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Abstract—In wireless ad hoc network communications, both
the network interference and the thermal noise should be
considered in receiver design, due to the strong impairments each
may cause on the quality of the reception at the destination.Since
the closure under convolution of stable distributions onlyholds
for the same stability index members, in general the additive
convolution of the impulsive stable interference and lighter tailed
Gaussian thermal noise will not result in a stable pattern. It is
therefore a challenge to adequately model the distributionof
such a process. In this context we consider an optimal receiver
design and develop an importance sampling approach to perform
estimation of the optimal receiver in the presence of convolved
stable and Gaussian noises. Such an approximation approachto
the optimal receiver is computationally expensive, hence we also
develop as comparisons several suboptimal realizations oflinear
and non-linear receivers, including an approximation approach
based on the Normal Inverse Gaussian (NIG) distribution. We
demonstrate that the computationally efficient NIG receiver
provides an alternative solution for the optimal receiver approx-
imation. In addition we show that the p-norm receiver appears
to have robust performance no matter what kind of noise is
dominant.

Index Terms—ad hoc network, α-stable distribution, impor-
tance sampling, NIG distribution, optimal receiver, p-norm

I. I NTRODUCTION

We consider a wirelessad hoc network in which communi-
cations are realized by decode-and-forward (DF) technology
with the cooperation of multiple relays. We investigate a two-
hop network, consisting of one source,N possible relays
and one destination. According to [1], communications im-
pairments inad hoc networks can be divided into wireless
propagation effects, network interference and thermal noise.
For the propagation effects, we consider a slow-fading channel,
for which the channel coefficients are constant for each time
slot and change independently from one time to another. The
accumulation of undesired signals from other nodes creates
the network interference, which significantly disturbs thecom-
munications, increasing error probability for receivers.The
α-stable distributions have been successfully introduced for
interference modeling in several contexts [1]–[3]. We consider
the sub-family of symmetric stable models to capture the

effects of network interference. Additional to and independent
from this interference is the thermal noise at the destination,
caused by receiver equipment, which is commonly modeled as
a Gaussian distribution. Hence, the combined noise is captured
by the convolution between an independent, symmetric stable
distributed network interference and a Gaussian thermal noise,
the result of which is not in general stable distributed.

When considering the optimal receiver in this context, one
faces a challenge in the design of an efficient solution due to
its inherent intractability, arising from the convolutionbetween
network and thermal noises. Some proposed receivers [4]–[6]
give feasible but complex solutions. We give in our paper some
ideas for designing either optimal or suboptimal receivers
which are efficient alternatives, and we provide a global com-
parison of the proposed approach. Our contributions involves
the following:

• development of a careful study of the decision strategy
in a cooperative communication in the presence of non
Gaussian network interference and thermal noise;

• we propose an original strategy based on developing a
Normal Inverse Gaussian (NIG) receiver and compare this
to a novel adaptation of thep-norm strategy, noting that
the p-norm has already been proposed in other contexts,
especially with generalized Gaussian distributions [7];

• we study the performance of the two suboptimal strate-
gies as a function of the noise-to-interference ratio, com-
paring with the optimal receiver which is computation-
ally inefficient but studied through importance sampling
Monte Carlo estimation strategy, with linear receiver, hole
puncher and soft limiter.

Thep-norm and the NIG appear to be attractive solutions. The
first one does not require any noise parameter estimation. The
second one has flexible and efficient Moment Matching based
closed form solutions for its parameter estimation.

The paper is organized as follows. We describe our system
scenario and justify the use of symmetricα-stable (SαS) distri-
butions for network interference in Section II. In Section III,
we study the optimal receiver in the form of log-likelihood



ratio (LLR) and then consider some suboptimal solutions
involving both linear and non-linear approaches. The NIG
distribution is introduced and the Method of Moments based
approximation approach is given, with analytical solutions
after restriction to a symmetric sub-family, with no restriction
required for the kurtosis. Finally we give the comparison of
these techniques in simulation results, introducing meanwhile
the importance sampling approach for the optimal decision.
We provide a conclusion in Section V.

II. PROBLEM MODEL

A. System Scenario

We propose the following scenario: a set ofK relays is
selected amongN possibilities. The selected relays are the
ones with the strongest relay-destination channel. We assume
that each selected relay decodes the signal sent from the source
without error before transmitting it to the destination, all with
the same transmit power. Relay-to-destination transmissions
are made on orthogonal channels, and the synchronization
is ideal with corrected phase. The received signal at the
destination at timet is then given by:

y = hx+ i+ n, (1)

wherex is the transmitted signal from the source, and

• h = (h0, h1, ..., hK) are the channel coefficient vectors
(index 0 denotes the direct link); they are Rayleigh
distributed and, for a transmitted power equal to one, the
received power expectation isE

[

|hi|
2
]

= 1 ;

• i = (i0, i1, ..., iK) is the independent and identically dis-
tributed (i.i.d.) interference, discussed in the next section.

• n = (n0, n1, ..., nK) is the i.i.d. thermal noise withni ∼
N (0, σ2).

B. Interference Model

In many papers [1]–[3], the SαS distributions family is
used to model the interference in sensor networks in which
power control is absent. The heavy tailed property of the stable
model lends itself well to an accurate mathematical model for
the infrequent impulsive or shot noise characteristics of the
network interference. One can define the stable distribution
used to model the network interference by its characteristic
function. For the symmetric case (symmetry indexβ = 0) used
in this paper, it is given by:φ(x) = exp(−γ|x|α), in which
only two parameters are required. The characteristic exponent
α measures the index of regular variation or thickness of
the distribution tail (0 < α < 2). The smaller the value
of α, the heavier the tail of the density becomes hence the
more likely that a value appears far from the center location.
The dispersion parameterγ is a scale parameter, similar to
the variance of the Gaussian distribution [8]. As the PDF is
the inverse Fourier transform of the characteristic function,
a general stable distribution has no explicit expression for
the density except for the Gaussian (α = 2) and the Cauchy
(α = 1) cases [8].

III. R ECEIVER STRATEGIES

A. Optimal Receiver

The detection problem for a binary source (i.e.x ∈ {s0, s1})
in the presence of stable network interference plus independent
Gaussian thermal noise can be formally specified through a
statement of a hypothesis test as

{

H0 : y = hs0 + i+ n

H1 : y = hs1 + i+ n.
(2)

Given the transmitted binary symbolss1 and s0 and the
observed received signaly, we define Pi+n(y|s1) and
Pi+n(y|s0), where Pi+n(.) represents the intractable prob-
ability distribution function obtained from the convolution
between the stable network interference plus independent
Gaussian thermal noise.

In the sense of minimizing the bit error rate (BER), the
Bayes optimal receiver is employed. Assuming that the binary
symbols are sent with equal probability, we have thea priori
decision statistic in the form of LLR as:

Λ = log
Pi+n(y|hs1)

Pi+n(y|hs0)

= log

K
∏

k=1

fi+n(yk|hks1)

K
∏

k=1

fi+n(yk|hks0)

=

K
∑

k=1

log
fi+n(yk|hks1)

fi+n(yk|hks0)

H1

≷
H0

0,

(3)

where k indicates thekth relay-to-destination channel, and
fi+n(.) is the density of the interference plus noise. The
decision between both hypothesis is made by comparing the
LLR to the threshold 0.

B. Linear Receiver

The linear receiver is designed by assuming the density
used in the decision statistics (3) is the Gaussian case (stable
density whenα = 2). The linear receiver is also known as the
Gaussian receiver and it is thus optimal when the interference
is Gaussian distributed. The corresponding decision statistic
is:

Λlinear =

K
∑

k=1

log
f2(yk|hks1)

f2(yk|hks0)

=
K
∑

k=1

log
exp[−(yk − s1)

2/2σ2]

exp[−(yk − s0)2/2σ2]

=
1

σ2

K
∑

k=1

yk(s1 − s0)
H1

≷
H0

0,

(4)

where σ is the standard deviation of Gaussian distribution.
We will test such a receiver in the environment of stable (α <
2) interference plus Gaussian noise. We primarily consider
this choice for its simple implementation structure, though we
predict that it will perform poorly whenα ≪ 2.



C. Linear Combiner

An alternative linear solution is developed by consideration
of the maximal ratio combiner (MRC), which is also simple to
implement as a suboptimal receiver. The MRC has its original
output form given by

ΛMRC =

K
∑

k=1

wkyk = ŝ+ n̂, (5)

wherew = {wk}Kk=1 ∈ RK are the combiner weights,̂s and
n̂ are the weighted signal components and noise components.

The conventional MRC is optimal for independent Gaussian
channels, for which the optimal weights arewk = h∗

k, where
* represent the complex conjugate.

However, for detection in a stable interference plus Gaussian
noise environment, the combiner has to take into account the
interference parameters. An adapted optimal MRC is proposed
in [9], [10], which provides the corresponding weights when
only the SαS interference is present:

{

w∗
k = sign(hk)|hk|1/(α−1), 1 < α ≤ 2

w∗
j = sign(hj), w

∗
k = 0 ∀k 6= j, 0 < α ≤ 1

(6)

for an arbitraryj in i = arg{|hi| = max{|h1|, ..., |hK |}.

D. Non-linear Receivers

1) Cauchy Receiver: As one special case of SαS distri-
bution, Cauchy distributions (α = 1) have their PDF with
dispersionγ and medianδ:

f1(x) =
γ

π[γ2 + (x− δ)2]
. (7)

Cauchy receiver arose originally from the assumption that
the tail indexα = 1 and should be optimal for the signal
detection under pure Cauchy noise. By employinga priori
decision statistic, we have Cauchy receiver as:

ΛCauchy =

K
∑

k=1

log
f1(yk|hks1)

f1(yk|hks0)

=

K
∑

k=1

log
γ2 + (yk − hks0)

2

γ2 + (yk − hks1)2

H1

≷
H0

0.

(8)

2) Hole-puncher and Soft-limiter Receivers: The Cauchy
receiver presents two problems: the need to determine the
parameterγ and the complexity to evaluate (8). A first idea
is to add some non-linearity to the Gaussian receiver to
limit the impact of large interference values. As proposed
for instance in [8], [11], the hole-puncher and soft-limiter are
commonly used non-linear functions. We use in our test these
two functions with their forms as:

ghp(x) =

{

x, |x| < κ

0, otherwise
(9)

and

gsl(x) =











−κ, x < −κ

x, |x| < κ

κ, x > κ

, (10)

whereghp(.) andgsl(.) replacefi+n(.) in (3).

3) p-norm Receiver: It is noted that in the decision statistics
(4) for the linear receiver, the metric used in the second step
is the Euclidean distance between the received signal and the
possible transmitted symbols. A corresponding metric exists
in SαS case which measures thepth order moment of the
difference of two variables, noted asp-norm and is given for
0 < p < α as:

||X−Y ||p =

{

[E|X − Y |p/C(α, p)]1/p, 1 ≤ α ≤ 2

[E|X − Y |p/C(α, p)]α/p, 0 < α < 1,
(11)

where C(α, p) = 2p+1Γ((p+1)/2)Γ(−p/α)
α
√
πΓ(−p/2)

, and Γ(.) is the
gamma function.

This approach is of interest as it does not depend on any
estimation of distribution parameters and a rough knowledge
of α can be sufficient. The final decision is given by:

Λp−norm =

K
∑

k=1

(|yk − hks0|
p − |yk − hks1|

p
)
H1

≷
H0

0. (12)

E. NIG approximation

From the hyper-geometric family of flexible skew-kurtosis
models, the Normal Inverse Gaussian (NIG) distributions have
analytical expressions for the probability density and first four
moments in terms of the model parameters. This family of sta-
tistical models includes the Gaussian and Cauchy distributions
as special limiting cases [12]. It is therefore of great interest
to use this distribution to approximate our intractable PDFin
the decision statistics.

The NIG model takes its name from the fact that it
represents a Normal variance-mean mixture that occurs as
the marginal distribution for a random variableY when
considering a pair of random variable(Y, Z) when Z is
distributed as an inverse GaussianZ ∼ IG(δ,

√

α2 − β2),
andY conditional onZ is (Y |Z = z) ∼ N (µ + βz, z). The
resulting density function for the NIG model is given by:

fNIG(y;α, β, µ, δ) =
αδ

π

exp[g(y)]

h(y)
K1[αh(y)], (13)

whereK1(.) is a modified second kind Bessel function with
index 1, g(y) = δ

√

α2 − β2 + β(y − µ), andh(y) = [(y −
µ)2 + δ2]1/2.

The parameters have the constraintsµ ∈ R, δ > 0, 0 ≤
|β| ≤ α. The parameterα is inversely related to the heaviness
of the tails, where a smallα corresponds to heavy tails
that can accommodate outlying observations. The skewness
is directly controlled by the parameterβ, andβ = 0 is the
symmetric model. The location of the distribution is given by
the parameterµ and the scale of the distribution is measured
by the parameterδ.

We consider in our case a symmetric NIG model, which
implies β = 0. We note the closed-form expressions for the
mean, variance, skewness, and kurtosis of the NIG model as:

E[yk] = µ = hkx; Var[yk] =
δ
α ;

Skew[yk] = 0; Kurt[yk] =
3
δα .



In this way, the probability density for each link can be
approximated by the estimated closed-form expressions from
the observed values.

IV. SIMULATION RESULTS

A. Importance Sampling for Optimal Receiver

The optimal receiver depends on the value of (3). One
method is the numerical computation, as the PDF is the inverse
Fourier transform of the characteristic function:

fi+n(x) =
1

π

∫ +∞

0

φi+n(t) cos(xt)dt, (14)

whereφi+n(t) = exp(−γ|t|α − σ2t2/2) is the interference
plus noise characteristic function. This can be realized by
discrete Fourier transform, but a heavy computation cost is
inevitable for each channel realization and fixing the discrete
step and truncation remains difficult. We utilise the importance
sampling (IS) approach in our paper to calculatefi+n(.).

IS was introduced in [13] as an efficient technique in the
reduction of variance in random sampling, for it concentrates
on the sample points where the value of the function is large.
This approach can also be used for the simulation of rare
random events, and for the generation of samples under a
distribution which is difficult to generate directly [14].

In our context, the calculation for eachfi+n(.) is directly
intractable, but the generation of SαS random variables is
trivial. We can sample the interference componenti upon each
value ofh andn. Hence for one channel realization,yk can
be considered as under a normal distribution with the mean
hkx+ ik and the variance ofnk (σ2), which can be calculated
as:

fi+n(yk|hkx) =

∫

I

I(t)fn(t)fi(t)dt, (15)

whereI represents the interference sampling space,fn(.) is
the normal distribution PDF.

In the simulation, a number ofM i.i.d. interference samples
ik are generated underfi(.), and the weighting function is
defined asN (hkx+ ik, σ

2), thus we have

f̂i+n(yk|hkx) =
1

M

M
∑

m=1

Ikm
N (hkx+ ikm

, σ2). (16)

As soon as the probability termfi+n(.) is calculated, the
decision of the optimal receiver can be made.

B. Comparison of different Strategies

We present in our simulation three different noise-to-
interference ratios (σ2/2γ) to investigate the described re-
ceivers. This ratio reflects different noise dominating environ-
ments, and we generated 500 noise samples for illustration in
Figure 1.

We choseK = 2 strongest relay-to-destination channels
amongN = 5 possible ones. The optimal receiver is realized
by IS approach as a benchmark, with106 interference samples.
The threshold for the hole-puncher receiver is set asκ = 4 and
for the soft-receiver asκ = 1. An empirical approach based
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Fig. 1. Comparison of different noise dominating environments

on simulations was used to make choice for those parameters.
We setp = 0.8 as an example value for all the simulations.
Their performance is measured by BER in terms of the inverse
value of dispersion of SαS interference in logarithm, since the
increasing of the inverse dispersion implies the deceasingof
the interference strength.
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Fig. 2. Comparison of receivers in Gaussian-noise-dominant environment

In Figure 2,σ2/2γ is set to 10 dB which indicates that
the dominant noise is Gaussian. We observe that the Cauchy
receiver gives the worst BER, since it is optimal for Cauchy
noise (α = 1). The linear receiver and MRC give the same
trend and the latter one is better for its adapted parameters. The
NIG approximation shows similar performance as the linear
approaches, because during the estimation of NIG parameters,
the rare SαS interference parts have little influence on the
dominant Gaussian noise. Hence the obtained NIG density
is close to the limiting Gaussian case of this family. The
p-norm, hole-puncher and soft-limiter receivers have almost
same performance close to the optimal receiver. In case when
the Gaussian noise and the SαS interference are comparable
(σ2/2γ = 0 dB), we can see in Figure 3 that the linear receiver
and MRC are less capable to deal with the interference than
the others. The Cauchy receiver exhibits a good performance
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Fig. 3. Comparison of receivers in Gaussian-stable-comparable environment

in this condition, even surpassing the hole-puncher and soft-
limiter. The p-norm receiver keeps close to the optimal case,
while the NIG approximation gives similar performance as
the p-norm approach. In Figure 4, when the SαS interference
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Fig. 4. Comparison of receivers in stable-interference-dominant environment

dominates the whole noise, the Cauchy receiver gives the
best performance, close to the optimal. Thep-norm and NIG
receivers remain very close as well. The other receivers give
significantly degraded performance.

From the above results, we can draw some conclusions:

• The linear receiver and MRC will have good performance
only when the Gaussian noise is dominant.

• The Cauchy receiver performs well except when the
Gaussian noise dominates.

• The hole-puncher and soft-limiter are good choices if the
thresholds are well configured, but they are still far from
optimality when impulsiveness is strong.

• The NIG approximation and thep-norm receiver have
very good performance in all environment and approach
very closely the optimal receiver when impulsiveness
increases. It is noted that thep-norm has the best behavior
when Gaussian noise is dominant and is a non-parametric

approach (at most a rough estimation ofα is sufficient).

V. CONCLUSION

We evaluated the performance of several receivers in coop-
erative communications where both the network interference
and the thermal noise are present. The SαS and Gaussian
distributions were used to model the network interference
and the thermal noise respectively. The chosen relays are
the ones having the minimum relay-to-destination channel
loss among a set of candidates. We proposed an importance
sampling approach for the calculation of optimal receiver and
several suboptimal receiver approaches. The simulation results
showed that some parametric designs like the hole-puncher
and soft-limiter receivers can have good performance if their
thresholds are well configured. The NIG approximation proves
to be a very efficient approach. Thep-norm exhibits robust
performance, no matter which noise is dominant. This gives
us a simple and feasible strategy, which does not necessitate
any noise parameter estimation.
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