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SUMMARY

In this paper, we present and analyze a Tabu Search (TS) algorithm for Dynamic Spectrum Allocation
(DSA) in cellular networks. We study a case where an operator is providing packet services to the end-
users. The objective of the cellular operator is to maximize its reward while taking into account the trade-off
between the spectrum cost and the revenues obtained from end-users. These revenues are modeled here as an
increasing function of the achieved throughput. The cost is proportional to the bandwidth of the spectrum
leased to the regulator or some spectrum broker. Results show that the algorithm allows the operator to
increase its reward by taking advantage of the spatial and temporal heterogeneities of the traffic in the
network, rather than assuming homogeneous traffic for its radio resource allocation. Our TS-based DSA
algorithm is efficient in terms of the required memory space and convergence speed. Results show that the
algorithm is fast enough to suit a dynamic context. Copyright c© 2xxx AEIT

1. Introduction

Due to the spectrum crowd situation and the high demands

on spectral resources, spectrum sharing and Dynamic

Spectrum Allocation (DSA) techniques have been recent

active research topics. The existing spectrum allocation

process, denoted as Fixed Spectrum Allocation (FSA),

headed for static long term exclusive rights of spectrum

usage [1] and is shown to be inflexible [2]. Spectrum

sharing has been proposed as a promising method for better

usage of spectrum. Researchers have worked on spectrum

sharing algorithms motivated by the incentives taken by

FCC to promote a better usage of spectrum [3] [4]. For

example, the authors in [5] propose a coordinated DSA

system where a common pool of resources is shared and

controlled by a regional spectrum broker.

In this paper, we consider a framework of several

operators sharing a common pool of resources or

Coordinated Access Band (CAB) inspired by [5], and we

focus on the strategy of one operator leasing spectrum

∗Correspondence to: Marceau Coupechoux, 46 rue Barrault, Paris,
France. E-mail: marceau.coupechoux@telecom-paristech.fr
†Part of the results presented in this paper have been published in IEEE
WiMob 2010 and IEEE Wireless Days 2010.

from the broker. The operator does not own the spectrum,

but rather has to lease it according to the demands in

order to provide packet services for the end-users. We are

interested in developing a DSA algorithm based on Tabu

Search (TS) that provides the number of spectrum blocks

to be acquired from the broker, as well as the frequency

assignment corresponding to the maximum reward.

Several algorithms have been proposed to solve the

Channel Assignment Problem (CAP) in cellular mobile

networks, which is known to be NP-complete in many

of its formulations (see e.g [6]). The classical CAP

consists of assigning the channels to the cells within

the mobile network while satisfying: (1) interference

constraints (co-channel, adjacent channel or both together)

and (2) the traffic load demands. The proposed algorithms

in the literature could be classified as follows: algorithms

based on heuristic methods [7], others based on genetic

algorithm [8], on graph coloring method [9], and on neural

network methods [10]. Several papers have also studied

frequency assignment using TS algorithm. For example,

the references [11], [12], [13], and [9] make a partial list of

the references proposing TS algorithm to solve the fixed-

spectrum CAP.

It is worth mentioning that most of the work done
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using TS to solve the fixed-spectrum CAP in cellular

networks, has focused on circuit switched traffic (i.e. voice

traffic) with application to the GSM networks (see [12] for

example). Treating voice traffic using TS has always been

associated with a hard interference requirement: below a

certain Carrier to Interference Ratio (CIR) threshold, the

service is not accessible, while above this level, there is no

significant increase of the service quality. For this reason,

previous works have focused on the minimization of the

interference (as an objective function), while satisfying the

traffic demands. Note that in order to be able to perform the

spectrum assignment, in fixed-spectrum CAP problems, it

is necessary to know the number of channels required by

each cell.

With the increasing demand of packet data services

along with the development of new standards supporting

packet applications, i.e., LTE and WiMAX, it would be

interesting for DSA techniques to take into account the

specificities of packet traffic. In contrast with the case

of voice traffic, in packet traffic services, we see the

interference constraint as a soft interference requirement,

where interference can be tolerated without a hard

threshold. A higher level of interference however induces a

soft degradation of end-users throughput and consequently

affects their satisfaction.

Different from references [9], [11], [12] and [13] that

used TS algorithms, we set an objective function of

maximizing the operators reward. The reward is computed

here as the sum of revenues obtained from end-users minus

the spectrum cost. The revenue obtained from a user is in

turn an increasing function of its throughput. The cost is

proportional to the bandwidth of the spectrum leased to the

broker.

In our formulation of the dynamic-CAP for packet

service, the operator has no predefined information about

the number of frequency blocks required by the cells.

Assigning only one, but poorly interfered, block to a given

cell might provide higher throughput to the end-users than

assigning two (or more) highly interfered blocks. Thus, the

operator needs to find a certain level of compromise in

order to maximize its reward (see section 2.1.2).

In [9], the authors have used TS method to solve the

minimum interference DSA problem. Our approach differs

from [9] mainly due to the consideration of packet context.

Consequently our formulation of the objective function, the

neighborhood structure, and the tabu list is different and

adapted to the packet traffic assumption. The formulations

proposed in this paper lead to a simple algorithm that

does not require excessive memory space, and suits the

implementation in a dynamic context.

In addition, it is worth noting that the framework

proposed in this paper is the same as the one presented

in our previous work [14]. In [14] however, we have only

considered the temporal variations of the traffic without

any interference consideration and we have proposed

in this context optimal, Q-learning based and heuristic

methods for the resource allocation problem. In this paper,

we extend this work by taking into account both temporal

and spatial traffic heterogeneities and interference issues.

Hereafter, we summarize our main contributions with

respect to the related TS work: proposing and analyzing

a DSA algorithm based on adapted TS method, where

(1) we consider packet traffic services, (2) we address the

spectrum pricing issue, (3) we set an objective function

for maximizing the operators reward, and (4) we introduce

adaptations to TS for a dynamic deployment of the

algorithm.

We first propose in section 2 a centralized approach

adapted to a cluster made of a finite and limited number

of cells. We illustrate in this part how the TS based DSA

(TS-DSA) algorithm can take advantage of the traffic

heterogeneity in the network, whether the temporal or

the spatial heterogeneity. However the TS-DSA algorithm

would have a limited performance in case the operator

intends to deploy DSA on a larger area containing high

number of cells. In this case, the global deployment of

the TS-based DSA on the whole Radio Access Network

(RAN), in a centralized manner, has its limitation. The

higher the number of cells, the higher the number of TS

neighbors to be generated. Consequently higher number of

iterations will be necessary to explore different solutions

and to reach a good one. In section 3, we thus propose

a distributed algorithm for the operator to overcome the

complexity limitation of the TS-based DSA algorithm

when it comes to large RANs. The distributed algorithm

allows the operator to deploy (execute) the TS-DSA

algorithm on small clusters in a consequent manner and

according to the events.

2. Tabu Search Based DSA: Centralized Approach

In this section, we start by considering a centralized

approach for Tabu Search based DSA. A single central

entity is able to make the spectrum assignment to each cell

of a cluster. We first define the considered network model

(section 2.1). We then describe the proposed TS-DSA

algorithm (section 2.2). We finish this section by showing

how our algorithm can benefit from spatial (using a static

approach in section 2.3) and temporal (using dynamic

simulations in section 2.4) heterogeneities of the traffic.
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2.1. Network Model

2.1.1. System Model: We study DSA on the cell level

and we focus on a mono-operator case. The operator is

supposed to deploy one RAN providing packet services

to the end-users. The operator does not own the spectrum

but rather has to lease it according to the traffic load. The

spectrum is leased from a spectrum broker and consists

of an integer number of blocks taken from the common

pool, the CAB. Let Fmax be the CAB size in number of

frequency blocks.

As illustrated in Fig. 1, we are considering a cluster

consisting of one hexagonal central cell and two rings of

cells surrounding the central cell. Cells have a radius of

R. It is worth mentioning that the usage of an hexagonal

model is only for the sake of simple simulations. Our

algorithm behaves the same way no matter the type of

network topology.

We consider only packet type of service characterized

by arrivals and departures of packet calls (we don’t go into

the detail of individual packet transmissions). In a given

cell, the scheduling is supposed to be fair in throughput.

The average data rate accessible by users in a cell is

proportional to the bandwidth allocated to the cell and is

equally divided among all users of the cell.

!

!

Figure 1. Cluster of a hexagonal network centrally controlled by
the DSA algorithm.

2.1.2. DSA Policies: In the considered system model, the

core issue for the operator lies in the trade-off to be found

between spectrum cost and revenues obtained from users

[15]. We suppose that a DSA decision is taken by the

operator at each new event, i.e., arrival or departure of a

packet call in any cell. A DSA decision assigns spectrum

blocks to each cell in the RAN. We assume that at least

one spectrum block is always available to each cell, so

that starvation is not possible. This assumption has also a

practical reason, when it comes to the implementation of

TS algorithm, the research space is indeed decreased.

More formally, a DSA policy can be represented by a

boolean matrix s of size Fmax ×B. An element sfc of the

matrix is defined as:

sfc =

{

1, if (frequency) block f is assigned to cell c,

0, otherwise.

According to our convention, none of column vectors of s
is null. Let S be the set of all possible such matrices. This

is also the set of all DSA policies.

We are interested in the development of a DSA

algorithm which maximizes the operators revenue (see

section 2.1.4).

2.1.3. CIR and Cell Capacity: Clearly, the bit-rate

obtained by the end-users depends on the perceived Carrier

to Interference and Noise Ratio (CINR) level and the

CINR level depends on the frequency assignment. The

exact CINR distribution in a cell is hard to be determined

in practice. For the sake of simplicity, we rely on an

approximate calculation for the CINR by focusing on the

cell edge, which is a worst case in terms of interference.

We consider an urban environment, and hence we neglect

the noise and we focus on the CIR. The users are assumed

to be located on the cell border and facing the highest level

of interference from the interfering cells. We also assume

that all cells are transmitting with the same power level.

From the previous assumptions, an estimation of the CIR

perceived by the users in cell c on frequency block f given

the DSA policy s, is:

CIRf
c (s) =

sfc min

(

R−α

∑

i∈Bf (s)\{c} (dc,i −R)
−α

, CIRmax

)

, (1)

where R is the cell radius, α is the path-loss exponent, dc,i

is the distance between the victim cell c and the interfering

cell i, Bf (s) = {j = 1, ..., B s.t. sfj = 1} is set of all cells

using the frequency block f and CIRmax is an upper

bound on CIR. By convention, if f is not allocated to c by

s, the CIR is null. It is worth mentioning that considering

different models of the CIR will not affect deeply the

proposed algorithm for DSA. All other calculations for

CIR can be introduced into the proposed algorithm.

We approximate the cell capacity (in bps) using Shannon

classical formula. The cell capacity is the sum of capacities
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provided by the frequency blocks used by the cell.

Formally, the cell capacity Cc(s) of cell c under DSA

policy s is denoted by:

Cc(s) =

Fmax
∑

f=1

Wf log2(1 + CIRf
c (s)), (2)

where Wf is the block size in Hz with index f , CIRf
c is

the CIR perceived by cell c on frequency block f . If block

f is not allocated to c by s, CIRf
c (s) = 0 and Cc(s) = 0.

As we consider fair throughput scheduling between users

of a given cell, the data-rate Dc(s) obtained by each of the

users in cell c is given by: Dc(s) = Cc(s)/Nc, where Nc

is the number of users in cell c (whenever Nc 6= 0).

2.1.4. Reward Model: We give now the reward definition

while taking into consideration both the user date-rate and

the spectrum price. The revenue obtained from a given user

in cell c increases with his satisfaction:

φc(Dc(s)) = Ku(1 − exp(−Dc(s)/Dcom)), (3)

where Ku is a constant in euros per unit of satisfaction,

Dcom is a constant called comfort data-rate, and the

satisfaction is an increasing function of the user data rate

(without unit) [16].

Concerning spectrum, we consider the price to be fixed

per MHz. The cost paid by the operator for the spectrum

can be given as:

KB Wf F (s), (4)

where F (s) = |{f = 1, ..., Fmax|∃c, sfc 6= 0}| is the

number of frequency blocks used by the RAN given that

DSA policy s is used, Wf is the block size in Hz, and KB

is a constant in euros per Hz. Note that a different spectrum

price function (for example a function that depends on the

demands in the market as considered in [15] and [17]) can

be used with our algorithm.

The reward obtained by the operator with DSA policy s
can thus be written:

g(s) =

B
∑

c=1

Ncφc(Dc(s))−KB Wf F (s), (5)

where B is the total number of cells in the cluster

area where DSA is performed. By convention, we set

Ncφc(Dc(s)) = 0 when Nc = 0, i.e., the operator doesn’t

get any reward from cell c when there is no user.

The optimization problem we want to tackle can be

written:

max
s∈S

g(s). (6)

S being a discrete and finite space, this non linear binary

integer programming problem has obviously at least one

solution. Finding the optimal solution by brute force may

however be cumbersome as the number of cells and

spectrum blocks increase.

2.2. Tabu Search Based DSA

In order to maximize the operator reward, we rely on

Tabu Search. We first explain the principle of Tabu Search,

define the main concepts in our case and detail our

implementation.

2.2.1. Principle: Tabu search is a metaheuristic that

guides a local heuristic search procedure to explore the

solution space beyond local optimality, by allowing a

degenerated solution [13]. TS was originally presented by

Glover in [18] and [19].

The basic idea is to forbid a move that would return

to recently visited solutions by classifying them as tabu.

Hereafter we give the fundamentals of TS. Let S be the

set containing the possible solutions to the problem. For

each solution s ∈ S there exists a subset of S called

neighborhood of s. The neighborhood contains feasible

solutions, each of them is obtained by making a simple

move from the solution s. The algorithm uses a memory

structure called Tabu List (TL) to avoid cycles. The

algorithm forbids the selection of a solution among the

neighborhood, if this solution have been visited in a

previous iteration. At each iteration the TS updates the TL

by adding attributes of the selected solution. Note that such

attributes do not contain the complete solution otherwise

handling the TL will become costly (in terms of required

memory) when the number of iterations increases [13].

Note that the TL has a limited size (called TT for Tabu

Tenure) and the choice of the TT has an impact on the

obtained result. The smaller the TT, the higher the chance

to have cycles (visiting previously visited solutions) and

hence TS cannot go beyond the local optimal. However

if the TT is very large, very few options will be left for

the neighborhood formation, besides the cost for necessary

memory space.

The initial point of the TS algorithm has its importance

in determining the time (i.e. the number of iterations)

required to reach the optimal solution. Starting from a

solution very far away from the zone where the optimal

solution exists, will require more iterations to explore

the different zones. An initialization process aims at

facilitating the search procedure for the algorithm, through

the reduction of the time required to reach the optimal

Copyright c© 2xxx AEIT
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solution. Usually an initialization process is based on some

heuristic method.

As the minimum number of iterations required to reach

an ”efficient” solution using TS is very dependent on

the initial start point, the basic idea of TS-based DSA

algorithm makes use of this dependency and applies the

TS at each new event. A new event does not drastically

modify the system state. The previous assignment is thus

probably a good starting point for the TS-DSA to find

a better solution. In a dynamic context, the algorithm is

launched at each new event where it starts from the last

reached allocation solution.

2.2.2. Definitions: Before illustrating our implementation

of the TS algorithm, we give the following key definitions.

• A solution s is a feasible DSA policy defined as

a Boolean matrix of size Fmax ×B such that no

column vector is null (each cell has at least one

block). Taking an example of Fmax = 3 blocks, and

B = 5 cells, then a ”possible” solution s can be

given as:

s =





1 0 1 0 1
0 1 0 1 1
0 0 0 0 0





In this simple example, only 2 blocks are used by

the RAN (F (s) = 2) and the operator pays for the

corresponding spectrum size.

• According to our model, a ”possible” solution

means there is at least one block assigned to every

cell. Practically, this assumption helps reducing the

search space for the algorithm, and hence increasing

the chance of reaching a better solution in less

number of iterations. The assumption is also realistic

because it avoids starvation situations.

• For each solution s ∈ S, we define the set of moves

M(s) which can be applied to s in order to obtain a

new solution s′.
• A neighbor s′ of the solution s is created by

applying one move m, where m ∈M(s).
• The move m is a Boolean matrix of the same size

as s, all its elements equal to zero except one, or

two elements equal to one (see neighbor formation

in section 2.3).

• The reward g(s) achieved using a solution s is

calculated as illustrated previously in sections 2.1.3

and 2.1.4. The maximum reward ever-reached

during the search process is denoted gmax.

• At each iteration, attributes of the selected solutions

are added to the TL.

We have chosen to consider the reward corresponding

to each selected solution (among all TS neighbors at each

iteration) as its attribute. There is two main advantages

behind this approach: first, adding the reward g(s) (of the

selected solution s) in the TL, will not only forbid the

TS from selecting s as a valid solution for the following

iterations, but will also forbid visiting all solutions who

achieve the same reward as g(s). The second advantage

is related to the required memory space for the TL. Our

TL is composed of a single vector of size TT, each of

its elements being equal to the reward g(s) corresponding

to the selected solution s. Note that, in our case, g(s)
holds the complete needed information (from the operator

perspective) of the solution matrix s.

2.2.3. Implementation: We present in Algorithm 1 our TS

algorithm that suits the DSA for packet services.

Algorithm 1 TS algorithm for reward maximization in

packet services context

1: Initialization: an initial solution sinit is found.

2: s← sinit

3: gmax ← g(sinit)
4: while Nb. of iterations ≤MAXITER do

5: Neighborhood formation: all possible TS neighbors

of the initial solution s are created, except those who

are listed as tabu.

6: Neighbor selection: the solution s′ that achieves

the maximum reward is chosen, among the set of

neighbors, with the condition that s′ is not listed

Tabu, s← s′

7: Tabu list update: the reward g(s′) corresponding to

the selected solution s′ is added to the TL.

8: Maximum reward update: the maximum ever-

obtained reward gmax is updated:

if g(s′) > gmax, then gmax ← g(s′) end if

9: end while

2.3. Spatial Heterogeneity

In this section we illustrate the impact of the spatial hetero-

geneity of network traffic on algorithms performance.

2.3.1. Implementation Details: We illustrate hereafter the

implementation details of the steps given in Algorithm 1

for the first evaluation.

Initialization: We have chosen an initialization method

based on randomly formed solutions. Note that the operator

does not have clear requirements on the number of blocks
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to assign to a cell (unlike [9], [11] and [13]), hence the total

number of blocks to be used is unknown to the operator.

We divide the search zones according to the total number

of blocks the operator can lease (1, ..., Fmax). Note that the

search zone with a single block is a trivial one because in

this case, there is a single possible solution corresponding

to frequency reuse 1. We generate randomly 300 possible

solutions for each search zone. The TS algorithm starts

using the solution corresponding to the maximum obtained

reward among all randomly created solutions.

Neighborhood formation: All possible TS neighbors are

created by whether: (1) removing an assigned block from a

random cell, (2) adding a non-used block to a random cell,

or (3) replacing one of the used blocks in a random cell by

a non-used block. Note that adding, removing, or replacing

a frequency can be performed by a simple XOR operation.

The neighbor s′ = s⊕m, where m is a Boolean matrix

that contains zeros except one element equal to one in case

of adding or removing a block. In case of replacing a block,

two elements of the matrix m equal to one.

Neighbor selection: According to our defined objective

function, the neighbor that achieves the maximum reward

among all neighbors is selected.

2.3.2. Simulation Scenarios and Parameters: Hereafter

we define the parameters we used for our simulations. The

maximum number of blocks Fmax the operator can lease

is assumed to be 6 blocks, with block size Wf of 1 MHz.

The comfort bit-rate for the user Dcom = 500 Kbps, the

cell radius R = 1 Km, and the path-loss exponent α = 3.

The pricing constants are fixed as follows: Ku = 10 euros

and KB = 50 euros/Hz. TS algorithm parameters are set

as follows: Tabu Tenure = 200 and the maximum number

of iterations MAXITER = 800 iterations.

According to the defined parameter set as well as to the

neighbor definition, the total number of possible neighbors

created from a solution s, in the worst case, equals to 285
neighbors. It is clear that, for our case study, generating all

possible neighbors at each iteration is very feasible.

Now we are going to use TS to compare the obtained

reward through serving a specific amount of traffic load

(determined by the total number of active users) in two

different cases: (1) the case of an operator using FSA, who

assumed a homogeneous traffic over the RAN to perform

its channel assignment, and (2) the case of an operator

using DSA, who considers the exact (heterogenous)

distribution of the traffic to dynamically assign spectrum

blocks.

We have first considered a total number of users equal

to 57. We suppose that the distribution of the users is

following a decreasing function of the distance from the

central cell. There is a high concentration of users in the

central cell (this is the hot spot), and this concentration

decreases with the distance from the center of the cluster.

Tab. 1 gives all studied users distributions following this

criterion with a total number of users equals to 57 users.

It gives the number of users per cell for the central cell,

the middle-ring cells, and the outer-ring cells as well as

the distributions standard-deviation σ. The homogeneous

traffic scenario is also included with its zero standard

deviation (all cells have the same number of users).

Table 1. Studied users distributions and corresponding standard
deviations σ

central cell middle-ring cells outer-ring cells σ

33 2 1 7.28

27 3 1 5.88

21 4 1 4.58

15 5 1 3.46

9 6 1 2.76

9 4 2 1.73

3 3 3 0

The operator using FSA has assigned frequency blocks

to the cells while assuming a homogeneous traffic (last

line of Tab. 1). For a fair comparison, the assignment

is obtained using the TS algorithm but remains fixed

whatever the traffic conditions. The operator using DSA

adapts its frequency assignment according to the dynamic

of the traffic and tries to maximize its reward whatever the

heterogeneity situation in the network.

For the sake of comparison, we have then increased the

number of users to 152, adding 5 more users to every cells

in all scenarios of Tab. 1. The spatial standard deviations

remain unchanged.

2.3.3. Simulation Results: Fig. 2 gives the obtained

reward versus the standard deviation σ for both operators

for 57 (left) and 152 users (right) respectively. Each point

corresponds to a line in Tab. 1. For σ = 0, as both operators

launch the TS algorithm, obtained reward are equal. As

heterogeneity grows up (σ increases), the FSA allocation

remains the same for the first operator, while for the

second, DSA strategy adapts the assignment to the traffic.

We can notice that the obtained reward decreases as σ
increases in all cases, even for the operator who considers

the real traffic in the RAN for its resource allocation.

Fig. 2 shows however that the reward obtained by the DSA

operator exceeds the reward obtained by the FSA operator

for all values of σ. The same trends can be observed for 57
or 152 users.
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90% confidence intervals after 10 trials are also shown

on the figure. Their small size around the mean value

highlights the fact that results are very stable.
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Figure 2. Obtained reward by the two operators (using resp. FSA
and DSA) as a function of the spatial heterogeneity of the traffic
characterized by σ; scenarios with 57 users (left) and 152 users
(right).

We give in Fig 3 a spectrum assignment obtained using

TS-based DSA algorithm for σ = 7.28 and 57 users.

The numbers indicated on the cells represent the block

numbers. The TS-based DSA algorithm has assigned one

block to all the cells, except the central cell. The algorithm

has assigned 3 blocks to the central cell; two of them (block

4 and block 5) are not assigned to any of the other cells,

while the third block (block 2) is assigned to some of the

cells on the outer-ring. We see this assignment is coherent

with the distribution of users in the cells. Note that the

central cell has 33 users (see Table 1). The TS used a total

of only 5 blocks out of the 6 blocks available (83% of the

CAB is used). For the above scenarios, optimal solution is

difficult to obtain. However, we can verify that on small

scale scenarios (not shown here) involving e.g. only three

cells and six blocks, the TS-based DSA always provides an

optimal solution.

2.3.4. Performance of TS: We evaluate in this section

the performance of the TS algorithm in terms of step

complexity, memory requirement and convergence time.

The complexity of each step of the TS algorithm resides

in the neighborhood formation and reward calculation.

According to the neighbor definition, the total number of

possible neighbors created from a solution s equals to:

Fmax B −Bs0 +
B
∑

c=1

Fc F̄c, (7)
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Figure 3. Obtained spectrum assignment using TS-based DSA
for σ = 7.28.

where Bs0 is the number of cells having one block in s, B
is the total number of cells in the RAN, Fc is the number

of frequency blocks used by cell c, and F̄c is the number

of blocks not used by cell c. Note that Fc + F̄c = Fmax.
The first part of the equation (Fmax B −Bs0) represents

the total number of possible neighbors created due to

adding or removing a block from a cell, knowing that

at least one block should be assigned to any cell. The

summation part represents the total number of possible

neighbors created due to the replacement of a block, it is

maximal when ∀c, Fc = Fmax/2. So, clearly, the number

of neighbors is in O(BFmax). For each neighbor, the

obtained reward has to be computed. For a given DSA

policy s, the CIR computation for one cell is in O(B) (see

Eq. 1) and satisfaction in O(BFmax) (see Eq. 2 and 3). As

a consequence, the complexity of the reward calculation

is in O(B2Fmax) (see Eq. 5). At last, the TS algorithm

complexity is in O(B3F 2
max).

The memory requirement of the TS algorithm includes

the Tabu List of size TT float values and O(BFmax)
boolean matrices of size B × Fmax.

We now evaluate the performance of our TS algorithm

in terms of the number of iterations required to reach

an ”efficient” solution. This metric is important from

the dynamicity point of view of the algorithm. Note

that here and in the rest of the paper, we do not try

to necessarily achieve the optimal solution. This would

require a unacceptable delay for the operator. We rather
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look for a reasonable number of TS iterations that provide

a significant gain for the operator.

We assume the same parameter set as given in

section 2.3.2. The RAN has a total number of 57
users. We compare different cases of users distributions:

homogeneous and heterogeneous distributions.

Fig. 4 gives the mean obtained reward using TS as

a function of the number of iterations for σ = 0, 2.76
and 3.46 (see Table 1 for the exact number of users in

each cell). Each of the presented curves in Fig. 4 is the

output of averaging 250 trials. It is clear that the higher

the number of iterations, the higher the chance to get a

better solution. A too high number of iterations would

however prevent an operator from using the proposed

algorithm in a dynamic context. We can further notice

from Fig. 4 that the mean value of the reward increases

with the increase of the iterations number until it stabilizes

(this is true for all values of σ). The minimum number

of iterations required for the mean reward to stabilize is

found to be approximately 200, 240, and 320 iterations for

σ = 0, 2.76, and 3.46 respectively. In the homogeneous

distribution case (σ = 0) the mean reward curve stabilizes

very fast. However in the heterogeneous case, the mean

reward curve needs higher number of iterations to stabilize.

Obviously, finding the allocation which maximizes the

reward in a heterogenous traffic case is more challenging.
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Figure 4. Average reward versus the number of iterations.

We can however notice that the required minimum

number of iterations is reasonable enough to allow the

operator to launch the algorithm at each new event. It

is very important to note that the obtained minimum

number of iterations is very dependent on the initial start

point. In a dynamic context, and at each new event, the

operator is supposed to start TS algorithm from the last

reached allocation solution. Hence the minimum number

of iterations are expected to be reduced.

For a more efficient algorithm in terms of the

convergence speed, we introduce few amendments to

the algorithm in the coming section. We also study the

temporal heterogeneity of the traffic, and evaluate the

network performance while using the amended TS-based

DSA algorithm.

2.4. Temporal Heterogeneity

2.4.1. Implementation Details: We begin by giving the

introduced amendments to the implementation of the

algorithm to better suit the dynamic context.

Initialization: From our experience, we have noticed

that the TS algorithm assigns a number of blocks to each

cell that is more or less proportional to the number of

users in the cell. Accordingly, we add an amendment to

the previously used initialization method making use of

this property, to get a good starting solution closer to

the zone where the optimal solution exists. As previously,

the initialization method is based on randomly formed

solutions. We divide the search zones according to

the total number of blocks F the operator can lease,

F ∈ (1, ..., Fmax). We generate randomly 300 possible

solutions for each search zone. However we add the

following conditions: (1) only one block is assigned to

the cell(s) having one user, (2) a number of blocks equals

to Fmax is assigned to the cell(s) having the maximum

number of users. The TS algorithm starts using the solution

corresponding to the maximum obtained reward among all

randomly created solutions.

Neighborhood formation: For an efficient algorithm

that can be executed at each new event, a limitation of the

number of TS neighbors for the first iteration is introduced,

depending on the event type (i.e. arrival or departure of a

user). The following method is implemented: in case of

arrival or departure of a user, replacing one of the used

blocks is considered, however: (a) adding a non-used block

to a random cell is only considered in case of arrival, and

(b) removing an assigned block from a random cell is

only considered in case of departure. Note however that,

although the number of neighbors is reduced, it is still

in O(BFmax). So the TS algorithm complexity remains

unchanged.

Neighbor selection: In order to choose one neighbor, the

operator needs to calculate the reward for all neighbors.

This process might affect the efficiency of the algorithm.

In order to reduce the algorithms complexity, we introduce
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the following method for the selection of cells while

calculating the reward for each TS neighbor. For each move

that creates a neighbor, only the affected cells by the move

are chosen for the reward update. For example, in case of

replacing f5 by f4 in a cell, then only the cells using f5 or

f4 need to be updated.

2.4.2. Simulation Scenario and Parameters: Now we

evaluate the networks performance (algorithms dynam-

icity) using event-based simulations. We consider the

same RAN topology and size as considered in section

2.3.2. The maximum number of users that each cell

accepts (according to the Connection Admission Control

configuration) equals to 10 users. We assume Poisson

arrivals of packet calls and exponential packet call sizes

(with average 3 Mbits). We suppose an heterogenous traffic

in the RAN: there is a high concentration of traffic in

the central cell, and this concentration decreases as the

distance from the clusters center increases. We assume

the arrival rate for the central cell λ1 = 4λ2, where λ2 is

the arrival rate per cell for the cells in the middle-ring,

and λ1 = 6λ3, where λ3 is the arrival rate per cell for the

cells in the outer-ring. TS algorithm parameters are set as

follows: the maximum number of iterations MAXITER =
300 iterations at the very beginning of the TS launch, and

20 iterations at each new event. The presented results are

the average of 20000 events.

We compare the reward obtained by two operators;

(1) one assumes a homogeneous traffic over the RAN

and deploys FSA, and (2) a second operator uses DSA,

and considers the exact (heterogenous) distribution of the

traffic to dynamically assign spectrum blocks.

2.4.3. Simulation Results: We compare FSA and TS-

based DSA in terms of the obtained reward, CAB

utilization and the user throughput. Fig. 5 gives the

obtained reward as well as the CAB utilization versus the

mean arrival rate λ using both TS-based DSA and FSA.

We can notice that the obtained rewards using TS-

based DSA exceed the rewards obtained using FSA for

all values of simulated λ, even for 2 ≤ λ ≤ 4s−1 where

both techniques use 100% of the CAB. At λ = 1s−1, the

reward obtained using TS-based DSA is 334.5 compared to

75.9 using FSA (+345%). We can also see from Fig. 5 that

a considerable spectrum conservation using the proposed

DSA algorithm is achieved with respect to FSA for λ <
2s−1.

Fig. 6 gives the end-user throughput and the user

satisfaction obtained using both FSA and TS-based DSA.

As the FSA uses more spectrum than TS-based DSA,
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Figure 5. CAB utilization and obtained reward obtained using
FSA and TS-based DSA.

consequently the achieved user throughput and satisfaction

are reduced for the DSA case, especially for low values

of λ. Note that in FSA case a single user in a cell takes

advantage of using 2 blocks assigned to the cell, while in

DSA case only 1 block is assigned to the user. Besides,

the interference level generated using regular reuse scheme

is indeed different than the one generated due to the

deployment of the allocation given by TS-DSA.
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Figure 6. End-user throughput (left) and user satisfaction (right)
obtained using FSA and TS-based DSA.

The promising results observed for a cell cluster lead us

to propose a distributed approach of our algorithm more

suited to a wide RAN.
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3. Tabu Search Based DSA: Distributed Approach

We have shown in the previous section that the operator can

increase its rewards (over the rewards obtained using FSA)

using TS-DSA algorithm by taking advantage of the traffic

heterogeneity in the network, whether the temporal or

the spatial heterogeneity. However the TS-DSA algorithm

would have a limited performance in case the operator

intends to deploy DSA on a larger area containing high

number of cells.

In this section, we thus propose a distributed algorithm

for the operator to overcome the complexity limitation

of the TS-based DSA algorithm when it comes to large

RANs. The optimization problem remain the same as in the

previous section (see Eq. 6), the search space S becomes

however very large or even infinite. The distributed

algorithm allows the operator to deploy (execute) the

TS-DSA algorithm on small clusters in a consequent

manner and according to the events. In this section, the

distributed TS-DSA algorithm doesn’t aim at finding the

optimal solution, it rather provides the operator with a DSA

solution that will increase its reward compared to a fixed

allocation.

Hereafter we begin by the definition of the distributed

approach, we then detail the simulation parameters and

scenario and we provide simulation results.

3.1. Distributed TS-DSA

The main idea is to locally run the TS around cells where

a packet call is newly initiated or terminated. In a large

RAN containing B hexagonal cells, at each new event

the TS-DSA algorithm, as given in Algorithm 1, is to be

launched locally on one cluster C centered on the cell

where the event occurs. Algorithm 1 provides a solution

s∗(C), where s∗(C) is the frequency assignment given

for the local cluster C, while frequency allocation remains

fixed for all cells c /∈ C. Note that the algorithm takes

into consideration the accumulated interference, from all B
cells of the RAN, seen by the users in cluster C. However

the algorithm is allowed to change only the frequency

assignment of the cells within the local cluster. A new

constraint concerning the border cells of cluster C is

considered: the solution s∗(C) given by the TS-DSA will

not assign to any of the border cells a frequency that is used

by one of its neighbor cells. Fig 7 illustrates the principle

of the distributed model.

In the distributed model, and different from the ”global”

optimization performed on the whole cluster in sections 2.3

and 2.4, the objective of the TS-DSA is to maximize the

local reward of the concerned cluster. Consequently, (1)

!"#$%&#%'()*+&
",&-.)*+*()

/*%%&01*+*&
*2*.)&"##'+(

3&4"((-5%*&-.)*+,*+*.#*
".&)1*&#%'()*+&5"+6*+

777

777

777

777

Figure 7. The local cluster formation in a large RAN.

the revenue part considers only the users in the cluster and

(2) the spectrum cost part considers the cost of frequency

blocks used only in the cluster (and not in the whole RAN).

This way, the TS-DSA is expected to provide a solution

s∗(C) that is using as less frequency blocks as possible.

We give in Algorithm 2 the detailed steps of our

distributed TS-DSA algorithm. As the distributed TS-

DSA algorithm is based on Algorithm 1 and as the new

constraint doesn’t significantly modify the complexity,

the complexity of the algorithm is unchanged (see

section 2.3.4).

Algorithm 2 TS-based DSA algorithm: distributed

1: Initialization: reuse 3 frequency assignment scheme

is deployed.

2: At each event: a snap-shot is taken and TS

optimization is performed (using Algorithm 1) on

cluster C centered on the cell where the event occurs,

while taking into consideration the new constraint on

the border cells of the cluster.

3: The frequency assignment s∗(C) is updated according

to the solution given by Algorithm 1.

3.2. Simulation Scenario and Parameters

We consider a RAN with B = 175 cells. The maximum

number of users/cell nmax = 15 users. In order to decrease

the border effects in the simulations, the performance

statistics are taken on a group of cells located in the center

of the RAN. The number of cells on which statistics are

taken is 53. Obtained solutions are expected to be better

when the cluster size increases, since more cells are taken
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into account. Choosing large cluster however increases

also the convergence time of the algorithm. Based on our

preliminary results in the previous section, clusters are

made of two cell rings around the cell where an event

occurs.

TS-DSA algorithm is launched for 100 iterations for

the first 20 events, then for 20 iterations for the rest of

events. Since the minimum number of iterations required

to reach an ”efficient” solution using TS is very dependent

on the initial start point, and since we launch TS-based

DSA algorithm at each new event (to benefit from this

dependency), launching TS for a reasonably high number

of iterations at the very beginning will reduce the time

needed by TS to converge. The total number of randomly

drawn events is assumed to be 10K events. The presented

curves are the average of 20 trials. The rest of simulation

parameters are assumed to be the same as given in section

2.3.2.

In order to speed up simulations, we consider in this

section a different traffic model than the one presented

in section 2.4.2. For a given cell and at each snap-shot,

a packet call is assumed to arrive randomly according

to a pre-defined probability p and a packet call is

assume to depart with probability 1− p. According to this

assumption, each cell-activity can be modeled as a discrete

time Markov chain with nmax + 1 states, where nmax is

the maximum number of users that each cell can accept.

The mean number of users n̄ in a cell at the steady state

can thus be denoted by:

n̄ = ρπ0
1− (nmax + 1)ρnmax + nmaxρ(nmax+1)

(1− ρ)2
,

where ρ = p
1−p

, and π0 is the probability that the cell has

zero users.
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Figure 8. Traffic model of a cell modeled as a discrete Markov
chain.

In the coming section, we evaluate the network

performance using the distributed TS-DSA algorithm. We

focus on two metrics for the evaluation: first, the percent

gain G in rewards for the operator using the distributed

TS-DSA algorithm over the FSA rewards. The gain is

calculated as:

G =
gd − gf

gf

, (8)

where gd is the reward obtained using the distributed TS-

DSA, and gf is the reward obtained using FSA. The reward

is calculated using the model described in section 2.1.4

over the entire network considered for simulations. Second,

we observe the difference δ in the reward g(C̄) before

and after the local TS optimization on the cluster, where

C̄ = {c|c /∈ C} is the set of cells in the rest of the network.

We use this metric to determine if the local optimization on

one cluster might have a negative impact on the rest of the

RAN.

3.3. Simulation Results

Fig. 9 and Fig. 10 give the gain in rewards and the standard

deviation of the number of users/cell respectively. Both

metrics are plotted as a function of the number of events

and for different values of the mean number of users per

cell n̄.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

0.05

0.1

0.15

0.2

0.25

0.3

Gain TS−based DSA over FSA

Number of events

R
ew

ar
d 

ga
in

 

 

mean n = 10

mean n = 5

mean n = 3

Figure 9. Gain in rewards for the operator at different mean
number of users per cell.

We can notice from both figures that the gain in rewards

increases in time along with the spatial heterogeneity of

the RAN. The users distribution in the RAN, represented

by the standard deviation of the number of users per cell,

increases in time (with the increase of the number of

events) until it stabilizes, as shown in Fig 10. The same

behavior is noticed for the gain G, as shown in Fig 9. This

result is coherent with the one obtained in section 2.3 (see

Fig 2) where TS-DSA is deployed on a RAN of one cluster.

As heterogeneity grows, the gain in reward increases.
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Figure 10. Standard deviations of the number of users per cell as
a function of the number of events.

We can also notice from Fig 9 that the gain decreases

with the increase of the traffic load. For mean number of

users per cell n̄ = 3, 5 and 10, the gain G stabilizes at

approximately 26%, 15% and 3% respectively.

Fig. 11 gives the difference in rewards δ as a function

of the number of events for n̄ = 5 users per cell. We can

see that the values of δ are mostly negative values, which

means that a local TS optimization causes reward losses

for the rest of the RAN. The reward losses are due to the

interference generated from the deployment of the solution

FA(C). It is worth mentioning that the negative impact is

minor with respect to the gain.

Fig. 12 gives the gain G values, as a function of the mean

number of users n̄. Each point on the bar graph represents

the obtained gain value after running the simulations for

2000 events. In this case we reduce the number of events

as we use the steady state probabilities at the initialization

step (Algorithm 2) to admit a certain number of users to

each of the cells. We can notice that the gain decreases

with the increase of traffic load. This result is again not

surprising, as the load increases in the network, the reward

obtained using DSA converges to the one obtained using

FSA.

Finally, Tab. 2 provides the average simulation duration

of the TS-DSA algorithm as a function of the number

of iterations. The duration for MAXITER = 800 has

been obtained while running the algorithm of section 2.3.

MAXITER = 300 corresponds to the initial phase of the

algorithm of section 2.4. MAXITER = 100 corresponds

to the initial phase of the distributed TS-DSA. At last,

MAXITER = 20 is the number of iterations used in the
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Figure 11. The difference in rewards δ as a function of the
number of events.
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Figure 12. The gain G in percentage as a function of the mean
number of users per cell n̄.

running phase of the distributed TS-DSA. These figures

have been obtained on an average laptop and MATLAB.

It is expected that using optimized code and a powerful

server would drastically decrease them, so that real-time

implementation would be possible.

Table 2. Simulation duration of TS-DSA as a function of the
number of iterations.

MAXITER Simulation duration [s]

20 27

100 85

300 213

800 500
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4. Conclusion

In this paper, we have first proposed and analyzed a

centralized TS-based DSA algorithm for cellular systems.

We have considered a spectrum sharing context while

focusing on the strategy adopted by one operator to

maximize its reward. We have adapted the TS objective

function to suit the packet traffic. We have investigated

both the spatial and the temporal heterogeneities of the

traffic in the network. Our TS-based DSA algorithm is

simple and does not require an excessive memory space.

Results have also shown that the algorithm is efficient in

terms of the convergence speed. The proposed algorithm

allows the operator to increase its rewards and to use less

spectrum, however at the price of reduced user throughput.

We have then extended the TS-based DSA algorithm

using a distributed approach in order to suit the

deployment on large RANs. We have evaluated the

network performance using two metrics: the gain in

rewards with respect to FSA and the effect on the locally

optimized clusters. Results have shown that the gain using

DSA becomes more interesting when the heterogeneity

situations increase in the network. The negative impact on

the locally optimized cluster is minor compared to the gain.
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