
HAL Id: hal-00796397
https://imt.hal.science/hal-00796397

Submitted on 17 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Probabilistic Flooding for Multi-path Routing
Christophe Betoule, Thomas Bonald, Remi Clavier, D. Rossi, Giuseppe

Rossini, Gilles Thouenon

To cite this version:
Christophe Betoule, Thomas Bonald, Remi Clavier, D. Rossi, Giuseppe Rossini, et al.. Adaptive
Probabilistic Flooding for Multi-path Routing. IFIP NTMS, May 2012, Istanbul, Turkey. pp.1-6.
�hal-00796397�

https://imt.hal.science/hal-00796397
https://hal.archives-ouvertes.fr

Adaptive Probabilistic Flooding
for Multipath Routing

Christophe Betoule2, Thomas Bonald1, Remi Clavier2, Dario Rossi1, Giuseppe Rossini1,†, Gilles Thouenon2

1 Telecom ParisTech, Paris, France

firstname.lastname@telecom-paristech.fr († corresponding author)
2 Orange Labs, Lannion, France

firstname.lastname@orange-ftgroup.com

Abstract—In this work, we develop a distributed routing
algorithm for topology discovery, suitable for ISP transport
networks, that is however inspired by opportunistic algorithms
used in ad hoc wireless networks. We propose a plug-and-play
control plane, able to find multiple paths toward the same
destination, and introduce a novel algorithm, called adaptive
probabilistic flooding, to achieve this goal. By keeping a small
amount of state in routers taking part in the discovery process,
our technique significantly limits the amount of control messages
exchanged with flooding – and, at the same time, it only minimally
affects the quality of the discovered multiple path with respect
to the optimal solution. Simple analytical bounds, confirmed by
results gathered with extensive simulation on several topologies
(up to 10,000 nodes), show our approach to be of high practical
interest.

I. INTRODUCTION

Scaling layer-2 protocols to very large networks [1] let
enterprises deal with simpler and less expensive hardware,
which translates in lower capital expenditures and management
costs. Every solution proposed so far tries to get, from one
side, a scalable architecture in which packets are routed on the
shortest path; on the other side, such architecture should be
flat [2], self-configuring and possibly self-healing [3]. Many
works address this tradeoff, proposing different routing and
forwarding schemes, trying to seamlessly fill the gap between
local and wide area protocols: Viking [4], SEATTLE [5],
PortLand [3] represent few recent examples of research efforts
in this direction.
The routing process of such architectures is usually divided

in two parts: the host routing process [5] aims at resolving each
host to a single switch; then, the switch routing process let each
core machine learn the best path to the other switches [6].
The latter process, to which we focus in the following,
is commonly addressed [3]–[5] with a link-state algorithm
(similar to OSPF or IS-IS) implemented at layer-2, and that
generally yields a single, shortest, path to any other switch
(with the exception of [4] that also keeps a backup tree).
We believe that using a link state algorithm at layer-2

is not the best choice. First, link state decouples topology
distribution and routes computation –in the sense that all
topological information needs to be received by all nodes prior
that the routing table can be computed– which represents a
useless waste of time. Then, notice that the core routing table

computation algorithm is represented by Dijkstra algorithm,
that results in a O(NlogN) complexity. However, Dijkstra
only provides a single shortest path between any nodes pair,
while additional paths computation produces even higher com-
putational complexity (though still polynomial).

In this work, we propose Adaptive Probabilistic Flooding
(APF) as a simpler solution to the aforementioned problem
of switch routing, which takes an alternative approach for the
computation of multiple disjoint paths. Aiming at simplicity,
we devise a distributed greedy algorithm that drops com-
putational complexity still remaining (almost) stateless and
self-terminating. In our design, simplicity tradeoffs with the
communication cost, as APF generates an higher number of
messages with respect to link state algorithms. At the same
time, we can tune (and analytically bound) the number of
messages thanks to a simple parameter that drives the speed of
the probabilistic procedure. Moreover, by means of simulation
on several topologies (up to 10,000 nodes), we show that, with
as few as 2-3 times more messages that a link state algorithm,
APF is able to find the shortest path and optimal backup
path in more than 90% of the cases. In the remaining 10%
of the cases, non-optimality is due to a limited amount of
overlap between primary and secondary paths (about 1 node
on average).
The rest of the paper is organized as follows. Related work

is presented in Sec. II. The Adaptive Probabilistic Flooding
(APF), a path discovery algorithm, is described in Sec. III.
Sec. IV is devoted to the performance analysis, where we
provide analytical bounds for the number of messages, and
simulation results for the APF path quality. Finally, Sec. V
concludes the paper and outlines future work.

II. RELATED WORK

Our work focuses on two seemingly conflicting aspects: (i)
abating routing algorithms complexity, to make them suitable
for layer-2 devices (e.g., Ethernet-like switches), and (ii)
enabling multi-path features. In this section, we explore the
closest related work in both areas.
The first topic, i.e., the desing of light-weight routing

protocol has been addressed mostly in wireless area [7]–
[10]. DSR [7] greedy determines routes by means of packet
flooding, employing a TTL to limit the flooding depth. When

a control message reaches the destination, it is sent back
to the origin that thus discovers a path toward the target.
In sensor-networks, SCOUT [8], routing in a hierarchy of
sensors, follows a classical landmark routing [9] scheme. In
VRR [10] instead, the whole topology is arranged as a DHT,
and the forwarding is done accordingly. However, solutions
like [7], [8], [10] rely heavily on the notion of broadcast,
so they are not directly applicable in a wired environments.
Among them, the closest approach to ours is [7], which does
not offer multiple paths and is moreover critically affected by
TTL tuning (unlike our proposed APF approach, as we shall
see in Sec. III).
The second branch of work close to ours [11]–[18] ad-

dresses the multipath problem. In wireless networks, a mul-
tipath extension to DSR is proposed in [11], where authors
employ a reactive flooding algorithm, in which the TTL is
gradually increased in order to find more than just one single
response. However, while gradual TTL increase is able to pro-
vide multiple paths and is more robust to wrong TTL settings,
it brings two shortcomings, namely a (i) slower convergence
of the routing process, and a (ii) higher number of control
messages. In wired network, the multipath problem is often
treated jointly with traffic routing in the data plane, solving
a multi-commodity flow problem [12] where, given a traffic
matrix and a topology, the objective is find the routing that
minimizes network congestion. Another class of work closest
to ours focuses instead on control-plane topology discovery
[13]–[18]. The simplest link state extension to multipath is
Equal Cost Multiple Paths (ECMP) [13], that splits traffic
on different shortest paths (if there exist) between each pair
of nodes. Other works relax the hypothesis of equal cost,
and develop algorithms to find k shortest paths on any given
graph [14], [15]. Addressing multiple different paths (i.e.,
not necessarily the k shortest ones), [16] proposes a link
state algorithm, modifying the downstream criterion to avoid
loops. Notice however that, while path computation still faces
the delay due to link state advertisement, the computation
of alternative paths also adds further complexity beyond the
O(NlogN) Dijkstra cost (respectively, O(E+NlogN+k) in
[14], O(k(E+NlogN)) in [15] and O(E2) in [16]). Finally, a
different approach from link state algorithms is taken, e.g., in
[17], [18], that employs distributed Ant Colony Optimization
(ACO) algorithms, based on swarm intelligence. In [17], [18]
a set of ants is spread through the network in order to discover
disjoint multiple paths, and the pheromone left by the ants is
employed in order to avoid already crossed paths. In this case
however, the shortcoming is that the routing process is not
guaranteed to converge to the shortest path (unlike APF).

III. PATH DISCOVERY ALGORITHM

In this work, we propose Adaptive Probabilistic Flooding
(APF), a simple algorithm for multi-path topology discovery.
Summarizing the main differences with related literature, APF
sits at a different operational point in the tradeoff between
algorithmic complexity vs. control message overhead. Unlike
in link state algorithms [13]–[16], since in our approach the

whole traveled path accumulates in the control message as
in [7], [11], every message brings useful information for path
discovery, that can thus be computed online. At the same time,
unlike in [7], [11], our algorithm does not rely on critical
parameters such as TTL. Furthermore, the actions that need to
be taken to handle each message are simple operations, making
thus the algorithm viable on simple hardware. Finally, unlike
[17], [18], the algorithm is guaranteed to find the shortest
path, and as our simulation results confirm, the secondary path
is very often the optimal one found by [14], [15] link state
algorithms.

A. Overview

We aim at designing a distributed algorithm for path dis-
covery, capable of finding multiple, possibly disjoint paths
between any pairs of nodes. To do so, each node periodically
advertises its presence by means of some flooding procedure
described below. Specifically, each node sends an advertise-

ment message every τa seconds; typical values range from a
few seconds to minutes [19].
During the flooding procedure, each relay node adds its

identifier to the advertisement messages it receives, so that
these messages carry information concerning the whole trav-
eled path. Upon the reception of an advertisement message,
a node learns a path from the source of this message, as
well as from any intermediate node on this path, as in [7].
Flooding decisions are taken independently by each node, and
constitute the core of the algorithm. The main idea is that
nodes need to flood a received message at least once, so that
shortest paths are discovered. Nodes actually need to flood
the message multiple times, in order to discover further paths
beyond the shortest one. The number of flooding decisions is
critical with respect to both the quality of the path discovery
and the overhead of the algorithm.
A simple option [7], [11] could consist in including a Time

To Leave (TTL) field in the packet, so as to interrupt the flood-
ing process when some pre-configured maximum path length
is reached. The selection of a proper TTL value is critical in
this case: if the TTL is shorter than the graph diameter D for
instance, then connectivity cannot be guaranteed; if the TTL is
too large, the overhead of the algorithm becomes prohibitive
(as the number of relayed messages is exponential in the TTL).
We propose an alternative approach based on adaptive

probabilistic flooding. Any node receiving some advertisement
message from source s floods this message the first time, and
floods it with some decreasing probability the following times.
Specifically, node i floods an advertisement message generated
by source node s over all its links (except the one from which
it has received the message) with probability:

P = βni,s (1)

where β is some fixed parameter and ni,s is a counter, stored
at node i, of the number of times node i has already received
an advertisement originated by node s. The flooding decisions
are taken independently on each link, and the counter is reset
periodically, as explained later. Note that node i floods the

first advertisement message it receives for source node s since
ni,s = 0 in this case. As further messages are received,
flooding will become exponentially less likely, according to
the backoff parameter β. Note also that, if we set β = 0
APF produces the same number of messages of a link state
algorithm for propagating the network topology. The quality
of the path discovery is expected to increase with β, at
the expense of larger overhead. However, we shall see that
performance is not very sensitive to this parameter, and rather
degrades gracefully with parameter misguidance, which makes
the algorithm robust and practically interesting.

B. Primary and secondary paths

Consider a network, modeled as an undirected graph G =
(E, V), composed of |V | = N routers, in which any pair of
adjacent routers are connected by a single link for simplicity
(the algorithm can be easily extended to the general case of
multiple links between any pair of nodes). Between any two
routers i, j ∈ V , we are interested in finding a pair of paths,
i.e., sequences of edges connecting node i to j. We denote
by P and S the primary and secondary paths, respectively,
returned by the adaptive probabilistic algorithm on graph G 1.
We denote by Lp and Ls the respective lengths of these paths.
To gauge the quality of the primary and secondary paths

found by our algorithm, we need to define target path prop-
erties. The primary path is expected to be the shortest path
in number of hops; in other words, we say that P is optimal
if it belongs to the set of shortest paths from i to j in G
(as there may be several such paths). The secondary path is
expected to minimize the similarity with the primary path,
P∩S. Note that this choice reduces the share of faith between
these paths, improving network resilience against failures and
traffic surges.
To find the optimal secondary path S, we consider a modi-

fied graph G′ in which the cost of links along the primary path
P are increased by the network diameter [20], and other link
costs are unitary. As links belonging to P are now discarded
due to higher cost, running Dijkstra on G′ we retrieve a path
S ′ minimizing the similarity function P ′∩S ′ (notice that since
nodes along the primary path are not removed from G′, they
can be included in S ′ only if strictly necessary as the path
would otherwise be disconnected). We say that the secondary
path found by the algorithm S is optimal if |P∩S| = |P ′∩S ′|
and Ls = Ls′ , i.e., the length Ls of the secondary path is equal
to the length Ls′ of the optimal S ′ (as there may be multiple
disjoint paths minimizing the similarity with the shortest path).

C. Pseudocode

A pseudocode description of the algorithm is given in Fig. 1.
A source node s initiates the advertisement process by flooding
an advertisement packet ADV to all its neighbors. The flooded
packet contains a list of node identifiers ID, initially set to
ID[0]=s by the source, to which each node appends its own
identifier. Upon reception of an advertisement packet ADV,

1The aggregation of primary and secondary paths at a given node, forms
two distinct trees of the network, as in [4].

1: while {receiving message ADV} do
2: !← length(ADV.ID)
3: for all { i ∈ [0, !] } do
4: if {ADV.ID[i] = j} then
5: exit // Break loop and abort flooding
6: else
7: d ← ADV.ID[i] // Destination
8: Lj,d←(ADV.ID[!], . . . ,ADV.ID[i])

// Overhearing advertised paths from ADV;
9: if { !Pj,d ∨ length(Lj,d) < length(Pj,d)}

then
10: Pj,d ← Lj,d // Update primary path
11: end if
12: if {!Sj,d ∨ |Pj,d ∩ Lj,d| < |Pj,d ∩ Sj,d| ∨

(|Pj,d ∩ Lj,d| = |Pj,d ∩ Sj,d| ∧ length(Lj,d) <
length(Sj,d))} then

13: Sj,d ← Lj,d // Update secondary path
14: end if
15: end if
16: end for
17: append j to ADV.ID
18: s ← ADV.ID[0] // Source
19: for all {next ∈ neighbors(j) } do
20: if { next &= ADV.ID[!− 1] } then
21: send ADV to next w.p. βns

// Adaptive probabilistic flooding
22: end if
23: end for
24: ns++ // Update counter associated with source s
25: end while

Fig. 1. Algorithm pseudocode for a generic node j of the network

a node learns a (backward) path to the source s and to any
intermediate node d = ADV.ID[i] along the path. In case the
receiver j detects a loop (finding its identifier within the ID
list), it discards the message and aborts the flooding procedure.
Otherwise, it analyzes, and possibly stores, the newly learned
path Oj,d. Specifically, the primary (and secondary) path is
first set if not existent yet. Also, if the newly overheard path
is shorter than the primary path length(Lj,d) < length(Pj,d),
then the primary path is updated with the overheard one.
Similarly, if the overheard path has lower similarity than
the current secondary path |Pj,d ∩ Lj,d| < |Pj,d ∩ Sj,d|, or
if it has equal similarity but is shorter than the secondary
|Pj,d ∩ Lj,d| = |Pj,d ∩ Sj,d| ∧ length(Lj,d) < length(Sj,d),
then the secondary path is updated.

Finally, after having added its own identifier to the
ADV.ID, the node probabilistically floods the ADV message,
with independent decisions per each neighbor (except the node
ADV.ID[#-1] from which the message came), and updates the
per-source counter ns. Not shown in the pseudocode for the
sake of simplicity, ties in the secondary path selection are
broken at random.

Notice that, we expect (i) messages on the shortest path
to reach a node before messages that take longer paths. This
definitively holds in case of homogeneous delay; otherwise,
it may happen that (ii) messages traveling along the quickest

path arrive first, which would be then stored as primary path;

TABLE I
TOPOLOGICAL PROPERTIES OF THE NETWORK SCENARIOS

Network Segment N δ σ D D′

Tiger2 metro 22 3.6 0.6 5 6
Geant aggregation 22 3.4 1.4 6 10
Abilene core 11 2.6 0.5 5 8
DTelekom core 67 10.38 13.31 3 4
Random synthetic ≤ 10000 4 ≈ 2 - -

analogously, (iii) if control messages queue with data-plane
messages without priority, the first message could have as well
traveled along the less congested path. Notice that, by simple
priority queuing, case (iii) can be ruled out. Then, notice that
(ii) may only happen in networks having links with very long
delays: in this case, the message traveling along the shortest
path is not necessarily the first to be received. However, one
of the subsequent messages will surely have traveled along the
shortest path (since due to ns = 0 the messages are flooded at
least once), so that the primary path is guaranteed to converge
to the shortest (unlike [17], [18]).

IV. PERFORMANCE EVALUATION

In this section, we precisely quantify the APF overhead vs
path quality tradeoff, and that can be tuned through the β back-
off parameter earlier introduced, by proceeding as follows. We
first evaluate the overhead of the algorithm through a simple
analytical model, then, we employ discrete event simulation
to validate the analysis and evaluate performance in terms of
the quality of discovered paths.

Simulations are carried on with Omnet++ [21] over four
different network topologies gathered by mean of Rocketfuel
[22], whose most significant properties are summarized in
Tab. I. Specifically, Tab. I reports the number of nodes N ,
the average and standard deviation of the node degree, δ and
σ, the diameter D of the original graph G and the largest
diameter D′ over the modified G′ graphs.

Note that we consider both real ISP topologies, correspond-
ing to different network segments, as well as a set of 50
synthetic random graphs with N ≤ 10000 and δ = 4. For
the time being, we use homogeneous settings (i.e., constant
and equal delay on every link), and no failures happen within
the network. The evaluation of more complex (heterogeneous
delay, failures, etc.) scenarios is part of our ongoing work.

A. Overhead

We now evaluate the cost of APF in terms of communication
overhead, space and computational complexity. The average
amount of messages handled by any given node during the
advertisement procedure is denoted with Ma and represents
the primary cost sustained by the algorithm. For comparison
purposes, we take any link state algorithms like IS-IS or OSPF
as a reference. We recall that such protocols are composed by
two phases: (i) flooding of topological information, and (ii)
path computation, usually fulfilled by the mean of Dijkstra
algorithm on the graph information gathered on the first phase.

 0

 2

 4

 6

 8

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
e

ss
a

g
e

 o
ve

rh
e

a
d

 -
 M

a
/N

(δ
 -

1
)

Backoff parameter - β

N=10000
Tiger

Geant
Abilene

DTelekom
Model

Link state

(a) Communication overhead w.r.t. link state algorithms, and
comparison with analytical bound

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14

M
e

ss
a

g
e

 o
ve

rh
e

a
d

 -
 M

a
(n

)/
N

Round - n

β=0.3
β=0.7
β=0.9

(b) Time evolution of the number of advertisement messages
seen by a single node and generated by a single advertisement
process (N = 1000, δ = 4)).

Fig. 2. Adaptive Probabilistic Flooding: Communication Overhead

Communication overhead: Consider a single advertisement
from some source node s, and consider some relay node j
with degree δ. The first time node j receives an ADV message
originated by s, it sends a copy on each output link, except the
one where the ADV message has been received. This generates
δ− 1 messages. The second time j receives an ADV message
from the same source, it will forward the message over each of
the δ−1 links with probability β < 1; so, at second reception,
node j generates (δ− 1)β messages on average. Iterating and
taking into account N advertisement processes (one per each
node), we bound the total number of control messages Ma

that are seen by the average node:

Ma ≈ N [(δ − 1) + (δ − 1)β + (δ − 1)β2 + · · ·]

= N(δ − 1)
∞∑

n=0

βn

= N(δ − 1)
1

1− β
(2)

It turns out that this simple and conservative bound matches
very well the empirical results found by simulation. It’s worth
to note as the bound in (2), when β = 0, represents the
number of messages a link state algorithm would flood in

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
o
n
n
e
ct

iv
ity

 p
ro

b
a
b
ili

ty

Backoff parameter β

Tiger2
Geant

Abilene
DTelekom

Primary connectivity

(a) Connectivity probability of primary and sec-
ondary paths

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
p
tim

a
lit

y
p
ro

b
a
b
ili

ty

Backoff parameter β

Tiger2
Geant

Abilene
DTelekom

Primary connectivity

(b) Optimality probability of primary and sec-
ondary paths

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
ve

rl
a
p
 |
P

∩
S

|
o
f
n
o
n
-o

p
tim

a
l p

a
th

s
[H

o
p
s]

Backoff parameter β

Tiger2
Geant

Abilene
DTelekom

(c) Average overlap between primary and sec-
ondary path ‖P∩S‖ for non-optimal secondary
paths overlap

Fig. 3. Adaptive Probabilistic Flooding: Path Quality.

order to distribute the whole topology (assuming that 00 = 1
so that messages are flooded exactly once). In this sense we
can regard APF as an extension of link state algorithm, β
being a parameter which tradeoffs between paths quality and
number of additional messages.

Note also that, as the first flood is always performed,
convergence of the primary P path to the shortest path is
always guaranteed. Hence, the backoff parameter β affects
only the quality of the secondary path S: by tuning β, we
can upper bound the algorithm overhead Ma while matching
the required level of path quality.

Fig. 2(a) depicts, as a function of β, the upper bound (2)
normalized over the number of messages produced by the
link state flooding, along with Ma gathered by simulations
carried on random and real networks. Notice that, for β ≤ 0.7,
APF sends at most 2-3 times more messages than link-state
algorithms. Notice also that the bound in (2) is generally a
close estimation of the number of messages. Finally, notice
also that APF can be applied to fairly large networks, as our
simulations up to N =10,000 nodes suggest.

Fig. 2(b) plots the load of a single node for a single adver-
tisement in function of the (slotted) time for a random topology
with N =1000 nodes: we observe that, after some initial
exponential growth due to the flooding process, the backoff
factor kicks in and slows down the growth, which then dies
out very fast, due to an increasing number of flooding paths
being probabilistically cut out. This auto-termination feature is
a very desirable property of the algorithm, and further suggests
that advertisement periods do not need to overlap (as in case
of parallel advertisements), but can rather be serialized. In
this way, we would tradeoff also between nodes peak load
(which increases with the degree of parallelization) and speed
of routing convergence (that decreases with the degree of
serialization). We remark that serialization is not feasible for
link state solutions, as paths are computed just when the whole
topology is fully known.

Space complexity: Space needed by APF to run is O(2N)
in order to store primary and secondary/backup tree of the
network (as in [4]). Additionally, we need also O(N) counters
ns to safely count the number of messages generated by

each source. This could be problematic in case the size of
the network is not known a priory (though N could be set
to a fairly large number for safe operation). At the same
time, a staggered advertisement solutions as proposed above,
implies that instead of keeping O(N) counters (one for each
source in case of advertisements in parallel), the system could
perform advertisement in series and keep a small number of
O(1) counters. This could be achieved by desynchronizing
the start of each advertisement either with a simple policy
(e.g., periodically at random within [0, 2τa]) or with more
sophisticated schemes (e.g., CSMA-like solutions). This is
an interesting direction for future research, that we aim at
pursuing in the following.
Computational complexity: If Dijkstra and the other graph

algorithms need to perform O(NlogN) and O(NlogN +E2)
for the computation of the shortest and backup path re-
spectively once the full graph is known, APF on the other
hand needs to perform simpler operations on a packet-by-
packet basis. More precisely, on the reception of each control
message, switches need to perform: (i) a comparison for the
shortest path (Fig. 1, line 9); (ii) an intersection for the best
alternate path (Fig. 1 line 12). Since the overall number
of APF control messages is bounded, we can bound APF
computational complexity as well – which grows with N
when all advertisements start at the same time. Instead, it’s
worth to note that in link state algorithms, a single link state
advertisement for a topology change causes to start, for each
node, another run of a O(NlogN) Dijkstra algorithm.

B. Path quality

Let us now focus on the quality of the paths that the
adaptive probabilistic flooding algorithm is able to find. For
simplicity, we let each node advertise itself once at time
t = 0 and evaluate the connectivity and optimality of the
primary and secondary paths. Since evaluating path quality of
random networks is unrealistic, we now only consider the ISP
topologies, reporting results over 20 simulations per topology.
We express path quality in terms of connectivity along the

primary and secondary path (i.e., whether paths P and S join-
ing any two nodes i, j ∈ V exist) and optimality (i.e., whether
P and S are optimal according to the above definitions). We

express connectivity in terms of the probability that, ∀i, j ∈ V ,
nodes i and j are connected by some primary/secondary path.
We express optimality in terms of the probability that the
primary path is also the shortest, and that the secondary path
is the shortest most diverse path from the primary.

Fig. 3(a) depicts the connectivity probability of the primary
and secondary paths as a function of β: as expected, primary
connectivity does not depend on β and is always guaranteed.
Since a primary path is always found, the connectivity index is
relevant for the secondary path only: we see that all secondary
paths are connected in all networks when β ≥ 0.7 (which
correspond to limited overhead in Fig. 2(a)).

Fig. 3(b) reports the optimality probability of the primary
and secondary paths as a function of β: again, since the
shortest path is always eventually found, the optimality of
the primary path is guaranteed. Thus, the optimality index is
relevant only for the secondary path: we see that a significant
percentage (from 60% to 85%, depending on the topology)
of secondary paths are optimal even for a very low value of
β = 0.1, and that at least 90% of secondary paths are optimal
for all considered topologies when β ≥ 0.8. Moreover, we
observe that optimality gracefully degrades β, and furthermore
with similar (roughly linear) slope across all topologies. This
is a desirable behavior: as no phase transition nor knee appear
in the path quality slopes, tuning β between low overhead (low
β) vs high path quality (high β) is not critical.
Finally, we dissect the reason behind the sub-optimality

of some secondary paths. Recall that a secondary path is
optimal if it is the shortest and most diverse path compared
to the primary. Hence, sub-optimality of the secondary path
may be due to either (i) a non-zero overlap between primary
and secondary paths, |P ∩ S| > 0, or (ii) a path with
a stretch over the optimal secondary path larger than one
Ls/Ls′ > 1. Fig. 3(c) depicts the overlap, i.e., the number
of nodes that primary and secondary paths have in common,
conditioning over the sub-optimal paths (i.e., the overlap of
optimal secondary paths is not accounted for in the picture).
As shown by the figure, sub-optimality seems to be tied to
slightly more than one node in common as |P ∩ S| ∈ [1, 1.5].
Furthermore, as the average overlap is always |P ∩S| ≥ 1 for
any β, we can conclude that overlapping paths are significantly
more common that long-stretching paths.

V. CONCLUSIONS

We have presented a novel flooding based algorithm for
multiple-path discovery: the algorithm trades a small amount
of state in routers, i.e., O(N) counters, in order to significantly
limit the number of messages generated by flooding through
an adaptive probabilistic algorithm.
Simple analytical bounds, confirmed by simulation results,

show the overhead entailed by the advertisement procedure to
be low (with respect to the amount of messages needed by
classical link state algorithms) and auto-terminating (due to
the multiplicative decrease of the flooding probability).
Simulation results also testify excellent performance in

terms of path quality: connectivity and optimality of the

primary path are achieved by design, while 90% of secondary
paths are also optimal when β ≥ 0.8 (or otherwise decrease
linearly for lower β). Interestingly, the low percentage of low
path is due to a very limited amount of share of faith between
paths. As part of our future work, we want to carry on more
realistic experiments on a wider set of topologies and further
reduce the amount of state to O(1), by exploring policies for
the serialization of node advertisement.

ACKNOWLEDGEMENT

The work presented in this paper has been carried out at
LINCS (http://www.lincs.fr) and was funded by an Orange
Labs grant.

REFERENCES

[1] Andy Myers, T.S. Eugene Ng, and Hui Zhang, “Rethinking the service
model: Scaling ethernet to a million nodes,” in ACM Hotnet, 2004.

[2] C. Kim, M. Caesar, A. Gerber, and J. Rexford, “Revisiting route caching:
The world should be flat,” in PAM, Berlin, Heidelberg, 2009.

[3] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Rad-
hakrishnan, V. Subramanya, and A. Vahdat, “Portland: a scalable fault-
tolerant layer 2 data center network fabric,” in ACM SIGCOMM, New
York, NY, USA, 2009, pp. 39–50.

[4] S. Sharma, K. Gopalan, S. Nanda, and T. Chiueh, “Viking: a multi-
spanning-tree ethernet architecture for metropolitan area and cluster
networks,” in IEEE INFOCOM, Mar. 2004.

[5] C. Kim, M. Caesar, and J. Rexford, “Floodless in SEATTLE: a scalable
Ethernet architecture for large enterprises,” in ACM SIGCOMM, Aug.
2008.

[6] A. Singla, P. B. Godfrey, K. Fall, and S. Iannaccone, G. Ratnasamy,
“Scalable routing on flat names,” in ACM CoNEXT, 2010.

[7] D. Johnson, Y. Hu, and D. Maltz, “The Dynamic Source Routing
Protocol (DSR) for Mobile Ad Hoc Networks for IPv4,” IETF RFC
4728, Feb. 2007.

[8] S. Kumar, C. Alaettinglu, and D. Estrin, “Scalable object-tracking
through unattended techniques (scout),” in IEEE ICNP, 2000, pp. 253
–262.

[9] P. F. Tsuchiya, “The landmark hierarchy: a new hierarchy for routing in
very large networks,” in ACM SIGCOMM, New York, NY, USA, 1988,
pp. 35–42, ACM.

[10] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Rowstron,
“Virtual ring routing: network routing inspired by dhts,” in ACM
SIGCOMM. 2006, pp. 351–362, ACM.

[11] M. J. Kim, D. H. Lee, and Y. I. Eom, “Enhanced non-disjoint multi-path
source routing protocol for wireless ad-hoc networks,” in ACM ICCSA,
2007, pp. 1187–1196.

[12] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “Mate: Mpls adaptive traffic
engineering,” in IEEE INFOCOM, 2001, vol. 3, pp. 1300 –1309.

[13] C. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm,” RFC
2992 (Informational), Nov. 2000.

[14] D. Eppstein, “Finding the k shortest paths,” Foundations of Computer
Science, Annual IEEE Symposium on, vol. 0, pp. 154–165, 1994.

[15] J. Hershberger, M. Maxel, and S. Suri, “Finding the k shortest
simple paths: A new algorithm and its implementation,” ACM Trans.
Algorithms, vol. 3, November 2007.

[16] P. Merindol, J.-J. Pansiot, and S. Cateloin, “Low complexity link state
multipath routing,” in IEEE INFOCOM Workshop, april 2009, pp. 1 –6.

[17] Maria J. Blesa and Christian Blum, “Ant colony optimization for the
maximum edge-disjoint paths problem,” in EvoWorkshops, 2004, pp.
160–169.

[18] N. Lin and Z. Shao, “Improved ant colony algorithm for multipath
routing algorithm research,” in IEEE IPTC, oct. 2010, pp. 651 –655.

[19] Srihari Nelakuditi and Zhi-Li Zhang, “On selection of paths for
multipath routing,” in IEEE IWQoS, vol. 2092, pp. 170–184. 2001.

[20] R.G. Ogier, V. Rutenburg, and N. Shacham, “Distributed algorithms for
computing shortest pairs of disjoint paths,” IEEE Information Theory,
vol. 39, no. 2, pp. 443 –455, Mar. 1993.

[21] Andras Varga, “Omnet++ website,” 2010.
[22] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp topologies

with rocketfuel,” in ACM SIGCOMM, 2002.

