of the j-th particle can be written as :

p(h|φφφ(j),n, r, λn−1) ∝ p(r|h,φφφ(j),n, λn−1)p(h) (58)

where p(h) and p(r|h,φφφ(j),n, λn−1) are respectively given by (55) and (56)

Consequently, the a posteriori pdf (58) of h is :

p(h|φφφ(j),n, r, λn−1) = Nc

(
h;h(j),n,Σ(j),n

)
(59)

with :

h
(j),n =

1

L

(
C

(j),n
)H

×

(
1

L
C

(j),n
(
C

(j),n
)H

+ σ2
b,n−1IN

)−1

r (60)

and,

Σ
(j) =

1

L
IL −

1

L2

(
C

(j),n
)H

×

(
1

L
C

(j),n
(
C

(j),n
)H

+ σ2
b,n−1IN

)−1

C
(j),n (61)

APPENDIX B

DERIVATION OF THE OPTIMAL IMPORTANCE FUNCTION FOR PHN SAMPLING

The optimal importance function for PHN sampling in the proposed particle filter requires the derivation

of the pdf defined in (28). This pdf can be rewritten as :

p(φk|φ
(j)
0:k−1, λ

(j), r0:k) = p(rk|φk, φ
(j)
0:k−1, λ

(j), r0:k−1)

×
p(φk|φ

(j)
0:k−1, λ

(j))

p(rk|φ
(j)
0:k−1, λ

(j), r0:k−1)
(62)

with

p(φk|φ
(j)
0:k−1, λ

(j)) =




N (φ0; 0, σ

2
v), for k = 0

N (φk;φ
(j)
k−1 + 2πǫ(j)/N, σ2

v), for k > 0
(63)

and,
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p(rk|φk, φ
(j)
0:k−1, λ

(j), r0:k−1) =

∫
p(h|φ

(j)
0:k−1, λ

(j), r0:k−1)

× p(rk|h, φk, φ
(j)
0:k−1, λ

(j), r0:k−1)dh (64)

Finally, the normalization term which does not depend on φk can be written as :

p(rk|φ
(j)
0:k−1, λ

(j), r0:k−1) =

∫
p(φk|φ

(j)
0:k−1, λ

(j))

× p(rk|φk, φ
(j)
0:k−1, λ

(j), , r0:k−1)dθk (65)

The summand in (64) is the product of the likelihood pdf and the posterior pdf of the CIR which are

defined respectively by :

p(rk|h, φk, φ
(j)
0:k−1, λ

(j), r0:k−1) = Nc

(
rk; e

jφks
T
k h, σ

2(j)
b

)
(66)

and,

p(h|φ
(j)
0:k−1, λ

(j), r0:k−1) = Nc

(
h;h

(j)
k−1,Σ

(j)
k−1

)
(67)

Therefore using (66) and (67), it is straightforward to show that the expression described in (64) can

be rewritten as :

p(rk|φk, φ
(j)
0:k−1, λ

(j), r0:k−1) = Nc(rk; ρ
(j)
k , χ

(j)
k ) (68)

where ρ
(j)
k = ejφks

T
k h

(j)
k−1 and χ

(j)
k = s

T
kΣ

(j)
k−1S

∗
k + σ

2(j)
b . According to (63)-(68), an analytical form

of (62) remains untractable due to the double exponential in (68) by ρ
(j)
k . However, by linearizing the

noise term vk in (6), the mean of (68) is approximated by :

ρ
(j)
k ≈




(1 + jv0)s

T
0 h

(j)
1 , for k = 0

(1 + jvk)e
j(φ

(j)
k−1+2πǫ(j)/N)

s
T
k h

(j)
k−1, for k > 0

(69)

This approximation holds when the phase noise rate is small and is more accurate than the usual

approximation ejθk ≈ 1 + jθk. Using (63), (68) and (69) and after several algebraic manipulations, (62)

can be simplified as :

p(φk|φ
(j)
0:k−1, λ

(j), r0:k) ≈ N (φk;ϑ
(j)
k ,Λ

(j)
k ) (70)

where Λ
(j)
k =

χ(j)
k σ2(j)

v

|Γ(j)
k |2σ2(j)

v +χ(j)
k

and
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TABLE IV

STUDY OF THE GAUSSIAN APPROXIMATION OF THE OPTIMAL IMPORTANCE FUNCTION.

βT 10−3 10−2

SNR (dB) 0 20 40 0 20 40

Gaps

D
(j)
k

min 0 0 0 0 0 0

mean 6.3948e-7 1.27e-6 1.4e-6 6.62e-7 1.65e-6 1.848e-6

max 1.15e-4 3.83e-4 3.94e-4 1.32e-4 3.86e-4 4.1e-4

ϑ
(j)
k =




Υ

(j)
0 , for k = 0

Υ
(j)
k + φ

(j)
k−1 + 2πǫ(j)/N, for k > 0

(71)

with χ
(j)
k = s

T
kΣ

(j)
k−1s

∗
k + σ

2(j)
b , Υ

(j)
k = ℑ(Γ

(j)∗
k rk)σ2(j)

v

|Γ
(j)
k |2σ

2(j)
v +χ

(j)
k

(with ℑ(.) the imaginary part) and

Γ
(j)
k =




s
T
0 h

(j)
−1, for k = 0

ej(φ
(j)
k−1+2πǫ(j)/N)

s
T
k h

(j)
k−1, for k > 0

(72)

APPENDIX C

SUITABILITY OF THE GAUSSIAN APPROXIMATION OF THE IMPORTANCE FUNCTION

As remarked in Section V-B, the accuracy of the Gaussian approximation should be studied since the

likelihood function is multimodal and the prior density has an infinite support [39]. In order to study

precisely the validity of the Gaussian approximation, Table IV presents the gaps between the exact and

the approximate cumulative distributions given for the k-th time sample and for the j-th particle by :

D
(j)
k = sup

φk

∣∣∣F (φk|φ
(j)
k−1, λ

(j), rk)− F ∗(φk|φ
(j)
k−1, λ

(j), rk)
∣∣∣ (73)

where F (.) and F ∗(.) are the cumulative distributions of the exact and the Gaussian approximate optimal

importance function. The exact optimal importance function is obtained using Eq. (62) and a sufficiently

dense discretization of the state space of φk.

From these gaps between the two cumulative distributions, we note that the proposed Gaussian ap-

proximation leads to an accurate approximation of the optimal importance function even if the optimal

importance function is multimodal. Indeed, although the optimal importance function is multimodal,

only one mode is significant due to the narrowness of the prior distribution of the phase distortions. As

a consequence, the Gaussian approximation fits the optimal importance function.
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