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Abstract—In this paper we obtain approximations for various
performance measures in a multirate link sharing bandwidth
under an insensitive sharing mechanism called balanced fairness.
Balanced fairness can be viewed as the large system limit of
proportional fairness. For a large system, we obtain closed form
expressions for the calculation of long run fraction of time that
the system is congested, the probability that an arriving flow will
not obtain its maximum bit rate and the average fraction of time
that an arriving flow is not allocated its maximum bit rate while
in the system. The techniques are based on local limit theorems
for convolution measures.

Index Terms—Multirate systems, congestion, flow-level models,
balanced fairness, insensitivity, large system scaling.

I. INTRODUCTION

File transfers compose much of the traffic of the current
Internet. They typically use TCP and adapt their transmission
rate to the available bandwidth. When congestion occurs, users
experience delays, packet losses and low transfer rates. Thus
it is essential to predict the probability of occurrence of such
congestion periods. A useful abstraction in this context is to
view each transfer file as a fluid elastic flow, whose rate adapts
to the evolution of the number of other flows that share the
same links. The complex underlying packet-level mechanisms
(congestion control algorithms, packet scheduling, buffer man-
agement) are then simply represented by some bandwidth
sharing policy between ongoing flows.

For a single bottleneck link, flows are generally assumed to
share bandwidth evenly, yielding the usual processor sharing
model [1], [2], [3], [4]. This model relies on the assumption
that the flows sharing the link are homogeneous, however.
In practice, flows have different bandwidth requirements or
constraints. It is not obvious how flows share bandwidth in
this context.

A key bandwidth sharing policy that has been studied in the
context of rate control of elastic flows is the notion of pro-

portional fairness introduced by Kelly [5]. This corresponds
to a Nash bargaining solution and can be implemented via a
primal-dual mechanism, cf. [5], [6]. In fact, it has been shown
[7] that TCP Vegas is proportionally fair in equilibrium.

In general, the analysis of a network operating under
a proportional fair allocation scheme is quite difficult. It
turns out that, for the flow-level dynamics we are interested
in, proportional fairness can be well approximated by the

slightly different notion of balanced fairness [8], [9], [10].
This bandwidth sharing policy has the attractive advantage
of being both tractable and insensitive. Tractability means
that the underlying dynamical system belongs to the class of
Kelly-Whittle networks for which explicit analytical results
are known for the stationary distribution [11], [12], [13];
insensitivity means that the stationary distribution depends
on any flow-level traffic characteristics characterized by the
means [9].

In this paper we consider links that operate under a balanced
fair allocation scheme for heterogeneous flows with differing
maximum bit rates, so-called multirate systems [14]. We show
how various performance measures that quantify the degree
of network congestion can be explicitly computed in systems
accessed by a large number of flows. Specifically, performance
metrics of interest are the long run fraction of time that the
system is congested, the probability that an arrival will not get
its maximum bit rate, and the average fraction of time that a
flow does not get its maximum bit rate while in the system.
The approach relies on large system scaling techniques so far
used mainly in the context of loss systems [15]. The present
paper readily extends these results to the context of Internet
traffic with rate-controlled elastic flows.

II. MODEL AND PRELIMINARY RESULTS

To simplify the notation, we will use the vectorial versions
of parameters where it is obvious. All vectors are assumed to
be column vectors, and we will use the notation �aT to indicate
the transpose of a vector �a. We denote by �ei the standard unit
vector on component i. For any functions f, g, f(N) ∼ g(N)
means f(N)/g(N) → 1 when N → ∞.

A. Balanced Fairness

The system has a single link with capacity C bit/s shared by
M flow classes. Class-i flows arrive as an independent Poisson
process with rate λi and have independent, exponentially dis-
tributed volumes with mean vi (in bits). The latter assumption
will be relaxed later thanks to the insensitivity property. We
refer to the product αi = λivi as the traffic intensity of class
i (in bit/s).

Each class-i flow has a maximum bit rate ri ≤ C. This is the
actual rate of each class-i flow in the absence of congestion,
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that is when
�M

i=1 xiri ≤ C, where xi is the number of class-i
flows. Congestion forces flows to reduce their rate and thus to
increase their duration: traffic is elastic. We denote by φi(�x)
the total bandwidth allocated to flows of class i in state �x;
flows of the same class equally share the allotted bandwidth.
Natural constraints imposed on the system are, in each state
�x:

φi(x) ≤ xiri, ∀i = 1, . . . ,M. (1)

and
M�

i=1

φi(x) ≤ C. (2)

The balanced fair allocation [9] is defined in each state �x
as:

φi(�x) =
Φ(�x− �ei)

Φ(�x)
, (3)

where the so-called balance function Φ is recursively defined
by Φ(�0) = 1 and the following equation:

Φ(�x) = max

�
1

C

M�

i=1

Φ(�x− �ei), max
i: xi>0

Φ(�x− �ei)

xiri

�
, (4)

with the convention that Φ(�x) = 0 if xi < 0 for some i. It can
be readily verified from (3) that the constraints (1) and (2) are
satisfied. In fact, the balance function can be simplified to:

Φ(�x) =






M�

i=1

1

xi!r
xi
i

if �xT�r ≤ C,

1

C

M�

i=1

Φ(�x− �ei) otherwise.

(5)

In particular, it follows from (3) that φi(x) = xiri if �xT�r ≤ C,
so that each flow gets its maximum bit rate in the absence of
congestion; we shall see in Lemma 1 below that no flow gets
its maximum bit rate in congestion periods, when �xT�r > C.

The evolution of the system state �x defines a Markov
process with transition rates λi from state �x to state �x + �ei
and φi(�x)/vi from state �x to state �x − �ei (provided xi > 0).
As shown in [9], the stationary distribution of this Markov
process is given by:

π(�x) = π(�0)Φ(�x)
M�

i=1

αxi
i . (6)

Using (5), we get:

π(�x) =






π(�0)
M�

i=1

βi
xi

xi!
if �xT�r ≤ C,

M�

i=1

ρiπ(�x− �ei) otherwise.

(7)

where βi = αi/ri is the normalized traffic intensity of class
i and ρi = αi/C is the load of class i. The normalization

constant, given by

G =
1

π(�0)
=

�

�x∈ZM
+

Φ(�x)
M�

i=1

αxi
i ,

is finite if and only if ρ < 1, where ρ denotes the link load:

ρ =
M�

i=1

ρi =
M�

i=1

αi

C
. (8)

For the remainder of the paper we will assume that the stability
condition ρ < 1 is satisfied.

Due to the insensitivity property of balanced fairness, this
stationary distribution and the performance metrics introduced
below are independent of the flow size distributions beyond
the means. This is because the system may actually be viewed
as a special case of Whittle networks [16]. We refer the reader
to Serfozo [11] for more details about Whittle networks.

B. Performance Metrics

We seek to quantify the occurrence of congestion periods
where flows do not get their maximum rates. A simple, natural
metric is the probability of congestion:

P =
�

�x:�xT�r>C

π(�x). (9)

The probability of congestion actually depends on the class,
those flows with high maximum bit rates being more likely
to suffer congestion. By the PASTA property, the probability
that a class-i flow will enter a congested system or cause the
congestion is:

Pi =
�

�x:�xT�r>C−ri

π(�x). (10)

Another performance calculation of interest is an estimate
on the average fraction of time that an arrival does not receive
its maximum bit rate during its time in the system. Let τi be
the sojourn time of class i arrivals in the system. Define:

Fi =

Ei

�� τi

0
1{ �X(t)T�r>C}dt

�

Ei [τi]

where the expectation is taken with respect to the Palm
measure for the point process of arrivals of class i and �X is
the stationary state process. Then Fi denotes the ratio of the
average time that a class-i flow spends in a congested state
during its sojourn to the average sojourn time.

It follows respectively from Little’s law and a generalized
Little’s law (a type of cycle formula, cf. [17]) that

E[Xi(0)] = λiEi[τi]

and

E[1{ �X(0)T�r>C}Xi(0)] = λiEi

�� τi

0
1{ �X(t)T�r>C}dt

�
.
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Therefore

Fi =

�

�x:�xT�r>C

xiπ(�x)

�

�x

xiπ(�x)
. (11)

Although the performance metrics (9), (10) and (11) can in
principle be directly evaluated from the stationary distribution
(7), the calculation is hardly feasible for high capacity links
or a large number of classes. It is the objective of the present
paper to give simple, tight approximations of these perfor-
mance metrics for large systems. In particular, the complexity
is independent of the number of classes. The approach relies
on the corresponding results derived for loss systems. In the
rest of the paper, we assume that both the link capacity C and
the maximum rates r1, . . . , rM are integers.

C. Large Multirate Erlang Loss Systems

Consider a multirate circuit switching system consisting of
C circuits which are accessed by M types of calls. Type-i calls
arrive as an independent Poisson process with intensity λi and
request ri circuits for an independent, exponentially distributed
duration with parameter µi. We denote by βi = λi/µi the
corresponding traffic intensity in erlangs.

This system is closely related to that introduced in §II-A.
The only difference is that calls are admitted in the system
as long as the system state �x satisfies �xT�r ≤ C after each
arrival; otherwise, the call is blocked and lost. Under elastic
sharing, flows are always admitted in the system but adapt their
rate to the level of congestion when �xT�r > C. We note that,
in the absence of congestion, class-i flows have independent,
exponentially distributed duration with parameter µi = ri/vi.
In particular, the normalized traffic intensity βi = αi/ri in-
troduced in §II-A coincides with the corresponding parameter
βi = λi/µi of the loss system.

The stationary distribution of the Markov process describing
the evolution of the system state �x is given by

πB(�x) = πB(�0)
M�

i=1

βxi
i

xi!

and the normalization constant will be denoted by

GB =
1

πB(�0)
=

�

�x:�xT�r≤C

M�

i=1

βxi
i

xi!
.

The blocking probability of class-i calls then follows from
PASTA:

PB
i =

�

�x:C−ri<�xT�r≤C

πB(�x). (12)

Analysis of such a system is an extremely well studied prob-
lem. The blocking probabilities can be calculated exactly using
the Kaufman-Roberts recursion [18], [19]. Unfortunately, the
computation can be burdensome when dealing with large
parameters, so one often resorts to asymptotic analysis.

Consider a sequence of multirate Erlang loss models
indexed by N , with arrival rates �λN = N�λ and CN = NC
circuits. By applying exponential centering around C
and using a local limit theorem for sums of i.i.d. lattice
random variables, Gazdzicki et al. [15] obtained closed-
form expressions for calculating the asymptotic blocking
probability in the three cases ρ < 1, ρ = 1, ρ > 1, where
ρ denotes the system load, defined by (8) with αi = βiri
for all i = 1, . . . ,M . Since the stability condition of the
elastic model is ρ < 1, we only require the formula of the
asymptotic blocking probability for the first case:

Theorem 1: If ρ < 1, then for all i = 1 . . .M :

PB
i (N) ∼ e−NIeτd�(N) d√

2πNσ

1− eτri

1− eτd

where:
d is the greatest common divisor of r1, . . . , rM ,
�(N) = NC

d −
�
NC
d

�
,

τ is the unique solution to the equation
M�

i=1

riβie
τri = C,

I = Cτ −
M�

i=1

βi (e
τri − 1),

σ2 =
M�

i=1

r2i βie
τri .

III. MAIN RESULTS

In this section, we apply the large system scaling of §II-C
to the multirate system with elastic traffic.

A. Congestion Events

We begin this section by identifying the states where
congestion occurs. We know that congestion will not occur
for any class if the system state �x satisfies the condition
�xT�r ≤ C. The following lemma establishes that congestion
will occur for all classes if �xT�r > C.

Proposition 1:

If �xT�r > C then φi(x) < xiri for all classes i = 1 . . .M
such that xi > 0.

Proof:

Let i be such that xi > 0. In view of (3), it is sufficient to
show that:

Φ(�x) >
Φ(�x− �ei)

xiri
.

The proof is split up into several cases.

We first assume that (�x− �ei)T�r > C.
If xi ≥ 2 then, in view of (4):
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Φ(�x) =
1

C

M�

j=1

Φ(�x− �ej),

≥ 1

C




�

j �=i

Φ(�x− �ei − �ej)

xiri
+

Φ(�x− 2�ei)

(xi − 1)ri



 ,

>
1

C

M�

j=1

Φ(�x− �ei − �ej)

xiri
,

=
Φ(�x− �ei)

xiri
.

Similarly if xi = 1 then:

Φ(�x) =
1

C

M�

j=1

Φ(�x− �ej),

≥ 1

C




�

j �=i

Φ(�x− �ei − �ej)

xiri
+ Φ(�x− �ei)



 ,

>
1

C

�

j �=i

Φ(�x− �ei − �ej)

xiri
,

=
Φ(�x− �ei)

xiri
.

Now assume that (�x− �ei)T�r ≤ C:

Φ(x) =
1

C

M�

j=1

Φ(�x− �ej),

≥ 1

C




�

j �=i

Φ(�x− �ei − �ej)

xiri
+ Φ(�x− �ei)



 ,

=
1

C




�

j �=i

xjrjΦ(�x− �ei)

xiri
+ Φ(�x− �ei)



 ,

=
1

C

M�

j=1

xjrjΦ(�x− �ei)

xiri
,

=
�rT�x

C

Φ(�x− �ei)

xiri
,

>
Φ(�x− �ei)

xiri
.

The proof then follows from (3).

B. Congestion Probabilities

We now apply the large system scaling to the congestion
probabilities (9) and (10). We start with the following lemma
due to Bonald and Virtamo [14], which shows that these
expressions can actually be written as a function of far fewer
states. The proof is provided for the sake of completeness.

Lemma 1:

We have:

P =
M�

i=1

ρiBi

1− ρ
and Pi = Bi + P,

with
Bi =

�

�x:C−ri<�xT�r≤C

π(�x).

Proof: In view of (7),

P =
�

�x:�xT�r>C

π(�x),

=
�

�x:�xT�r>C

M�

i=1

ρiπ(�x− �ei),

=
M�

i=1

ρi




�

�x:�xT�r>C

π(�x) +
�

�x:C−ri<�xT�r≤C

π(�x)



 ,

=
M�

i=1

ρi(P +Bi).

We deduce:

P =
M�

i=1

ρiBi

1− ρ
.

The expression for Pi follows from (9) and (10).

Noting that the stationary distributions π and πB are pro-
portional on those states �x such that �xT�r ≤ C, it follows from
(12) that:

Bi =
GB

G
PB
i .

Thus we can rewrite the probabilities of congestion as:

P =
GB

G

M�

i=1

ρiPB
i

1− ρ

and

Pi =
GB

G



PB
i +

M�

j=1

ρjPB
j

1− ρ



 .

In view of Theorem 1, we have a tight approximation of
the blocking probabilities PB

i under large system scaling. It
remains to calculate the normalization constants, which can
be unwieldy. We shall actually prove that GB

N/GN → 1 when
N → ∞, where GB

N and GN denote the normalization con-
stants of the loss system and the elastic system, respectively,
with scaling parameter N . We need the following result:

Lemma 2:

Let �XN be an M -dimensional random vector with mutually
independent Poisson components with respective parameters
Nβ1, . . . , NβM . Then for any constant K ∈ [0, C]:

P
�
�XT
N�r ≥ NC −K

�
→ 0 when N → ∞.
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Proof: Let Z = �XT
1 �r. In view of (8), we have:

E(Z) =
M�

i=1

βiri < C.

In particular, there exists some N0 ≥ 1 such that:

E(Z) < C − K

N0
.

Now let Z1, Z2, . . . be a sequence of independent random
variables with the same distribution as Z. For all N ≥ N0:

P

�
1

N

N�

n=1

Zn ≥ C − K

N

�
≤ P

�
1

N

N�

n=1

Zn ≥ C − K

N0

�
,

which tends to 0 when N tends to infinity by the weak law
of large numbers. The proof then follows from the fact that
�XT
N�r has the same distribution as

�N
n=1 Zn.

Lemma 3: We have:

GB
N

GN
→ 1 when N → ∞.

Proof: Let β =
�M

i=1 βi and denote by �XN an M -
dimensional random vector with mutually independent Poisson
components with respective parameters Nβ1, . . . , NβM :

GB
Ne−Nβ =

�

�x:�xT�r≤NC

M�

i=1

e−Nβi
(Nβi)xi

xi!
,

= P
�
�XT
N�r ≤ NC

�
,

= 1− P
�
�XT
N�r > NC

�
.

In view of Lemma 2,

GB
Ne−Nβ → 1 when N → ∞.

Now let:

P �(N) =
�

�x:�xT�r>NC

ΦN (�x)
M�

i=1

(Nαi)
xi ,

and for all i = 1, . . . ,M :

B�
i(N) =

�

�x:NC−ri<�xT�r≤NC

ΦN (�x)
M�

i=1

(Nαi)
xi .

Note that P �(N) and B�
i(N) are the respective unnormalized

versions of P (N) and Bi(N). In particular, it follows from
Lemma 1 that:

P �(N) =
M�

i=1

ρiB�
i(N)

1− ρ
.

Moreover, we have for all i = 1, . . . ,M :

B�
i(N)e−Nβ =

�

�x:NC−ri<�xT�r≤NC

M�

j=1

e−Nβj
(Nβj)xj

xj !
,

= P
�
NC − ri < �XT

N�r ≤ NC
�
,

≤ P
�
�XT
N�r > NC − ri

�
.

In view of Lemma 2,

∀i = 1, . . . ,M, B�
i(N)e−Nβ → 0 when N → ∞,

so that P �(N)e−Nβ → 0 when N → ∞. Noting that GN =
GB

N + P �(N), we conclude that:

GNe−Nβ → 1 when N → ∞.

and
GB

N

GN
=

GB
Ne−Nβ

GNe−Nβ
→ 1.

We can now combine the previous results to state the main
result of the paper:

Theorem 2: Under large system scaling, we have

P (N) ∼
M�

i=1

ρiPB
i (N)

1− ρ

and for all i = 1 . . .M :

Pi(N) ∼ PB
i (N) +

M�

j=1

ρjPB
j (N)

1− ρ
,

where:

PB
i (N) ∼ e−NIeτd�(N) d√

2πNσ

1− eτri

1− eτd

d is the greatest common divisor of r1, . . . , rM ,
�(N) = NC

d −
�
NC
d

�
,

τ is the unique solution to the equation
M�

i=1

riβie
τri = C,

I = Cτ −
M�

i=1

βi (e
τri − 1),

σ2 =
M�

i=1

r2i βie
τri .

C. Time-Average Congestion Rates

Finally, we apply large system scaling to the time-average
congestion rates (11). The following lemma due to Bonald
and Virtamo [14] shows that the corresponding sums can be
written as a function of far fewer states. Again, we provide
the proof for completeness.

Lemma 4: For all i, j = 1, . . . ,M , let

Qij =
�

�x:C−rj<�xT�r≤C

xiπ(�x),
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and
Qi =

�

�x:�xT�r>C

xiπ(�x).

Then

Qi =
ρiPi

1− ρ
+

M�

j=1

ρjQij

1− ρ
.

Proof: We have:

Qi =
�

�x:�xT�r>C

xiπ(�x),

=
�

�x:�xT�r>C

xi

M�

j=1

ρjπ(�x− �ej),

=
M�

j=1

ρj
�

�x:�xT�r>C

xiπ(�x− �ej),

=
M�

j=1

ρj
�

�x:�xT�r>C−rj

(xi + 1{j=i})π(�x),

= ρiPi +
M�

j=1

ρj(Qi +Qij),

from which the result follows.
Now let PB

ij be the class-j blocking probability in a
multirate loss system with capacity C − ri. We have:

Proposition 2: Under large system scaling,

PB
ij (N) ∼ e−NIieτid�i(N) d√

2πNσi

1− eτirj

1− eτid

where:
d is the greatest common divisor of r1, . . . , rM ,
�i(N) = NC−ri

d −
�
NC−ri

d

�
,

τ is the unique solution to the equation

M�

j=1

rjβje
τrj = C,

σ2 =
M�

j=1

r2jβje
τrj ,

τi = τ − ri
Nσ2 ,

Ii =
�
C − ri

N

�
τi −

M�

j=1

βj (e
τirj − 1),

σ2
i =

M�

j=1

r2i βje
τirj .

Proof: In view of Theorem 1, it is sufficient to observe
that the solution τi to the equation:

M�

j=1

rjβje
τirj = C − ri

N

satisfies:
τi = τ − ri

Nσ2
+ o

�
1

N

�
.

The following result, together with Theorem 2 and
Proposition 2, provides the large system asymptotics of the
time-average congestion rates:

Theorem 3: Under large system scaling, we have for all
i = 1, . . . ,M :

Fi(N) ∼ ri
NC(1− ρ)

Pi(N) +
M�

j=1

ρj
1− ρ

PB
ij (N).

Proof: We write:

Fi =
Qi

Qi + Si
,

with
Si =

�

�x:�xT�r≤C

xiπ(�x).

In view of (7), we have for all states �x such that �xT�r ≤ C:

xiπ(�x) = βiπ(�x− �ei).

In particular,

Si = βi

�

�x:�xT�r≤C−ri

π(�x),

= βi
GB

G
(1− PB

i ).

In view of Theorem 1 and Lemma 3, we obtain under large
system scaling:

Si(N) ∼ Nβi.

Similarly, we write for all j = 1, . . . ,M :

Qij = βi

�

�x:C−ri−rj<�xT�r≤C−ri

π(�x)

= βi
GB

G
PB
ij ,

so that under large system scaling:

Qij(N) ∼ NβiP
B
ij (N).

By Lemma 4,

Qi(N) ∼ ρiPi(N)

1− ρ
+

M�

j=1

Nβi

ρjPB
ij (N)

1− ρ
.

The proof then follows from the fact that:

Qi(N) + Si(N) ∼ Nβi

and ρi
Nβi

=
ri
NC

.
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IV. NUMERICAL RESULTS

We conclude the paper with a numerical comparison of the
asymptotic formula of Theorems 2 and 3 with exact results
for a system with M = 3 classes of traffic. The link has
capacity C = 10, and the rate limits are r1 = 1, r2 = 2,
r3 = 5. The load distribution is given by ρ1/ρ = 0.5, ρ2/ρ =
0.3, ρ3/ρ = 0.2. Figure 1 gives the results obtained for the
congestion probability with respect to the link load ρ under
scaling factor N = 10. We observe that the approximation is
very accurate in terms of the relative error being of the order
of 10−4 − 10−6 as long as load is less than 0.8. For higher
loads we need a larger scaling N to obtain similar orders of
relative error.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  0.2  0.4  0.6  0.8  1
Load

Congestion probabilities

Exact
Approximation

Fig. 1. Congestion probabilities of classes 1, 2, 3 (from bottom to top) under
scaling factor N = 10.

The relative error is shown in Table I in three load regimes
and various scaling factors. As expected, the quality of the
approximation improves when the scaling factor N increases,
especially under heavy load.

Figure 2 and Table II give the corresponding results for the
time-average congestion rates. The conclusions are similar.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  0.2  0.4  0.6  0.8  1
Load

Time-average congestion rates

Exact
Approximation

Fig. 2. Time-average congestion rates of classes 1, 2, 3 (from bottom to top)
under scaling factor N = 10.

TABLE I
RELATIVE ERROR ON CONGESTION PROBABILITIES

(a) Light load, ρ = 0.3

N Class 1 Class 2 Class 3
10 1.81e-03 8.26e-04 6.56e-06
20 9.02e-04 4.10e-04 8.04e-06
30 6.01e-04 2.73e-04 6.41e-06
40 4.51e-04 2.05e-04 5.20e-06
50 3.61e-04 1.64e-04 4.35e-06

(b) Medium load, ρ = 0.6

N Class 1 Class 2 Class 3
10 1.49e-03 8.37e-04 6.99e-04
20 7.03e-04 3.76e-04 3.12e-04
30 4.68e-04 2.51e-04 2.09e-04
40 3.51e-04 1.88e-04 1.57e-04
50 2.81e-04 1.50e-04 1.26e-04

(c) Heavy load, ρ = 0.9

N Class 1 Class 2 Class 3
10 2.00e-01 2.00e-01 2.00e-01
20 8.35e-02 8.34e-02 8.34e-02
30 4.37e-02 4.36e-02 4.36e-02
40 2.52e-02 2.52e-02 2.52e-02
50 1.55e-02 1.54e-02 1.55e-02

TABLE II
RELATIVE ERROR ON TIME-AVERAGE CONGESTION RATES

(a) Light load, ρ = 0.3

N Class 1 Class 2 Class 3
10 6.33e-04 6.34e-04 6.20e-04
20 3.12e-04 3.12e-04 3.08e-04
30 2.07e-04 2.07e-04 2.05e-04
40 1.55e-04 1.55e-04 1.54e-04
50 1.23e-04 1.23e-04 1.23e-04

(b) Medium load, ρ = 0.6

N Class 1 Class 2 Class 3
10 1.08e-03 1.10e-03 1.25e-03
20 4.82e-04 4.80e-04 4.82e-04
30 3.20e-04 3.19e-04 3.20e-04
40 2.39e-04 2.39e-04 2.39e-04
50 1.91e-04 1.91e-04 1.91e-04

(c) Heavy load, ρ = 0.9

N Class 1 Class 2 Class 3
10 2.44e-01 2.90e-01 4.42e-01
20 9.55e-02 1.08e-01 1.50e-01
30 4.87e-02 5.41e-02 7.18e-02
40 2.78e-02 3.05e-02 3.94e-02
50 1.69e-02 1.84e-02 2.34e-02

V. CONCLUDING REMARKS

We have shown the connection between the multirate Erlang
loss model and the multirate balanced fair model in the asymp-
totic regime of large systems. Specifically, we have derived
explicit approximations for various measures of congestion
and shown their tightness under large system scaling. Interest-
ingly, the numerical results suggest that these approximations
are conservative in the sense that they overestimate the actual
congestion probabilities and time-average congestion rates.
This needs further investigation.
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We have also investigated the extension of these results to
networks of balanced fair links. Space limitations prevent us
from discussing them here and the results will be reported
elsewhere. Given the strong connections between proportional
fairness and balanced fairness, we expect results such as those
presented in this paper to eventually lead to simple and robust
traffic engineering rules and performance evaluation methods
that are lacking for data networks.
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