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Abstract Mathematical Morphology proposes to ex-

tract shapes from images as connected components of

level sets. These methods prove very suitable for shape

recognition and analysis. We present a method to select

the perceptually significant (i.e., contrasted) level lines

(boundaries of level sets), using the Helmholtz princi-

ple as first proposed by Desolneux et al. Contrarily to

the classical formulation by Desolneux et al. where level

lines must be entirely salient, the proposed method al-

lows to detect partially salient level lines, thus result-

ing in more robust and more stable detections. We then

tackle the problem of combining two gestalts as a mea-

sure of saliency and propose a method that reinforces

detections. Results in natural images show the good

performance of the proposed methods.
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Fig. 1 Lines are used to convey the outer contours of the
horses in a very similar way in these drawings, one from
15,000 BC (left: Chinese Horse, paleolithic cave painting at
Lascaux, France) and the other from AD 1300 (right: Jen Jen-
fa, detail from The Lean Horse and the Fat Horse, Peking
Museum, China). Reprinted by permission from Macmillan
Ltd: NATURE [11], copyright 2005.

1 Introduction

Shape plays a key role in our cognitive system: in the

perception of shape lies the beginning of concept for-

mation.

Artists have implicitly acknowledged the importance

of shapes since the dawn of times. Indeed, despite that

lines do not divide objects from their background in the

real world, line drawings are present in much of our ear-

liest recorded art and, remarkably, remained unchanged

through history, see Figure 1.

Although art may provide clues to understand shape

perception, it tells us little from the formal point of

view. Let us begin by defining what is a shape.

Phenomenologists [4] conceive shape as a subset of

an image, digital or perceptual, endowed with some

qualities permitting its recognition. In this sense, both

concepts, shape and recognition, are intrinsically inter-

twined: one has to define what is a shape in such a way

that its recognition can be performed.
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Following these lines of thought, gestaltists [2] re-

gard shape perception as the grasping of structural fea-

tures found in or imposed upon the stimulus material.

The Gestalt school has extensively studied phenomena

that unveil and justify this definition [16,35].

Formally, shapes can be defined by extracting con-

tours from solid objects. In this context, shapes are rep-

resented and analyzed from an infinite-dimensional ap-

proach in which a shape is the locus of an infinite num-

ber of points [18]. This point of view leads to the active

contours formulation [17] or to level-sets methods [30].

Although these shapes can be defined in any number of

dimensions, e.g. the contour of a three dimensional solid

object is a surface, we will restrict ourselves to the two

dimensional case, following Lisani et al. [19] and Cao

et al. [6].

We define an image as a function u : R2 → R, where

u(x) represents the gray level or luminance at point

x. Our first task is to extract the topological informa-

tion of an image, independent of the unknown contrast

change function of the acquisition system. This contrast

change function can be modeled as a continuous and in-

creasing function g. The observed data of an image u

might be any such g(u). This simple argument leads to

select the level sets [30], or level lines, as a complete

and contrast-invariant image description [10,9].

Given an image u, the upper level set Xλ and the

lower level set X λ of level λ are subsets of R2 defined

by [9]

Xλ = {x ∈ R2 | u(x) ≥ λ}, (1)

X λ = {x ∈ R2 | u(x) < λ}. (2)

If the image u is lower (resp. upper) semi-continuous,

it can be reconstructed from the collection of its up-

per (resp. lower) level sets by using the superposition

principle [21]:

u(x) = sup{λ | x ∈ Xλ}, (3)

u(x) = inf{λ | x ∈ X λ}. (4)

In the sequel we shall use the term multi-level-line to

denote the boundary ∂X of an upper or lower level set,

and reserve the term level-line to denote a single con-

nected component of a multi-level-line, and following

[25] we use the term shape to denote the interior of a

level-line (when it is a closed Jordan curve, as it is often

the case). Describing the structure of such multi-level-

lines and the corresponding shapes in the continuous

setting requires some precise regularity assumptions [1].

On the other hand for images defined on a regular grid,

and taking a finite number of quantized values, such

conditions are trivially satisfied (see [12]), but we lose

a lot of detail and richness of level-lines of continuous

images. In particular there is no notion of differentia-

bility, which is essential for measuring regularity of a

level line. In this work, to get the best of both worlds,

we opt for an intermediate approach where level-lines

are computed on an interpolated (continuous) version

of the discrete image [8].

A gray-level digital image ud is a discrete function

in a rectangular grid that takes values in a finite set,

typically integer values between 0 and 255. To obtain

a grid independent representation, we can consider an

interpolation u of ud with the desired degree of regu-

larity (i.e., u can be C1, C2, etc.). In this work we use

bilinear interpolation, in which case the aforementioned

regularity conditions are met. Hence the level lines have

the following properties:

– for almost all λ, the multi-level-line ∂Xλ (or ∂X λ)

is composed of a finite set of closed Jordan curves

(that we denote here level-lines);

– no two diferent level-lines cross each other, i.e. the

corresponding shapes are either disjoint or included

in one another. Hence, via set inclusion of the cor-

responding shapes, the level lines form a partially

ordered set.

For extracting the level lines of such a bilinearly in-

terpolated image we make use of the Fast Level Set

Transform (FLST) [25]. Notice that the FLST correctly

handles singularities such as saddle points. We call this

collection of level lines (along with their level) the to-

pographic map.

In general, the topographic map is an infinite set

and so only quantized gray levels are considered, ensur-

ing that the set is finite. Since level-lines are ordered by

the inclusion relation of the corresponding shape, the
topographic map may be embedded in a hierarchical

representation. To make things simple, a level-line Li
is a descendant of another line Lj in the hierarchy if

and only if Li is included in the interior of Lj . Figure 2

depicts a simple example.

The Mathematical Morphology school [21,30] has

extensively studied the topographic map and its level

sets, producing a whole set of tools for image analy-

sis. Smoothing filters, usually described by Partial Dif-

ferential Equations (PDE), can be proven to have an

equivalent formulation in terms of iterated morpholog-

ical operators [15]. Hence, edge detectors can then be

directly expressed by combining these operators.

The previous requirement leads us to define the set

of level lines as a complete and contrast invariant im-

age representation. In apparent contradiction to this

fact, many authors, like Attneave, argue that “infor-

mation is concentrated along contours (regions where

contrast changes abruptly)” [4]. For example, edge de-

tectors, from which the most renowned is Canny’s [5],
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Fig. 2 On the left, original image. On the right, the hierar-
chical representation of the topographic map (L indicates the
gray level).

rely on this fact. In summary, only a subset of the topo-

graphic map is necessary to obtain a perceptually com-

plete description.

The search for perceptually important lines will fo-

cus on unexpected configurations, rising from the per-

ceptual laws of Gestalt Theory [16,35]. From an algo-

rithmic point of view, the main problem with Gestalt

rules is their qualitative nature. Desolneux et al. [13]

developed a detection theory which seeks to provide a

quantitative assessment of gestalts. This theory is of-

ten referred as Computational Gestalt and it has been

successfully applied to numerous gestalts and detec-

tion problems [7,14,29]. It is primarily based on the

Helmholtz principle which states that conspicuous struc-

tures may be viewed as exceptions to randomness. In

this approach, there is no need to characterize the el-

ements one wishes to detect but contrarily, the ele-

ments one wishes to avoid detecting, i.e., the back-

ground model. When an element sufficiently deviates

from the background model, it is considered meaning-

ful and thus, detected.

Within this framework, Desolneux et al. [12] pro-

posed an algorithm to detect contrasted level lines in

gray level images, called meaningful boundaries. Fur-

ther improvements to this algorithm were proposed by

Cao et al. [7].

In this work, we build upon these methods, present-

ing several contributions:

From global to partial curve saliency. The original

meaningful boundaries are totally salient curves (i.e.,

every point in the curve is salient). We propose a mod-

ification that allows detecting partially salient curves

as meaningful boundaries. This definition agrees more

tightly to the observation that pieces of level lines cor-

respond to object contours and also yields more robust

results.

An extended definition of saliency. The criterion

used to establish saliency in the original meaningful

boundaries algorithm is contrast. Cao et al. [7] proposed

to determine saliency as a cooperation of two criteria:

contrast and regularity. We study some theoretical and

practical issues in their formulation. We then present

a new formulation in which both aforementioned crite-

ria compete, instead of cooperating. It is theoretically

sound and yields improved detections, with respect to

the ones obtained by using only contrast. The previous

partial curve saliency criterion proves determinant in

this new formulation.

Strictly speaking, all the proposed algorithms are

only invariant to affine contrast changes. This can be

easily proven when contrast (i.e., the gradient magni-

tude) is used as the saliency measure [6, Lemma 1,

p. 19]. Nevertheless, common contrast changes (e.g.,

gamma correction with γ = 2, see Figure 9) only slightly

affect detections in a predictable and consistent way:

boundaries at luminances where relative contrast was

increased become more meaningful after contrast change,

and conversely for boundaries at luminances where con-

trast was decreased.

As a side note, we point out that there are two re-

maining steps to address in order to develop a complete

shape detection system: smoothing, and geometrical in-

variance. Let us briefly discuss them for the sake of

completeness.

First, during the acquisition, details much too fine

to be perceptually relevant are introduced. It is neces-

sary to use a suitable filtering mechanism. Invariance

to these fine details may be handled by an appropri-

ate smoothing procedure, i.e., the Affine morphological

Scale Space (AMSS) [24] or by a subsequent suitable

shape description method [32].

Second, representations must be invariant to weak

projective transformations. It can be shown that all pla-

nar curves within a large class can be mapped arbitrar-

ily close to a circle by projective transformations [3].

Moreover, full projective invariance is neither percep-

tually real (humans have great difficulties to recognize

objects under strong perspective effects) nor compu-

tationally tractable. In this sense, affine invariance is

the most we can impose in practice. At the same time,

the effect of any optical acquisition system can be mod-

eled by a convolution with a smoothing radial kernel. It

does not commute with projective transformations and

must be taken into account in the recognition process.

A multiscale analysis is the only feasible way to treat

it correctly. Both concepts, affine invariance and mul-
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tiscale analysis are consistently integrated in the work

by Morel and Yu [26].

The aforementioned tools that cover these issues can

be directly applied to the level lines detected by our

method. For a wide perspective of the complete shape

recognition chain see the book by Cao et al. [6].

The paper is structured as follows. In Section 2

we recall the definition of meaningful boundaries and

present a generalization that allows to detect partially

salient curves. In Section 3 we address the combination

of contrast and regularity for the detection of meaning-

ful boundaries. We conclude in Section 4.

2 Meaningful Contrasted Boundaries

Let us begin by formally explaining the meaningful

boundaries algorithm by Desolneux et al. [12].

Let C be a continuous level line of the (bilinearly

interpolated) image u. We consider a discrete sampling

of this curve, and denote it by x0, x1, . . . , xn−1
1. This

particular sampling is chosen to ensure that |Du|(xi)
and |Du|(xi+1) are statistically independent almost ev-

erywhere when pixel values of u are considered to be

independent. The gradient magnitude is computed us-

ing a standard finite difference scheme on a 2×2 neigh-

borhood.

Notation 1 Let Hc be the tail histogram of |Du|, de-

fined by

Hc(µ)
def
=

#{x ∈ u, |Du|(x) > µ}
#{x ∈ u, |Du|(x) > minx∈u |Du|(x)}

, (5)

where Du can be computed by a standard finite differ-

ences scheme on a 2× 2 neighborhood.

Definition 1 (Desolneux et al. [12]) Let C be a finite

set of Nll level lines of u. A level line C ∈ C is a DMM

ε-meaningful contrasted boundary (DMM-MCB) if

NFA(C)
def
= Nll Hc(min

x∈C
|Du|(x))l/2 < ε, (6)

where l is the length of C. This number is called number

of false alarms (NFA) of C.

Actually, l denotes the Euclidean length of the discrete

approximation of C. In [6] the authors assume that

l = 2n, but we found that this approximation is not

accurate enough, which leads us to make here the dis-

tinction between l and 2n.

Algorithm 1 shows a possible procedure to obtain

all ε-meaningful contrasted boundaries.

1 This corresponds to the following 2 steps: i) The inter-
section of the continuous level-line C with the Qedgels of the
image gives a set of m points as explained in [9]. ii) We sample
n = bm/2c points by taking one out of every two points

Algorithm 1: Computation of ε-meaningful

boundaries in image u.

input : An image u and a scalar ε.
output: A set of closed curves Sres.
S ← FLST(u); // Compute the set of level lines

Nll ← #{S};
Compute the tail histogram Hc of |Du|;
Sres ← ∅;
for C ∈ S do

Compute the length l of C;
µ← min

x∈C
|Du|(x);

nfaC ← Nll Hc(µ)l/2;
if nfaC < ε then Sres ← Sres ∪ {C} ;

return Sres;

Background model. Now we shall check the consistency

of Definition 1, namely that, in average, no more than

ε curves are detected by chance. In order to make this

assertion more precise (in Proposition 1 below) we need

to define the (a contrario) statistical background model

that is used to present random input images to the

boundary detector. Following [7,12] we do not directly

introduce a statistical image model, but we only state

the statistical properties that each level line C in the in-

put set E of level lines should satisfy. The actual shape

of the curve does not matter. We only require that a

random gradient value |Du|(xi) be associated to each

of the n regularly sampled points x0, x1, . . . , xn−1 of

C, that these n random variables be independent, and

with the same distribution P (|Du|(xi) > µ) = Hc(µ).

Proposition 1 If E follows the above background model,

the expected number of DMM ε-meaningful contrasted

boundaries in a random set E of random curves is smaller

than ε.

We refer to the work by Cao et al. [7] for a complete

proof.

Proposition 1 allows to interpret the meaningful con-

trasted curves in Definition 1 within a multi-hypothesis

testing framework: namely, the curves detected on an

image u are those that allow to reject the null hypothe-

sis (background model)H0: the values of |Du| are i.i.d.,

and follow the same distribution as gradient magnitude

histogram of the image u itself.

Definition 1 has some drawbacks. On one side, the

use of the minimum or any punctual measure, for the

case, can be an unstable measure in the presence of

noise. On the other side, it demands the curve to be not

likely entirely generated by noise (i.e., well contrasted).

We already stated that pieces of level lines match object

boundaries. Moreover, as seen on Figure 3, the use of

the minimum contrast seems in contradiction with what

we perceive. It is therefore too restrictive to impose such



On the Role of Contrast and Regularity in Perceptual Boundary Saliency 5

Fig. 3 Conceptual consequence of using the minimum con-
trast to detect boundaries. The left image contains a gray
gradient and an uniformly black region on its upper and lower
halves respectively. The right image is constructed by putting
in its upper half the minimum gray level on the left image’s
upper half. If our perception was tuned to use the minimum
contrast to detect the boundary between the two regions, we
would perceive that the image on the right is as contrasted
as the one on the left, which is clearly not the case.

a constraint. Since we search for object boundaries, we

think the natural model is to select level lines that have

well contrasted parts.

2.1 Partially Contrasted Meaningful Boundaries

In this direction, we propose to modify the definition of

the number of false alarms of a curve, to support a new

model where one detects partially contrasted curves.

This modification was briefly introduced in [33] and is

now explained in detail.

Notation 2 Let x0, x1, . . . , xn−1 denote n points of a

curve C of length l. Let s be the mean Euclidean dis-

tance between neighboring points. For x ∈ C denote

by ci (0 ≤ i < n) the contrast at xi defined by ci =

|Du|(xi). We note by µk (0 ≤ k < n) the k-th value of

the vector of the values ci sorted in ascending order.

For k ≤ N ∈ N and p ∈ [0, 1], let us denote by

B(N, k; p)
def
=

N∑
j=k

(
N

j

)
pj(1− p)N−j (7)

the tail of the binomial law. Desolneux et al. present a

thorough study of the binomial tail and its use in the

detection of geometric structures [13].

The regularized incomplete beta function, defined

by

I(x; a, b) =

∫ x
0
ta−1(1− t)b−1dt∫ 1

0
ta−1(1− t)b−1dt

, (8)

is an interpolation B̃ of the binomial tail to the contin-

uous domain [13]:

B̃(n, k; p) = I(p; k, n− k + 1), (9)

where n, k ∈ R. In the case n and k are natural num-

bers B̃(n, k; p) = B(n, k; p). Additionally the regular-

ized incomplete beta function can be computed very

efficiently [28].

Following Meinhardt et al. [22], for a given curve

the probability under H0 that at least k among the n

values cj are greater than µ is given by the tail of the

binomial law B(n, k;Hc(µ)). Thus it is interesting, and

more convenient, to extend this model to the continuous

case using the regularized incomplete beta function

B̃(n · l(s,n), k · l(s,n);Hc(µ)), (10)

where l(s,n) = l
s·n acts as a normalization factor. This

represents the probability under H0 that, for a curve of

length l, some parts with total length greater or equal

than l(s,n)(n− k) have a contrast greater than µ.

Definition 2 Let C be a finite set of Nll level lines of

u. A level line C ∈ C is a TMA ε-meaningful boundary

if

NFAK(C)
def
= Nll K min

k<K
B̃(n·l(2,n), k·l(2,n);Hc(µk)) < ε,

(11)

where K is a parameter of the algorithm. This number

is called number of false alarms (NFA) of C.

The parameter K controls the number of points that

we allow to be likely generated by noise, that is, a curve

must have no more than K points with a “high” proba-

bility of belonging to the background model. It is simply

chosen as a percentile of the total number of points in

the curve. The procedure is similar to Algorithm 1 but

replacing NFA by NFAK .

As usual, Definition 2 is correct if the following

proposition holds.

Proposition 2 The expected number of TMA ε-mean-

ingful boundaries in a finite random set E of random

curves is smaller than ε.

This very important proof is given in Appendix A.1 to

avoid breaking the flow of the discussion.

This new model is an extension of the previous one,

since NFAK=1(C) = NFA(C). In fact, Definition 2 is

no other than a relaxation of Definition 1. We should

expect to have new detections and to detect the same

lines, with increased stability. This comes from the fact

that several punctual measures are used and the min-

imum is taken over their probability. This was experi-

mentally checked and some results can be seen in Sec-

tion 2.3.

We apply the DMM-MCB and TMA-MCB algo-

rithms to an image of white noise, in order to exper-

imentally check that when ε = 1 the number of detec-

tions is in average lower than 1. This is confirmed in
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Figure 4, where the number of detections is actually

zero. Even when ε = 1000, the number of detections

remain very small.

In [7], other modifications are proposed to the ba-

sic meaningful boundaries algorithm. On the one hand,

meaningfulness is computed locally. We will not discuss

this further, since we are only interested in the redefini-

tion of the NFA and its consequences. In any case, our

redefined NFA can also be used in the same local de-

tection process. On the other hand, only level lines that

remain stable across several zoom scalings are detected.

The reason behind this approach is to counter the ef-

fect of small perturbations (i.e., noise) in the image.

Our scheme handles naturally this effect by minimizing

a probability instead of a punctual measure. This was

confirmed in our experiments where multiscale stabi-

lization did not provide any visible improvement.

2.2 Maximal boundaries

Because of interpolation, meaningful boundaries usu-

ally appear in parallel and redundant groups, called

bundles. Since the meaningful level lines inherit the tree

structure of the topographic map, Desolneux et al. [13]

use this structure to efficiently remove redundant bound-

aries. From now on, we work on the tree composed only

of meaningful boundaries.

Definition 3 (Monasse and Guichard [25]) A mono-

tone section of a level lines tree is a part of a branch such

that each node has a unique son and where gray level

is monotone (no contrast reversal). A maximal mono-

tone section is a monotone section which is not strictly

included in another one.

Definition 4 (Desolneux et al. [12]) A meaningful bound-

ary is maximal meaningful if it has a minimal NFA in

a maximal monotone section.

Algorithm 2 depicts the overall proposed procedure.

Figure 5 shows an example of the reduction of the

number of level lines caused by the maximality con-

straint. Parallel level lines are eliminated, leading to

“thinner edges .”

In the following, when we refer to meaningful bound-

aries, both in its DMM or TMA versions, we always

compute maximal meaningful boundaries.

Notice that working with representative curves of

monotone sections has some well-known dangers for

particular configurations that rarely occur in practice.

For example, if the input image contains successively

nested objects of different increasing shades of gray, the

proposed algorithm will detect only one object of each

Algorithm 2: Computation of maximal TMA ε-

meaningful boundaries in image u.

input : An image u, a scalar ε an integer K.
output: A set of closed curves Sres.
S ← FLST(u); // Compute the set of level lines

Nll ← #{S};
Compute the tail histogram Hc of |Du|;
Sres ← ∅;
for C ∈ S do

Compute the length l of C;
n← #{x ∈ C};
µ1, . . . , µK ← the K smallest values of |Du|(x),
x ∈ C;

nfaC ← NllK min
k<K

B̃( l
2
, k · l

2n
;Hc(µk));

if nfaC < ε then Sres ← Sres ∪ {C} ;

// Maximality-based pruning:

repeat
Find an unexplored monotone section SM in the
level lines tree;
CM ← max

C∈SM

nfaC ;

for C ∈ SM do
if C ∈ Sres and C 6= CM then

Sres ← Sres \ {C} ;

until all monotone sections have been explored ;
return Sres;

nested set. Other definitions that explore local max-

ima of some saliency measure along the tree, such as

MSER [20], can be used to correct this issue.

Desolneux et al. [12] also proposed an algorithm

called meaningful edges which aims at detecting salient

(i.e., well contrasted) pieces of level lines. TMA-MCB

can be considered a hybrid of meaningful boundaries

and meaningful edges and presents advantages from

both algorithms. Pieces of level lines belonging to dif-
ferent level lines cannot be compared, since they can

have different positions and lengths. This means that

we cannot compute maximal meaningful edges in the

level lines tree. The TMA-MCB algorithm is able to

detect partially salient curves while retaining compati-

bility with the maximality in the tree. On the other side,

it is possible to compute maximal meaningful edges in-

side a given curve. TMA-MCB, as a provider of the sup-

porting level lines, can be considered a first step towards

finding meaningful edges that are maximal in both di-

rections: in the tree, i.e., orthogonal to the curve, and

along the curve. The extraction of the optimal pieces

in a curve is discussed by Tepper et al. [34].

2.3 Practical implications of the change in the NFA

We now address the following question: is there a funda-

mental difference in practice between DMM-MCB and

TMA-MCB? The answer is that, given an image, this
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Fig. 4 There are 4845004 level lines in the center image of a Gaussian noise with standard deviation 50. By setting ε = 1000,
DMM-MCB detects one boundary (left detail) and TMA-MCB detects two boundaries (left and right details). At ε = 1, both
methods detect zero boundaries.

Fig. 5 Effect of the maximality condition over the meaningful boundaries of an image. On the left, original image; on the
center, DMM-MCB (8987 lines found); on the left, maximal DMM-MCB (517 lines found).

change implies noticeable differences in the detected

curves. Indeed, TMA-MCB are more robust since the

NFAs attained are much lower. Taking the minimum of

probabilities is also more stable than taking the mini-

mum on any punctual measure, see Figure 6.

In some cases, by relaxing the meaningfulness thresh-

old in DMM-MCB, that is setting ε > 1, visually bet-

ter results can be achieved. More level lines are kept,

but at the expense of having lower confidence on them.
The key advantage with TMA-MCB is that, for a given

threshold for ε, less visually salient level lines are dis-

carded.

One of the possible arguments against TMA-MCB

could be that it is no more than a shift of the thresh-

old on the NFA of DMM-MCB. Specifically, that there

exists a threshold ε′ > ε for which DMM-MCB and ε′

would be the same as TMA-MCB and ε. However, the

assertion is clearly false, as shown in Figure 7.

In many applications (e.g., scene reconstruction, im-

age matching), underdetection is far more dangerous

than overdetection. Losing structure is critical as it can

end-up in a total failure. Detection noise can always be

handled (or even tolerated) when the amount of noise

does not occlude information, as in our case. TMA-

MCB has an advantage over DMM-MB in this respect2.

This is experimentally checked in all examples, even if

2 Note however that overdetection might have as well a
huge detrimental impact in other applications.

the difference is more striking in some examples than

in others.

Figure 8 shows the numerical robustness attained

with TMA-MCB. The visually important boundaries

in the image have a much lower NFA with TMA-MCB

than with DMM-MCB.

Lastly, let us comment on the robustness of TMA-

MCB to contrast changes. The method is invariant to
affine contrast changes [6, Lemma 1, p. 19]. Nonethe-

less, the method exhibits reasonable results when non-

affine contrast changes are used, as observed in Fig-

ure 9. In this case, we applied two different gamma

corrections (γ = 0.5 and γ = 2). The vast majority of

the detected level lines remains the same, whereas dif-

ferences can be perceived mainly in the areas where the

contrast of the original image was small.

3 Combining contrast and good continuation

As already stated, in natural images contrasted bound-

aries often locally coincide with object edges. Thus,

they are also incidentally smooth. Active contours [17]

rely on this combination of good contrast and smooth-

ness to provide well localized contours. In this section,

we reprise the work by Cao et al. [7] and study the possi-

ble influence of smoothness in the a contrario detection

process. We conclude that regularity plays an impor-
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image dmm-mcb tma-mcb
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Fig. 6 Noise contamination example. The image on the bottom left is contaminated by a small amount of noise. DMM-MCB
takes a minimum of punctual measures, thus its result is affected. On the counterpart, result with TMA-MCB is less affected,
as it deals with probabilities. Notice that here no smoothing is performed previous to detection, contrarily to the original
implementation of the meaningful boundaries algorithm [12].

image dmm-mcb (ε = 10−10) dmm-mcb (ε = 1) tma-mcb (ε = 10−10)

Fig. 7 Definition 2 is not merely a shift of the threshold on the NFA from Definition 1: even relaxing the threshold to its limit
(ε = 1), the result with the old method remains roughly the same. A lot of structure missed with Definition 1 is recovered with
Definition 2.

ε = 10−10 ε = 10−50 ε = 10−80

d
m
m
-m

c
b

t
m
a
-m

c
b

Fig. 8 Comparison between the stability of DMM-MCB and TMA-MCB. Much lower NFAs are attained with the latter in
lines which are visually relevant.
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image gamma correction gamma correction
(γ = 0.5) (γ = 2)

Fig. 9 Although TMA-MCB is only invariant to affine contrast changes, it is quite stable to deviations from this model. From
left to right, the number of detected lines is 248, 220, 253, respectively. Differences mainly occur in areas where the original
image is poorly contrasted.

tant role in the improvement of the quality of the ob-

tained detections. This reinforcement phenomenon and

the fact that each partial detector can detect most im-

age edges prove a contrario that contrast and regularity

are not independent in natural images.

Let C be a rectifiable planar curve, parameterized

by its length. Let l be the length of C and x = C(τ) ∈
C. Without loss of generality, we assume that τ = 0.

Definition 5 (Cao et al. [7]) Let s > 0 be a fixed pos-

itive value such that 2s < l. We call regularity of C at

x (at scale s) the quantity

Rs(x) =
max(|x− C(−s)|, |x− C(s)|)

s
, (12)

where |xi − xj | represents the Euclidean distance be-

tween xi and xj .

Figure 10 visually explains the pertinence of this def-

inition. Only when one of the subcurves C((−s, 0)) or

C((0, s)) is a line segment, Rs(x) = 1; in all other cases

Rs(x) < 1. When s is small enough, regularity is in-

versely proportional to the curve’s curvature around

x [7].

The question about the choice of s arises naturally

and was studied in detail by Cao et al. [7] and Musé [27].

We will limit ourselves to state that a larger value of

s (thus at less local scale of analysis) is more robust

to noise. On the other side, s should not be too large

either. In practice, and following Cao et al. [7] one may

x = C(0)

C(−s)

C(s)

s×Rs(x)

Fig. 10 Reproduced from the work by Cao et al. [7]. The
regularity at x is obtained by comparing the radius of the
circle with s. The radius is equal to s if and only if the curve
is a straight line. If the curve has a large curvature, the radius
will be small compared to s.

safely set s = 5, which is the value we use in our exper-

iments.

Let us denote by Hs(r) the distribution of the reg-

ularity in white noise level lines, i.e.,

Hs(r) = P
(
Rs(x) > r, x ∈ C,

C is a white noise level line
)

, (13)

which depends only on s and can be empirically esti-

mated.

Again, the curve detection algorithm consists in ad-

equately rejecting the null hypothesis H0: the values of
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|Rs| are i.i.d., extracted from a noise image. We assume

that, in the background model, contrast and regularity

are independent.

Let us forget for the moment the issues associated

with the use of extremal (the minimum) statistics, dis-

cussed in Section 2.

Definition 6 Let C be a level line in a finite set C of

Nll level lines of image u. Let

µ = min
x∈C
|Du|(x),

ρ = min
x∈C

Rs(x)

be respectively the minimal quantized contrast and reg-

ularity along C. The level line C is a DMM ε-meaningful

regular boundary (DMM-MRB) if

NFAR(C)
def
= Nll Hs(ρ)l/2s < ε. (14)

The level line C is a DMM ε-meaningful contrasted

regular boundary (DMM-MRB) if

NFACR(C)
def
= Nll max

(
Hc(µ)l, Hs(ρ)l/s

)
< ε. (15)

Remark 1 Cao et al. [6] provided the following defini-

tion of meaningful contrasted regular boundaries:

NFACR(C)
def
= Nll Hc(µ)l/2 Hs(ρ)l/2s < ε. (16)

Unfortunately, they do not prove that the expected

number of ε-meaningful contrasted regular boundaries

in a finite set of random curves is smaller than ε. This

fact is annoying since the threshold ε is emptied of
meaning. It is not by any means an easy proof and

we have not found a solution yet. However, we have

proven that by slightly changing their definition in the

following manner

NFACR(C)
def
= Nll Hc(µ)l

2/2s Hs(ρ)l
2/2s, (17)

a proof can be built [31].

Although theoretically sound, meaningful contrasted

regular boundaries defined by Equation 17 do not pro-

vide satisfactory results. This is a consequence of using

the exponent l2. With respect to DMM-MCB (Defini-

tion 1, p. 4) and even if the regularity term has high

probability (say one), raising the contrast term to a

much larger power will shift the NFA of all curves to-

wards zero. Irregular curves that were not meaning-

ful by their contrast, might become meaningful regu-

lar boundaries. This is certainly an unwanted side ef-

fect. �

Definition 6 exhibits some interesting properties:

– A contrasted but irregular curve will not be de-

tected;

– A regular but non-contrasted curve will not be de-

tected;

– An irregular and non-contrasted curve will not be

detected;

– A regular and contrasted curve will be detected.

Both gestalts, i.e., contrast and good continuation, in-

teract in a novel way: instead of cooperating by rein-

forcing each other, as in Equation 17, they compete for

the “control” of the curve. As the exponent in the con-

trast term is greater than the exponent in the regularity

term (l > l/s), the contrast term will in general dom-

inate the detections and the regularity will act as an

additional sanity check.

The shifting phenomenon mentioned in the above

remark will still be present. However, 2l is much less ag-

gressive than l2 and its effect will be doubly mitigated:

(1) since l� 2 and (2) because of the controlling effect

of using the maximum.

Since TMA-MCB is a relaxed version of DMM-MCB,

we profit from such knowledge and also relax the defini-

tion of meaningful contrasted regular boundaries. This

relaxation will prove particularly relevant for the con-

trasted regular case.

Definition 7 Let C be a finite set of Nll level lines of

u. A level line C ∈ C is a TMA ε-meaningful contrasted

regular boundary (TMA-MCRB) if

NFACR
K (C)

def
= Nll Kc Ks max

 min
k<Kc

Ic(C, k)2

min
k<Ks

Is(C, k)2

 < ε,

(18)

where

Ic(C, k) = B̃(n · l(2,n), k · l(2,n);Hc(µk)),

Is(C, k) = B̃(n · l(2s,n), k · l(2s,n);Hs(ρk)),

and Kc and Ks are parameters of the algorithm. This

number is called number of false alarms (NFA) of C.

Here Kc and Ks have the same meaning as K in

Definition 2 and they are also set as a percentile of the

total number of points in the curve.

Proposition 3 The expected number of TMA ε-mean-

ingful contrasted regular boundaries in a finite set E of

random curves is smaller than ε.

This very important proof is given in Appendix A.2 to

avoid breaking the flow of the discussion.

For completeness, we provide the following defini-

tion.
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Definition 8 Let C be a finite set of Nll level lines of

u. A level line C ∈ C is a TMA ε-meaningful regular

boundary (TMA-MRB) if

NFAR
K(C)

def
=

Nll Ks min
k<Ks

B̃(n · l(2s,n), k · l(2s,n);Hs(ρk)) < ε, (19)

and Ks is a parameter of the algorithm. This number

is called number of false alarms (NFA) of C.

As a sanity check, we apply the DMM-MCRB and

TMA-MCRB algorithms to an image of white noise.

We would expect that when ε = 1 the number of de-

tections is in average lower than 1. This is checked in

Figure 11, where the number of detections is actually

zero. Even when ε = 1000, the number of detections

remain negligible.

An immediate objection to the use of regularity

might be: since high curvature points are often regarded

as very meaningful perceptually [4], why such an em-

phasis in discarding them? The answer is also imme-

diate: we detect partially contrasted and regular level

lines. Hence, a curve containing a relatively small num-

ber of high curvature points will be detected by TMA-

MCRB but not by DMM-MCRB. In this scenario, these

high curvature points will become more surprising, be-

cause of their seldomness, and thus meaningful.

The procedure for finding maximal meaningful reg-

ular or contrasted regular boundaries is similar to Al-

gorithm 2, replacing NFA by NFAR
K or NFACR

K , respec-

tively.

3.1 Discussion

We will now examine the results of the proposed com-

petition between contrast and good continuation.

The benefits of using meaningful contrasted regular

boundaries are clear in Figure 12. In both examples,

only using contrast produces an overdetection (level

lines are detected in areas with texture, e.g. the veg-

etation on the left, or exhibiting a slight gradient, e.g.

the sky and the dome on the right) while only using

good continuation produces an underdetection (e.g. the

bridge on the left and the bell on the right). The com-

bination of both gestalts corrects the issues by keeping

the best from both worlds: most undesired level lines

disappear (e.g. the vegetation on the left and the sky

on the right) while the desired ones are kept (e.g. the

bridge on the left and the bell on the right).

Although more complicated to analyze, Figure 13

further supports our claims. See the detail on Harrison

Ford’s sleeve: it is completely lost by using contrast,

partially recovered by using good continuation and well

recovered by combining them.

It is important to point out that in general, good

continuation has a predominant effect over contrast. In

the depicted examples, meaningful contrasted bound-

aries have lower NFAs than meaningful smooth ones.

This explains the visual effect that we perceive when

looking at the results: contrasted regular boundaries

are basically regular boundaries reinforced by some con-

trasted parts.

The example in Figure 14 is a real scene, extremely

complicated from the edge detection point of view. In

any case, all results are globally satisfactory. Notice-

able differences between the methods are perceived by

looking at the signs containing letters.

We lastly compare TMA-MCRB with DMM-MCRB

in Figure 15. As already stated TMA-MCB often de-

tects more structure than DMM-MCB (second and third

rows). This effect is amplified in DMM-MCRB, and

can lead to severe underdetections (fourth row). On

the other hand, the relaxation present in the TMA ver-

sion allows to recover the structure more faithfully(fifth

row), albeit some mild overdetections.

4 Conclusions

This work presents a novel contribution to the field

of image structure retrieval. We think that the topo-

graphic map is an extremely well suited theoretical frame-

work to perform that task. Mathematical Morphology

has proved this in depth and extension with the work

it developed. In that direction, we based our work on

the algorithm called Meaningful Boundaries [13], intro-

ducing a few deep modifications that help improve the

results.

First, the criterion of meaningfulness was relaxed.

In the new definition, a level line can have a non-causal

piece and still be considered perceptually important.

We also provide an intuitive parameter that allows to

deal with the length of that piece.

Second, we analyze the interaction of two funda-

mental cues for the perception of contours: contrast and

regularity. We propose a new way of combining these

features in which they compete for the control of the

boundary saliency. Experiments show the suitability of

this combination strategy.

Examples of the resulting image structure retrieval

method were presented, soundly showing that its the-

oretical advantages are also validated in practice. The

proposed method increases significantly the robustness

and the stability of the detections.

As a final remark, the maximality constraint presents

some issues. All the packets of parallel level line pieces
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Fig. 11 There are 4845004 level lines in the left image of a Gaussian noise with standard deviation 50. By setting ε = 1000,
DMM-MCRB detects zero boundaries and TMA-MCRB detects two boundaries forming a packet (right detail). At ε = 1, both
methods detect zero boundaries.
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Fig. 12 Comparison of TMA-MCB (Definition 2), TMA-MRB (Definition 8), and TMA-MCRB (Definition 7).
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image tma-mcb

tma-mrb tma-mcrb

Fig. 13 Comparison of TMA-MCB (Definition 2), TMA-MRB (Definition 8), and TMA-MCRB (Definition 7).

are not eliminated by it. The exploration of another

kind of algorithm based on maximality along the gra-

dient direction might help to eliminate this effect [23].

A Proofs

A classical lemma will be needed in the following.

Lemma 1 Let X be a real random variable. Let F (x) = Pr(X ≤
x) be the repartition function of X. Then, for all t ∈ (0, 1),

Pr(F (X) < t) ≤ t.

In the same way, let H(x) = Pr(X ≥ x). Then for all t ∈ [0, 1],

Pr(H(X) < t) ≤ t.

A.1 Meaningful Contrasted Boundaries

This section proves that TMA-MCB (see Definition 2, p. 5)
are theoretically correct. As usual, being correct means that
the following proposition holds.

Proposition 4 The expected number of TMA ε-meaningful bound-

aries in a finite set E of random curves is smaller than ε.

Proof For this proof we follow the scheme from Proposition 12
in [6].

For all k, let us denote by Lk the random length of the
pieces of C such that |Du| ≥ µk. From Definition 2, any curve
C is ε-meaningful if there is at least one 0 ≤ k < K such that
Nll K B̃(n · l(2,n), Lk;Hc(µk)) < ε. Let us denote by E(C, k)
this event and recall that all probabilities are under H0:

Pr(E(C, k))
def
= Pr

(
B̃(n · l(2,n), Lk;Hc(µk) <

ε

Nll K

)
.
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image tma-mcb

tma-mrb tma-mcrb

Fig. 14 Comparison of TMA-MCB (Definition 2), TMA-MRB (Definition 8), and TMA-MCRB (Definition 7).

From Lemma 1, we denote

X = Lk S(x) = B̃(n · l(2,n), x;Hc(µk))

t =
ε

Nll K
Pr(S(X) < t) = Pr(E(C, k))

and finally

Pr(E(C, k)) ≤
ε

Nll ·K
.

The event defined by “C is ε-meaningful” is

E(C) =
⋃

0≤k<K

E(C, k).

Let us denote by EH0
the mathematical expectation under

H0. The expected number of ε-meaningful curves is defined
as EH0

(∑
C∈C 1E(C)

)
where 1A is the indicator function of

the set A. Then

EH0

(∑
C∈C

1E(C)

)
≤

∑
C∈C

0≤k<K

Pr (E(C, k)) ≤
∑
C∈C

0≤k<K

ε

Nll ·K
= ε.

ut

A.2 Meaningful Contrasted Regular Boundaries

TMA ε-meaningful boundaries (see Definition 7, p. 10) are
correct is the following proposition holds.

Proposition 5 The expected number of ε-meaningful contrasted
regular boundaries, obtained with Definition 7, in a finite random

set E of random curves is smaller than ε.

Proof The same assumptions from the previous proof hold.

Let Xi = 1Ci is meaningful and N = #E. Let us denote
by EH0

the mathematical expectation under H0. Then

E

(
N∑

i=1

Kc∑
k=1

Ks∑
k′=1

Xi

)
=

E

(
E

(
n∑

i=1

kc∑
k=1

ks∑
k′=1

Xi | N = n,Kc = kc,Ks = ks

))
. (20)

We have assumed that N is independent from the curves and
Kc, Ks are input parameters. Thus, conditionally to N = n,
the law of

∑N
i=1Xi is the law of

∑n
i=1 Yi where

Yi = 1
nkc ks max

(
min0≤k<kc

Ic(Ci,k)2, min
0≤k′<ks

Is(Ci,k′)2
)
<ε
.

By the linearity of expectation

E

(
n∑

i=1

kc∑
k=1

ks∑
k′=1

Xi

)
= E

(
n∑

i=1

kc∑
k=1

ks∑
k′=1

Yi

)
(21)

=
n∑

i=1

kc∑
k=1

ks∑
k′=1

E (Yi) . (22)



On the Role of Contrast and Regularity in Perceptual Boundary Saliency 15
im

a
g
e

d
m
m
-m

c
b

t
m
a
-m

c
b

d
m
m
-m

c
r
b

t
m
a
-m

c
r
b

Fig. 15 Comparison of DMM-MCB, TMA-MCB, DMM-MCRB, and TMA-MCRB. DMM-MCRB may produce severe under-
detections.

Since Yi is a Bernoulli variable,

E(Yi) = Pr(Yi = 1) =

= Pr

nkc ks max

 min
0≤k<kc

Ic(Ci, k)2

min
0≤k′<ks

Is(Ci, k
′)2

 < ε


=
∞∑
l=0

Pr

nkc ks max

 min
0≤k<kc

Ic(Ci, k)2

min
0≤k′<ks

Is(Ci, k
′)2

 < ε
∣∣∣ Li = l


· Pr(Li = l). (23)

Let us finally denote by α1 . . . αl the l independent values of
|Du| and γ1 . . . γl/s the l/s independent values of |Rs|. Again,

we have assumed that Li is independent of the gradient and
regularity distributions in the image. Thus conditionally to
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Li = l,

Pr

nkc ks max

 min
0≤k<kc

Ic(Ci, k)2

min
0≤k′<ks

Is(Ci, k
′)2

 < ε | Li = l

 =

= Pr

nkc ks max

 min
0≤k<kc

Ic(Ci, k)2

min
0≤k′<ks

Is(Ci, k
′)2

 < ε

 =

= Pr

max

 min
0≤k<kc

Ic(Ci, k)

min
0≤k′<ks

Is(Ci, k
′)

 <

(
ε

n kc ks

)1/2
 =

= Pr

(
min

0≤k<kc

Ic(Ci, k) <

(
ε

n kc ks

)1/2
)
·

Pr

(
min

0≤k′<ks

Is(Ci, k
′) <

(
ε

n kc ks

)1/2
)

. (24)

From proof of Proposition 2,

Pr

(
min

0≤k<kc

Ic(Ci, k) <

(
ε

n kc ks

)1/2
)
·

Pr

(
min

0≤k′<ks

Is(Ci, k
′) <

(
ε

n kc ks

)1/2
)
≤

≤
(

ε

n kc ks

)1/2(
ε

n kc ks

)1/2

=
ε

n kc ks
. (25)

Finally

E(Yi) ≤
ε

n kc ks
⇒

n∑
i=1

kc∑
k=1

ks∑
k′=1

E(Yi) ≤ ε. (26)

ut
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