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Abstract

We analyze the performance of CSMA in multi-channel wireless networks, accounting for
the random nature of traffic. Specifically, we assess the ability of CSMA to fully utilize the
radio resources and in turn to stabilize the network in a dynamic setting with flow arrivals and
departures. We prove that CSMA is optimal in ad-hoc mode but not in infrastructure mode,
when all data flows originate from or are destined to some access points, due to the inherent
bias of CSMA against downlink traffic. We propose a slight modification of CSMA, that we
refer to as flow-aware CSMA, which corrects this bias and makes the algorithm optimal in all
cases. The analysis is based on some time-scale separation assumption which is proved valid
in the limit of large flow sizes.

Keywords: Wireless network, interference graph, CSMA, flow-level dynamics, time-scale
separation, stability.

1 Introduction

The CSMA (Carrier Sense Multiple Access) algorithm is a key component of IEEE 802.11 networks.
While it proves successful in sharing a single radio channel between a limited number of stations, its
efficiency is questionable in more involved environments with multiple radio channels and a large
number of stations having different interference constraints. In this paper, we analyse the ability of
CSMA to fully utilize the radio resources in such environments, in both ad-hoc and infrastructure
modes, accounting for the random nature of traffic. Specifically, each station attempts to access
a randomly chosen radio channel after some random backoff time and transmits a packet over
this channel if it is sensed idle. We study the random variations of the number of active wireless
links induced by this random access algorithm and the random activity of users. In particular, we
analyse the ergodicity of the associated Markov process, which characterizes the ability of CSMA
to stabilize the network.

It turns out that, while CSMA is always efficient in ad-hoc mode, in the sense that the network
is stable whenever possible, it is generally inefficient in infrastructure mode, when all data flows
originate from or are destined to some finite set of access points. This is due to the inherent bias of
CSMA against downlink traffic, from the access points to the stations: each access point attempts
to access the radio channels with the same rate, independently of the number of active downlink
flows at this access point. We prove that a slight modification of CSMA, which consists in running
one instance of CSMA per flow at each access point, corrects this bias and makes the algorithm
optimal. We refer to this algorithm, introduced in [6], as flow-aware CSMA.

The rest of the paper is organized as follows. We present some related work in the next section.
The network model in ad-hoc mode is described in section [l Sections [ and [ are devoted to the
packet- and flow-level dynamics, respectively, assuming time-scale separation. The main result
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of the paper, given in Theorem [I] shows in particular the optimality of CSMA in ad-hoc mode.
The validity of the time-scale separation assumption is discussed in section [0l The infrastructure
mode is considered in section [7 where we prove the suboptimality of standard CSMA and the
optimality of flow-aware CSMA. Section [l concludes the paper.

2 Related work

The present work is related to the problem of optimal scheduling in wireless networks. While a
centralized solution is known since the seminal work of Tassiulas and Ephremides, who proved in
[24] the optimality of the mazimum weight policy, no distributed solution was known until the
recent works of Jiang, Ni, Shah and Walrand [IT} 12 [20]. These authors considered a simple
CSMA algorithm whereby the attempt rate of each station depends either on the number of
queued packets or on some local estimates of the arrival rate and the service rate of packets at
the station. Similar ideas are used by Ni, Tan and Srikant in [I8]. The proof of optimality relies
on the fact that these adaptive versions of CSMA achieve the maximum weight scheduling, under
some technical assumptions related to the speed of convergence of the algorithm. In practice, the
algorithm must indeed be carefully designed so as to enforce the time-scale separation, as shown
for instance in the recent paper of Proutiere, Yi, Lan and Chiang [19].

All these papers focus on the packet-level dynamics, assuming packets are generated by some
fixed number of flows. The flow-level dynamics are ignored, whereas they are known to be critical,
see for instance [T} 2] B} [16] in the context of wireline networks. As in our previous paper [6], we
consider both the packet- and flow-level dynamics, under the usual assumption that the former
are much faster than the latter. Specifically, we extend the results of [6] to multi-channel networks
in both ad-hoc and infrastructure modes and discuss the validity of the time-scale separation
assumption.

Surprisingly, little attention has so far been paid to multi-channel networks. A notable ex-
ception is the adaptive, multi-channel version of CSMA introduced in [I9], which is shown to
maximize the network utility when combined with some appropriate virtual queue mechanism.
We here prove the optimality of CSMA in the sense of flow-level stability for a very general model
where the interference constraints may depend on the considered channel and each transmitter
may only use a subset of the channels. Specifically, we show that it is sufficient for each transmitter
to probe one of its channels at random, without any further information on the network state.

Another salient feature of this paper is the observation of the key difference between the ad-hoc
and infrastructure modes. In the former, the number of transmitters grows with the congestion,
which increases the channel attempt rate and in turn stabilizes the network. This is not the case
of the latter since the channel access opportunities of each access point must be shared by all
downlink flows at this access point. This inherent bias of CSMA against downlink traffic is well
known, see e.g. [I0, [14], and can be easily corrected by letting the attempt rate of each access
point depend on the number of downlink flows, a scheme we refer to as flow-aware CSMA [6]. The
algorithm is then optimal.

3 Model

3.1 A multi-channel wireless network

The network consists of a random, dynamic set of wireless links in ad-hoc mode (there is no
access point at this stage). These links must share some finite number J of non-interfering radio
channels. Each link consists of a transmitter-receiver pair; the transmitter is able to use at most
one radio channel at a time. We group links into a finite number of K classes, as illustrated by
Figure [l All links within the same class have the same radio conditions, the same interference
constraints and the same CSMA parameters. We denote by xj the number of class-k links and
by x the corresponding vector, which we refer to as the network state. Two links within the same
class cannot be simultaneously active on the same channel. An active class-k link on channel j



transmits data at the physical rate ¢y bit/s, independently of j. We say that class k is active on
channel j if there is an active class-k link on channel j.
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Figure 1: An ad-hoc wireless network with 4 classes of links and its interference graph.

Each channel j is associated with some conflict graph G = (V}, E;), where V; C {1,..., K} is
the set of classes that are able to transmit on channel j and Ej is the set of edges, each representing
a conflict. Specifically, two classes k,1 € V; can be simultaneously active on channel j if and only
if they do not conflict with each other, that is if (k,!) ¢ E;. The J conflict graphs are typically
the same but could differ due to different radio propagation environments on the J channels, or
to different transmission capabilities of the K classes.

3.2 Feasible schedules

We refer to a schedule as any vector y € {0, 1}%*7 where yx; = 1 if class k is active on channel
j. We denote by yi the number of active class-k links:

J
Yk = Z Ykj-
j=1

The schedule is feasible if for all j =1,...,J, the active classes on channel j belong to V; and do
not conflict with each other, that is yg;y;; = 0 for all (k,!) € E;. Moreover, we must have:
Vk=1,....K, yp<uy. (1)

We denote by Y(x) the set of feasible schedules. Note that if x, > J for all k = 1,..., K, the
constraint (1) is no longer limiting (since the number of active class-k links is limited by the
number of radio channels J) and the set of feasible schedules becomes independent of the network
state. We denote by ) the corresponding set, which is the union of Y(x) over all network states
x.

3.3 Capacity region

Assume that each feasible schedule y is selected with probability 7(y), with »_ .y, 7(y) = 1. The
mean throughput of class k is then given by:

Sk =k > Uk (y)- (2)
yey

Let ¢ be the corresponding throughput vector. We refer to the capacity region as the set of vectors
¢ generated by all probability measures 7 (y), y € Y. Note that the capacity region depends both
on the physical rates and on the interference constraints of all wireless links.

4 Packet-level dynamics

We first analyze the packet-level dynamics induced by CSMA for a static network state x. The
flow-level dynamics that make x vary are introduced in section



4.1 Random access

We consider the standard CSMA algorithm where each transmitter waits for a period of random
duration referred to as the backoff time before each transmission attempt. At each attempt, the
transmitter chooses a radio channel at random and probes it. If the radio channel is sensed idle
(in the sense that no conflicting link is active), a packet is transmitted (we neglect tho channel
after some random backoff time and transmits a packet over this channel if it is sensed idle. We
study the random variations oe collisions); otherwise, the transmitter waits for a new backoff time
before the next attempt.

Packets have random sizes of unit mean and are transmitted at the physical rate ¢ on class-k
links; the backoff times of class-k transmitters are random with mean 1/v , where v > 0 is the
corresponding attempt rate. We denote by ax = v /pk the ratio of the mean packet transmission
time to the mean backoff time of class-k links. Channel j is chosen with probability Bi;, with
ijl Br; = 1 and Bi; > 0 if and only if k € V}, so that all accessible channels are attempted with
positive probability.

4.2 Stationary distribution

Let Y (t) be the schedule selected by the above random access algorithm at time ¢. We look for the
stationary distribution of Y'(¢), which we denote by m(z,y) to highlight the fact that it depends
on the network state z. We have:

Proposition 1. If both the packet sizes and the backoff times have exponential distributions, then
Y (t) is a reversible Markov process, with stationary measure:

we) = I =2 ! “’“Hﬁi’}”, e 3)

k:xkp>0 Tk — yk

Proof. Let er; be the unit vector on component k,j on {0,1}%*7. The Markov process Y ()
jumps from state y to state y + e; with rate (zx — yi)viBi; (since all idle links attempt to access
the channel) and from state y + ey; to state y with rate ¢y (since all class-k links have the same
physical rate ¢y, independently of the used channel), for any state y such that y + ex; € Y(z).
The proof then follows from the local balance equations:

w(z,y)(@r — Yr)ViBr; = w(z,y + erj)Pr.

O
The stationary distribution 7(z,y) follows from the normalization of the stationary measure
w(z,y) over all y € Y(z). We deduce the mean throughput of class k in state x:

z)=or Y yem(z,y). (4)

yey

It turns out that, by the insensitivity property of the underlying loss network [5], these expressions
are in fact valid for any phase-type distributions of packet sizes and backoff times; such distributions
are known to form a dense subset within the set of all distributions with real, non-negative support
[23], so that the results hold for virtually any distributions of packet sizes and backoff times. We
refer the reader to [25] for further details on this insensitivity property.

5 Flow-level dynamics

We now introduce the flow-level dynamics under the assumption of infinitely fast packet-level
dynamics; the validity of this time-scale separation assumption is discussed in section



5.1 Traffic characteristics

We assume that flows using class-k links are generated according to a Poisson process of intensity
Ak. Each such flow has an exponential size with mean oy bits and leaves the network once the
corresponding data transfer is completed. There is a one-to-one correspondence between flows and
links so that both terms are used interchangeably in the following. We denote by pr = Axoi the
traffic intensity of class k (in bit/s) and by p the corresponding vector.

Under the time-scale separation assumption, the flow-level dynamics are much slower than the
packet-level dynamics so that, at the time scale of a flow, everything happens as if the stationary
distribution (B]) of the packet-level dynamics were reached instantaneously. In particular, the mean
throughput of class k is given by (@) in state z.

5.2 Stability region

Let X (t) be the number of class-k flows at time ¢. The corresponding vector X (¢) describes the
evolution of the network state. This is a Markov process with transition rates \; from state x to
state x + ey and ¢y (z)/oy from state x to state x — e, (provided zj > 0), where ej, denotes the
unit vector on component k.

We say that the network is stable if this Markov process is ergodic. Clearly, a necessary
condition for stability is that the vector of traffic intensities p lies in the capacity region. The
following key result of the paper shows that this condition is in fact sufficient, up to the critical
case where p lies on the boundary of the capacity region. In this sense, CSMA is optimal in the
considered ad-hoc mode.

Theorem 1. The network is stable for all vectors of traffic intensities p in the interior of the
capacity region.

The proof is deferred to the appendix. It is based on the fact that the random access algorithm
selects schedules in proportion to their weights @)). For large z, this is equivalent to selecting
schedules in proportion to the following uniform weight, which is independent of the channel
probing distribution:

u(z,y) = H (‘Tkak)ykv y e y(,T) (5)

k:xi >0
Defining;:

u(r) = max u(x,y),
(z) o (z,)

the following result, also proved in the appendix, shows that those schedules of maximum weight
are actually selected with probability close to 1:

Lemma 1. For any ¢ > 0, we have:
S (@) loglu(z, y) = (1 — ) log(u(x))
yeY(x)
for all states x but some finite number.

The result then follows from the stable behavior of maximum weight scheduling, except that
the latter is defined over the set of all feasible schedules. Defining the corresponding weight by:

v(z) = maxu(x,y),
(@) = maxu(z,y)

the following result, proved in the appendix, shows that it is essentially the same as u(z):

Lemma 2. We have:

The proof of Theorem 1, based on Lemmas 1 and 2, then follows from Foster’s criterion.



6 Time-scale separation

Theorem [I] is based on the time-scale separation assumption: in the packet-level model of section
M packets “see” a fixed number of flows, while in the flow-level model of section 5] flows “see” the
equilibrium state of packet-level dynamics. In this section, we remove this assumption. Specif-
ically, we prove that when the size of the flows grows, the model without time-scale separation
converges to the model with time-scale separation, which indeed suggests that CSMA is optimal
for sufficiently large flow sizes. We actually conjecture that CSMA is optimal for any flow size,
which we prove at the end of the section for a specific class of networks.

6.1 Scaling

As in section [l class—k flows are assumed to arrive according to a Poisson process of intensity
Ak. The number of packets per class-k flow has a geometric distribution with mean Noy, where
N is some positive integer, we refer to as the scaling parameter. In particular, each class-k flow
terminates with probability 1/(c,N) after each packet transmission. Packets are assumed to have
an exponential size with mean 1/N bits, so as to keep the class-k mean flow size constant and
equal to o bits. In particular, the corresponding traffic intensity pr = A\gox is independent of N.
The random access algorithm is that described in section Il The only difference is that the
attempt rates must be scaled so as to keep the ratio of mean packet transmission time to mean
backoff time constant. Thus each class-k link now attempts to access the channels at rate Nyy.

6.2 Asymptotic time-scale separation

The state of the network is now described by the couple (X (¢), YV (¢)), where X () gives the
number of flows of each class at time ¢ and YV (¢) the schedule that is selected at time ¢. This
is a Markov process with transition rates A\ from state (z,y) to state (z + ex,y) (class-k flow
arrival), N(xp — yr)vkfk; from state (z,y) to state (z,y + ex;) (access to channel j by a class-k
flow), Nygjor(1—1/(0kN)) from state (z,y) to state (z,y — ex;) (packet transmission of a class-k
flow over channel j, without flow completion), yx;pi/ok from state (z,y) to state (xr — ek, y — ex;)
(packet transmission of a class-k flow over channel j, with flow completion).

When N grows, the packet-level dynamics, represented by Y (t), are accelerated with respect
to the flow-level dynamics, represented by XV (t). The following result, proved in the appendix,
shows that there is indeed time-scale separation between the packet level and the flow level in the
limit. We assume that X%~ (0) = X (0) for all N > 1.

Theorem 2. When N — 0o, the stochastic process X™ (t) converges in distribution to the Markov
process X (t), which describes the network state under the time-scale separation assumption.

6.3 Stability of some class of networks

Theorems[Iland Plsuggest that CSMA is optimal for sufficiently large flow sizes. We conjecture that
CSMA is actually optimal for any flow size, in the sense that the Markov process (X (¢), YV (t))
is ergodic for any scaling parameter N > 1 provided the vector of traffic intensities p lies in
the interior of the capacity region. To support this conjecture, consider the following class of
networks. We assume that all links have access to the J channels. The interference graph is the
same on all channels and given by some L-partite graph, i.e. there exists a partition {Cy,...,CL}
of {1,..., K} such that two classes in C; do not interfere with each other but a class in C; does
interfere with all classes in {1,..., K} \ C;. Examples of L-partite graphs are given in figure
The following result, proved in the appendix, shows that CSMA is optimal independently of the
scaling parameter N:

Proposition 2. Any network with a L-partite interference graph is stable for all vectors of traffic
intensities p in the interior of the capacity region.
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Figure 2: Examples of 2-partite (a)-(b) and 3-partite (¢) graphs.

7 Infrastructure-based networks

We have so far considered a network in ad-hoc mode, without infrastructure. We now consider
N access points to which users must connect. In particular, each class now corresponds either to
uplink traffic (from the users to an access point) or to downlink traffic (from an access point to the
users). We study the flow-level dynamics of CSMA under the time-scale separation assumption.
Specifically, we prove the suboptimality of standard CSMA in this context and introduce a slight
modification of CSMA, we refer to as flow-aware CSMA, which makes the algorithm optimal.

7.1 Uplink vs. downlink

Foralli=1,..., N, we denote by U; and D; the sets of uplink and downlink classes, respectively,
associated with access point i. In the example of figure Bl for instance, there are N = 2 access
points and K = 6 classes, with Uy = {2}, D; = {1,3}, Uz = {5} and Dy = {4,6}. An access
point cannot transmit and receive on the same channel. In particular, those classes sharing the
same access point, either in uplink or downlink, conflict with each other. Formally, for all access
points i = 1,..., N and all classes k,! € U; U D;, we have (k,l) € E; for each channel j such that
k,l € V;. We assume that an access point cannot transmit data on more than one channel at a
time but is able to receive data on the J channels simultaneously.

7 A
1 3 7 N
* {/ \3\" PE I
y | . - =

Figure 3: A network of 2 access points with 6 classes of links and its interference graph.

The feasible schedules are those defined in section 3.2, with the additional constraint that each
access point cannot transmit data on more than one channel at a time, that is:

Vi=1,..,N, > m<L (6)
keD;



We denote by Y(x) the set of feasible schedules and by ) the union of Y(x) over all network states
x. The corresponding capacity region is defined in section

7.2 Standard CSMA

We first consider the standard CSMA algorithm: each transmitter waits for a period of random
duration before attempting transmission on some randomly chosen channel. The key difference
with the ad-hoc wireless network considered so far is that each access point runs a single instance
of the CSMA algorithm for all its downlink traffic. In particular, for each access point i, the
attempt rates vy are the same for all classes k € D;. At each attempt, the access point i selects a
class-k flow with some probability proportional to x; and probes channel j with probability By;.
If the probed channel is sensed idle, a packet of this flow is transmitted.

It is worth noting that the attempt rate of each access point is independent of its congestion
level, in terms of the number of ongoing downlink flows at this access point. This breaks the natural
stabilizing effect of CSMA we have proven in Theorem [I]in the context of ad-hoc networks, where
those classes with a higher number of flows get preferential access to the radio channels. In the
following, we illustrate the suboptimality of standard CSMA on two examples with downlink traffic
only. Note that, in the presence of uplink traffic only, the model is in fact equivalent to the ad-hoc
network considered so far.

For this purpose, we give the distribution of feasible schedules achieved by the algorithm under
the time-scale separation assumption. Denoting by Y'(¢) the schedule at time ¢, we have the
analogue of Proposition [T}

Proposition 3. If both the packet sizes and the backoff times have exponential distributions, then
Y (t) is a reversible Markov process, with stationary measure:

N J
wew) =I] T] 2oy T
j=1

o
i=1 keU; x>0 (@ = yn)!

ot )

><<Z xk>! H x—’;!Hﬂz;J, y € Y(z).
keD; k€D;:x >0 Jj=1

Proof. As for Proposition [I] the proof follows from the local balance equations. For all 7,..., N,

we have:

Vk € Ui7 w(%y)(ka - yk)l/kﬁkj = ’LU((E, Yy + ekj)goka

and
Tk

ZkeDi Lk
O O

Vk e D;, w(z,y) UkBrj = w(z,y + exj) Pk

The stationary distribution of the schedules m(x,y) follows from normalization. Again, it is
insensitive to the packet size and backoff time distributions beyond the means. The throughput
of class k is given by (@).

Example 1 The most simple example showing the suboptimality of CSMA is shown in Figure
Ml Tt consists of N = 3 access points, a single class per access point and a single channel. Taking
unit physical rates, the optimal stability region is p; + p2 < 1 and ps + p3 < 1 where 1 and 3 are
the edge classes and 2 is the center class. We have proven in [6] that the actual stability region is
strictly smaller, even in the limiting case of infinite attempt rates.
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Figure 4: Network of 3 access points with a single downlink class per access point and its inter-
ference graph.

Example 2 Consider the multi-channel network of Figure [fl with N = 5 access points, a single
class per access point and J = 2 channels, further referred to as the bow tie network. The conflict
graph is the same for both channels. We refer to class 3 as the center class and to the other classes
as the edge classes. We assume that the mean packet sizes and the mean backoff times are the
same for all classes, so that a, = a for all £ = 1,...,5, for some a > 0. We also assume that
all classes except class 3 have the same traffic intensities. The optimal stability condition is then
given by:

p3 <1 and 2p;+p3 <2 (8)
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Figure 5: Network of 5 access points with a single downlink class per access point and its inter-
ference graph.

We consider the limiting case where o — oo and we assume that the two channels are chosen
uniformly at random. We then deduce from (B)-#) the following throughput vector:

(1,1,0,1,1) if @x1,x9,x4,x5 > 0,
0 if  z1,x0,x3,24 > 0,25 =0,
- 0 if T1,To,x3 > 0,24 = x5 =0,
¢(x) = ) if @, w3, w4 > 0,21 = x5 =0, (9)
) if 21,29 >0,23 =24 =25 =0,
) if oz >0,20=0,23 =24 = x5 = 0.

The other cases follow by symmetry. The center class is in conflict with all other classes for
accessing the channels and is either not served when the 4 other classes are active or served at a
low rate when 3 other classes are active. This also results in a suboptimal stability region:

Proposition 4. The bow tie network is unstable whenever:

1 2 2
p3 > gpéll - gP? - gﬂ% + 1. (10)



This proposition is proven in the appendix. In the homogeneous case p; = ps for instance,
Proposition [ implies that the network is unstable whenever p; > 0.63. In view of (B)), the optimal
stability condition is p; < 2/3, which shows that the standard CSMA algorithm is not optimal.
This suboptimality is illustrated by Fig. [6] the actual stability condition being obtained by the
simulation of the underlying Markov process. In the homogeneous case for instance, the loss of
efficiency is around 15%.
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Figure 6: Stability region of the bow-tie network with two channels under standard CSMA.

7.3 Flow-aware CSMA

The flow-aware CSMA algorithm consists for each access point to run one standard CSMA algo-
rithm per flow. This compensates for the inherent bias of standard CSMA against downlink flows
and stabilizes the network whenever possible. Indeed, the stationary measure of the schedules is
now given by ([@). The only difference with the ad-hoc wireless network considered in section [l is
the additional constraint (Bl) on the set of feasible schedules. This does not change the proof of
Theorem [I showing the optimality of flow-aware CSMA.

8 Conclusion

We have proved that, under the time-scale separation assumption, the distributed scheduling
achieved by standard CSMA exploits the radio resources in an optimal way in ad-hoc wireless
networks. This is not the case in the presence of access points, due to the inherent bias of CSMA
against downlink traffic. A slight modification of CSMA we refer to as flow-aware CSMA is then
sufficient to correct this bias and to make the algorithm optimal.

The analysis relies on a number of simplifying assumptions that we plan to relax in future work.
First, we have neglected the impact of packet collisions; these could be included in the model, as
done in [I3] for rate-based adaptive CSMA for instance. One may then account for the adaptive
backoff of the IEEE 802.11 protocol, which is key in practice to limit the number of collisions.
Other issues that may be worth addressing concern the traffic model. We have neglected the impact
of acknowledgements, which are known to be critical in IEEE 802.11 networks. The impact of
real-time traffic should also be considered. Finally, one may think of multi-hop networks where
the flows of some source-destination pairs must go through one or several relay nodes. Although
we believe that flow-aware CSMA is still optimal in this more general settings, we have not yet
been able to prove this result.

10



From a more theoretical perspective, one may relax the assumption of Poisson flow arrivals
and exponential flow sizes in the stability analysis. One may for instance consider user sessions
that consist of an alterning series of file transfers and idle periods. We would also like to extend
Proposition 2] to any interference graph, which would prove the validity of Theorem [ in the
absence of the time-scale separation assumption.

Appendix
Proof of Lemma 1 For any class k, let:
Br = oin, Brj-

Note that 8, > 0. We have for all y € Y(x):

w(z,y) > H Ik(zk_1)"'(xk_yk+1)ﬂ;€]u(x,y).

Yr
k:xp>0 Tk
If z, < 2J, we have:
xk(xk_l)”'yixk_yk—’—l)z%z 1]'
xy xy, (2J):

Otherwise, we have using the fact that y, < J forall k=1,... K:

rr(zg — 1) ... (wx —yp + 1) S (wk—yk—i-l)y"

xzk Tk

1
ﬁ .

>

Combining these results, we obtain the existence of some constant m > 0 such that:
Vy e V(z), wlz,y) = mu(z,y).
Now let: .
2() = {y € V(@) : og(u(w, ) = (1 - ) log(u(2)) }

We have: .
> m(z,y)log(u(z,y)) = (1 - 5)log(u()) > w(z,y).

yeZ(x) yeZ(x)

Using the fact that w(z,y) < u(x,y) for all y € Y(z), we get:

D yevenz@ (T Y)

Z W(xvy) = Z w(m y) ,
yeY(z)\Z(x) yeY(z) )
1 2 yey@)\z@ U Y)
m Zyey(m) U(Ia Z/) ’
1 Mu(z)'~—%
M MaXycy(z) u(x, y) !
1 M

IN

IN

3

where M denotes the total number of schedules (that is, the cardinal of )). Since u(x) tends to
+o0o when |z| = ), x tends to 400, this quantity is less than e/2 for all states 2 but some finite
number. In those states, we have:

Z m(x,y) 21—5.

yEZ ()

11



We deduce that in all states z but some finite number:

> wla,y)log(u(z,y)) > (1—5) log(u(x)),

yeY(z)

> (1 =€) log(u(x))-

O
Proof of Lemma 2 Let:
v(z,y) =[] (ercw)”
kxp>J
There are some positive constants m, M such that:
vz e N¥, vyely, m< uz.y) g
v(z,y)
The proof then follows from the fact that:
() = maxu(z,y) < Mmaxo(e,y) = M max o(r,y) < 0 max u(e,y) = “-u(z)
v(x) = maxu(x max v(x max v(x — max u(x —u(x).
yeY 4 yeY Y yeY(x) Y m yeY(x) Y
O

Proof of Theorem 1 If the vector of traffic intensities lies in the interior of the capacity region,
there exist some € > 0 and some probability measure 7 on ) such that:

yey

Note that we can choose m(y) > 0 for all y € V.
Define the Lyapunov function:

The corresponding drift is given by:

Z/\k (x4 ex) — F(x)) + Z M(F(m—ek)—F(x)),

O
k:xp>0
= Z = log o) Z P (g + 1) log((zx + Dag) — zx log(zra))
k=0 ¥ kize>0 ¥ P
+ Y ¢”“ — 1) log((zx — 1)ax) — zx log(zrow)) -
k:xi >0

In particular, we have AF (z) = G(z) + H(z) with:

)3 P = Oh(®) 1o ),

k:xi >0 Pk
1
Hz)= > 2@ +1)logl + Y ¢’“ (2 — 1) log(1 = —) + 3 P log(an),
kizns0 FF kizp >0 L

12



where we use the convention 0log(0) = 0. Since ¢r(z) < Jpy, the function H(z) is bounded.
Regarding G(z), it follows from () and (1)) that:

G(x) = Z((l —2e)m(y) — w(x,y)) Z v log(zrow),

yey k:xk >0
= Z((l —2e)m(y) — m(z,y)) log(u(z,y)).
yey

By Lemma 1, we have for all states  but some finite number:

Glz) < —e Y mly)log(u(z,y) + (1 =€) [ D m(y)log(u(w.y)) — log(u(=)) | ,

yey yey

< e 3 n(y) log(u(z, y)) + (1 - €) log (Q) |

= u(x)

Since m(y) > 0 for all y € Y, the first term tends to —oo when |z| = >, 2 tends to +oc.
By Lemma 2, the second term is bounded. We deduce the existence of some § > 0 such that
AF(z) < —¢ for all states x but some finite number. The proof then follows from Foster’s
criterion. a

Proof of Theorem 2 In the following, we consider (X (¢))ny>1 as a sequence of stochastic
processes in the space Dyx ([0,00[) of cad-lag functions with values in N¥ with the Skorohod
topology.

First, we have to prove the tightness of the sequence (X (¢)). It is enough to remark that, for
all N > 1, X}V (t) is stochastically dominated by a Poisson process of intensity A, and stochastically
dominates an M/M/1 queue with arrival rate \; and service rate ¢y /oj. Thus, the conditions of
the Arzela-Ascoli theorem are fulfilled and the sequence (X (t)) is tight (see [4, Th 12.3]).

We now consider a bounded function f on N®¥. Denote by Q¥ the infinitesimal generator of
the Markov process (X (t), YN (t)). For x € NX and y € ), we have

K
=Y Mlf(z +ex) Zsak/akz:yk; (x —ex) — f(2)).
k=1

According to the Martingale characterization of Markov jump processes (see [22]), the process:

MY (0 = 108V 0) = 700D - [ Y06 V() as

is a locale martingale and, since the process XV (t) is not exploding on [0,#] (it is stochastically
dominated by a Poisson process), it is a martingale.
For each N > 1, define the random measure:

t
FN([O,t] x B) = / Ly (s)eBy ds, for BC)Y
0

'V is a random variable with value in the set £())) of the random measures on [0, c0[x) such
that if © € £(Y) then p([0,t] x V) =t for all t > 0. Since ) is finite, the set £(Y) is compact and
then the sequence (I'V)y>1 is relatively compact.

Assume that the sequence (X (¢),I'V)y>1 tends to some limit (X (¢),T). Since:

/OQN(f)( N(s),Y dr/ SN () (XN (s), 5)TV (ds x dy)

yey
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and f is bounded, this random variable tends in distribution to:
/ doaf )(ds x dy).
yeY
It remains to characterize I'. According to Lemma 1.3 of [15], there exists a set of random
probability measures ¥(t,.) on ) such that:

t
([0,4] x B) = / 9(s, B)ds, for B C Y.
0

For any function g on ), we define the martingale:

30 = 5 (907 (0) = ¥ (0) - [ 0¥l (6. Yo as).

For 2 € N¥ and y € Y, we have:

K J
= Z ZN(Ik — Yr)VkBrj (9(y + exz) — 9(v))

k=1 j=1

+ (Nykjcpk (1 — %LN) + ﬁ) (9(y — ex;) — 9(y))-

Ok
The increasing process of this martingale is:

(Y 0) = 3 [ 9@ 6) s

IN

2L e |g(y) 4 3
— max max max V. max ; .
N ey 19y QX Pk T MAX Vg IRAX Py

It tends to 0 on all compact sets so that the martingale tends in distribution to 0. Since )Y is
finite, g is bounded and (g(YV(¢)) — (YN (0)))/N also tends to 0. Finally, we get that:

5 | @Y. @) as

converges in distribution to 0. This implies:

[8>

yey

<ZZ (Xk(8) = yr)viBri(9(y + exs) — g(y))

k=1 j=1
+ yrjor(9(y — ex;) — g@))) J(s,y)ds =0

and for almost every s in [0, t], we have:

K J
> (Z 3 (Xk(s) = ye)aBry 90y + ens) — 9(y)

+ yrier(9(y — exj) — g(y)))ﬁ(s, y)=0

The probability distribution 9(s,.) is then the stationary distribution given by (3.
It follows that:

/0 QN (F)(XN (), YN (s)) ds

14



converges in distribution to:
t
[ amxe) as
0

where Q is the infinitesimal generator of the Markov process described in section Bl For z € N,
we have

K
Q@) =Y M (fl@+ex) = f(2) + du(@) fon (f(x = ex) = f()),
k=1

where ¢y () is the mean throughput of class k in state z, given by ().
By dominate convergence, M ;V (t) tends in distribution to:

My () = F(X(1)) - F(X(0)) - / Q) (X(s)) ds,

and My(t) is a martingale. Using the characterization of the Markov jump processes, we get that
the process X () is a Markov process with infinitesimal generator §2.
This concludes the proof. O

Proof of Proposition 2 For this proof, we will need the notion of fluid limits. A fluid limit is
a limiting point X (¢) of the laws of the processes { X (nt)/n,n > 1} in the set of probability
measures on the space Dric ([0, 00)) of cad-lag functions with value in RE with Skorohod topology

(see [4]). Tt is not difficult to show that the set of processes { X (nt)/n,n > 1} is tight in the set
of probability distributions on the space Dgic ([0,0)) endowed with the metric associated to the
uniform norm on compact sets. Therefore, there exists at least one fluid limit and any fluid limit
is continuous. Since the process YV (nt) has its values in a finite space for all n > 1, it can be
proved as in [8, 21] that, if there exists a deterministic time 7' > 0 such that X~ (¢) = 0 for all
t > T, then the Markov process (X (¢), Y™ (t)) is ergodic.

The proof is then very similar to that given in [9] for random capture algorithms. We consider
a fluid limit XV (¢) and define:

L

WN () = XNtU—’“>.
(0 gﬂc( Mok

1=

When some class in C) takes channel j, all other classes in C; can take this channel while all classes
in {1,..., K} \ C; cannot. This implies:

L
WHN(t) <max [ 0,1+ max & — 7 |¢].
= keC, QO]C

In the case of L-partite networks, the capacity region is given by the set of vectors ¢ such that:

Since p lies inside the capacity region, we have W (t) = 0 for all t > T, with

1
T= 7 )
J = L, maxgec, Pk
which implies the ergodicity of the Markov process (X (¢), Y (¢)). ad
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Proof of Proposition @ Define the throughput vector ¢ such that ¢s(z) = ¢3(z) and ¢ () =
1iy,>0p for all & # 3. It can be easily verified that or(x) > ¢r(y) for all states z,y such that
2 <y and all k such that z; > 0. Now consider the coupling of the stochastic processes X (t) and
X (t) describing the evolution of the queues for the throughputs ¢ and (;3, respectively, starting
from the same initial state X (0) = X (0). It follows from the above monotonicity property that
X(t) < X(t) a.s. at any time ¢ > 0. In particular, the transience or the null recurrence of X ()
implies that of X (¢).

For the throughput vector gi;(t), queues 1,2,4.5 are independent M /M /1 queues with load p;.
If p; > 1, the Markov process X (t) is null recurrent or transient. Note that (I0) then reduces to
p3 > 0.

Assume now that p; < 1. To prove the transience of X (t), we use fluid limits. Since p; < 1 and
for (;3(15), queues 1,2,45 are independent M /M /1 queues with load p1, there exists some finite time
after which, for any initial conditions, the corresponding components of the fluid limit are null.
We then just have to consider the fluid limits with the initial condition X3(0) = 1 and X(0) = 0

for all k # 3. In this case, Proposition 9.14 of [21], p.241] applies and the fluid limit satisfies:

X3(t) =1+ (/\3 - ?) t,

3

as long as this function is positive, where ¢3 is the throughput of link 3 averaged over the states
of other links. Since each other link is active with probability pi, it follows from (@) that:

1 2 2
¢3 = gﬂ?—gpﬁ—gpf—i—l.

In particular, X3(t) increases linearly to infinity whenever inequality (I0) is satisfied and, according
to [17], the Markov process X (¢) is transient. m|
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