
HAL Id: hal-00705420
https://imt.hal.science/hal-00705420

Submitted on 7 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

JerkTilts: Using Accelerometers for Eight-Choice
Selection on Mobile Devices

Mathias Baglioni, Eric Lecolinet, Yves Guiard

To cite this version:
Mathias Baglioni, Eric Lecolinet, Yves Guiard. JerkTilts: Using Accelerometers for Eight-Choice
Selection on Mobile Devices. ICMI (ACM International Conference on Multimodal Interaction), Nov
2011, Alicante, Spain. pp.121-128. �hal-00705420�

https://imt.hal.science/hal-00705420
https://hal.archives-ouvertes.fr

JerkTilts: Using Accelerometers for Eight-Choice
Selection on Mobile Devices

Mathias Baglioni
Télécom ParisTech - LTCI-CNRS –

Alcatel Lucent Bell Labs

46 rue Barrault
75013 Paris, FRANCE

mathias.baglioni@telecom-
paristech.fr

Eric Lecolinet
Télécom ParisTech - LTCI-CNRS

46 rue Barrault
75013 Paris, FRANCE

eric.lecolinet@telecom-
paristech.fr

Yves Guiard
Télécom ParisTech - LTCI-CNRS

46 rue Barrault
75013 Paris, FRANCE

yves.guiard@telecom-
paristech.fr

ABSTRACT

This paper introduces JerkTilts, quick back-and-forth gestures that
combine device pitch and roll. JerkTilts may serve as gestural
self-delimited shortcuts for activating commands. Because they
only depend on device acceleration and rely on a parallel and
independent input channel, these gestures do not interfere with
finger activity on the touch screen. Our experimental data suggest
that recognition rates in an eight-choice selection task are as high

with JerkTilts as with thumb slides on the touch screen. We also
report data confirming that JerkTilts can be combined successfully
with simple touch-screen operation. Data from a field study
suggest that inadvertent JerkTilts are unlikely to occur in real-life
contexts. We describe three illustrative implementations of
JerkTilts, which show how the technique helps to simplify
frequently used commands.

Categories and Subject Descriptors

H5.2 [Information interfaces and presentation]: User Interfaces. -
Graphical user interfaces.

General Terms

Design, Human Factors.

Keywords

Interaction techniques, handheld devices, input, accelerometers,
gestures, Marking menu, self-delimited.

1. INTRODUCTION
Suppose you want to quickly check on your smartphone whether a
certain email is there, but you are wearing gloves or for some
reason your fingers are greasy. Since the only thing the device can
understand is a sequence of touches performed by a bare and
reasonably clean fingertip, you are stuck for a moment. JerkTilts,

the input technique we are introducing in this paper, would avoid

you that frustration. In essence a JerkTilt is a quick, jerky to-and-
fro rotation of the device, which works as a one-step gestural
shortcut, making it possible to directly access a command from a

small set of favorites with no reason to care about mode—because
a JerkTilt is a self-delimiting gesture.

A standard PC has both a keyboard, with some special modifying
keys designed to be used in parallel, and at least one pointing
device equipped with a number of state buttons. One severe
shortcoming of commercially available smartphones, in
comparison with PCs, is that they essentially rely on a single input
channel: the touch screen. These devices can be carried away

because they have been made small, but the inevitable cost is an
impoverishment of their input equipment.

To be fair, it must be noted that handhelds have one input channel
with no fewer than six degrees of freedom (three translations,
three rotations) since onboard technology used to detect self 3D-
motion (accelerometers, gyroscopes, etc.) has been available for
years [17]. However, tilts are often indistinguishable from
everyday motions (e.g., walking) and often need an delimiter. In

response to this difficulty, [20] have proposed DoubleFlip, a
unique motion gesture that acts as a delimiter for other motion
gestures. Our option is to merge the gestural command and its
delimiters. The JerkTilts technique involves a set of self-

delimiting gestures, which avoids the need for explicit delimiters.
Because JerkTilts consist of abrupt back-and-forth movements
whose kinematic signature is unique, inadvertent activations are
very unlikely.

The JerkTilts technique rests on rotations of hand-held devices.

Unlike a device translation, often impracticable in many public
situations, a rotation of the device about itself requires minimal
workspace. Also, provided that angular amplitudes are moderate,
the screen of a rotating device may remain visible for users,
enabling them, when necessary, to receive output information.
Using tilts gestures has also the advantage to be performable one-
handedly [22]. This is an important factor in the context of
mobility since the second hand is often reserved for an alternate

use (carrying a bag, holding the subway handrail, etc.). Finally,
partitioning 360° into eight angular sectors is an easy matter for
the human cognition, who has a familiar name for each sector
(East, North-East, etc.). Eight-item angular selection has been
repeatedly proven to be reliable with hand gestures in the context
of Marking menus [12].

Selection techniques are often expected to accommodate fairly
large sets of items or commands. 2D motion of fingertips on the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. ICMI’11, November 14–
18, 2011, Alicante, Spain. Copyright 2011 ACM 978-1-4503-0641-
6/11/11...$10.00.

device and 3D motion of the device can be combined to define a
rich vocabulary of input actions. In practice, however, users of
handheld devices often face fairly small sets of high-probability
possibilities (e.g., making a phone call, sending an SMS, etc.). In
this context one-step commands seem attractive.

The two experiments to be reported below investigated the
workability for command or item selection of quick, jerky
rotations of a smartphone. We will also report the data of an
experiment that investigated the usability of JerkTilts in the
context of everyday life, paying special attention to the problem
of inadvertent command activation.

In a final section we will present three applications that take
advantage of JerkTilts. These implementations are illustrations of

the fact that JerkTilts is fully compatible with standard
applications and can enhance interaction on mobile devices by
providing eyes-free and quick shortcuts commands.

2. RELATED WORK
3D-gesture interaction on mobile devices is possible thanks to

sensors like accelerometers, in fact low-cost micro electro-
mechanical (MEM) systems. Accelerometers report the
accelerations of the device they are embedded in, allowing the
recording of translational motion. In commercial products they
mainly serve to detect coarse shaking of the device. But they can
be used to determine the absolute orientation of a motionless
device. Indeed, by analyzing the projection of the constant gravity
acceleration on the three axes, it is possible to determine pitch and

roll orientation (Figure 1). However, accelerometers do not allow
the determination of static yaw orientation [6].

Figure 1. The two motion space on/of the device (left). The

three axes of rotation of the device, defined in its own

coordinate system (right).

As argued by Kauppila [10], real-time recognition of complex

gestures used to be difficult on mobile device due to shortage of
computing power, but things are rapidly improving. Due to their
earlier appearance on commercial products, to date accelerometers
have been more widely used for interaction than alternative
sensors, but it is smooth device tilts [16] that have been mainly
considered, with the problem that weak acceleration signals from
slow gestures may be difficult to distinguish from background
noise. This problem, to anticipate, is avoided with the JerkTilts

technique, which capitalizes on pretty strong acceleration signals.

Combinations of button presses and gestures have been
considered in a number of studies, particularly to make it possible
to identify the start and end of gestures [13][14][23]. In fact
smooth tilts cannot be used for issuing commands in the absence
of a discrete validation act because, for a typical user, handheld
orientation is highly variable and essentially unpredictable. Note
that the final-validation requirement vanishes with JerkTilts, a

technique that permits to issue self-delimiting commands.

Rahman et al. [16] evaluated the dexterity of users asked to tilt a
device using just the wrist. These authors showed that up to 16
different angular sectors could be recognized by the system and
provided guidelines for one-handed mobile tilting interaction.
However the gestures considered in the Rahman et al. study were

relatively slow tilts of the device, and they were dependent on
visual control.

Oakley and Park [13] evaluated device tilting for activating
commands in a Marking menu and reported that recognition rates
were better with single-step rather than multiple-step selection.
With TiltType [14], device tilts served for text entry on a wrist-
watch-like device, a physical button working as a gestural-mode
controller. The authors evaluated the incidence of inadvertent

activation due to background noise in a traveling bus, offering
solutions based on signal filtering. With TiltText [23] device tilts
were also combined with a key press to allow text entry on a
mobile phone. Examples of tilting the device for menu navigation
or scrolling were offered in [5] and [17]. We must also mention
TimeTilt [19] for navigation among applications: smooth tilts
were used for novice-mode navigation where the user needs to
look at the screen. The paper also reported using jerks along the

longitudinal axis of the handheld to quickly reach the
previous/next opened application with a backward/ forward jerk.

Previous work that considered dynamic tilts involves [2], [3],
[20] et [21]. As already mentioned, DoubleFlip [20] is a specific
motion gesture that acts as a delimiter for other motion gestures.
[21] and [3] are dedicated to text entry, a different purpose than
ours. More specifically [3] investigated four different input
modalities, screen touch, device tilt, speech, and foot tap: if touch-

screen interaction produced the highest throughput for text entry,
the tilting technique was fastest for making a selection. Finally,
four-directional gestures were used in [2] for interacting between
mobile phones and distant displays but this short paper does not
provide an evaluation nor a precise analysis of the gestures that
were actually used.

Other research has been conducted on gestural interaction but
much of it is irrelevant to mobile devices (for example Gestext
[8]). New kinds of gestures have been proposed that are in fact

inapplicable to a mobility context, like for example [18]. That is
also true of commercial products. The Wii, the Wiimote, and the
Kinect platform have familiarized game players with new ways of
interacting with gestures. But these large amplitude gestures can
hardly be performed out of the living room, as they will interfere
with the physical as well as social environment. Small-amplitude
rotations like those used in JerkTilts are more compatible with the
social and physical constraints of the usual environment.

3. THE JERKTILTS TECHNIQUE:

CONCEPT AND IMPLEMENTATION
The JerkTilts technique involves quick, short-extent tilting
gestures that rely on various combinations of device roll and
device pitch (Figure 2 presents each gesture according to rest
position).

One important characteristic of a JerkTilt is that it consists of one
complete cycle of to-and-fro movement: the device is tilted in a
certain direction and immediately brought back to its initial rest
position thanks to the natural elasticity of the wrist. The return

phase of such movements is quite automatic, the mechanical
energy stored as elastic potential energy in the antagonist muscles
of the forearm during the initial tilt being converted back into
kinetic energy during the return to rest [9]. This helps understand

why the spontaneous execution of this sort of movement takes
remarkably little time and costs remarkably little effort.

Figure 2. The eight quick back-and-forth tilting directions

regarding to rest position.

Eight different directions, obtained by various combinations of
device roll and pitch, can be differentiated by users and
discriminated by the system. JerkTilts are not exclusive of touch-
screen interaction. They are respectful of the social context and
require little 3D space. Perhaps most importantly, they can be

performed eyes free.

We evaluated the gestural technique in three steps, detailed below.
Experiment 1 asked about the discriminability of tilting directions,
paying special attention to between-individual variability. No
feedback was given to participants on recognition of the gesture
by the system. Not only did we need to record the tilting
movements that the participants would judge representative of the
eight specified directions, but our recognizer (detailed below)

required a pre-existing gestural database. Recognition could thus
only be performed post hoc, based on a sufficient sample of
gestures from participants. Thus the goal of Experiment 1 was
both to evaluate to what extent users were able to realize the
specified gestures in the absence of system feedback, and to build
a learning base for our gesture recognizer.

We used a K-Nearest-Neighbors algorithm for automatic gesture
recognition [11]. K was empirically fixed to 5, a value that turned
out to be optimal—in fact, the KNN algorithm is pretty stable and

the setting of K affects the results only to a marginal extent,
provided that the K value is reasonably small relative to the
number of data points representing each class in the database. A
six-dimension vector, Euclidean distance serving to compute the
distance between pairs of data points, characterized each gesture.

The six dimensions were based on the measurement of
acceleration during a complete to-and-fro gestural cycle. As soon
as the device left its neutral position with an acceleration of at

least 4m/s², we started to record accelerations. The dimensions of
the vector were the following:

• Peak of acceleration on the X axis (positive or negative)

• Peak of acceleration on the Y axis (positive or negative)

• Mean of accelerations on the X axis

• Mean of accelerations on the Y axis

• Median of accelerations on the X axis

• Median of accelerations on the Y axis

These six dimensions, which were chosen empirically, provide a
concise but efficient signature of a gesture. Using just the peak
values proved insufficient. The median and the mean values
during a gesture, which summarize the entire set of its
acceleration values, turned out to be effective for improving
recognition. While complementary dimensions may further

improve recognition, they would also require more computation
time, especially for computing distances (the KNN algorithm, at
least in its standard version, compares the sample to be recognized
to all the samples of the learning base). Our six dimensions
signature hence seems to offer a reasonable compromise between
computation speed and recognition accuracy.

Finally, in order to avoid wrong detections, the gesture had to be
performed in a small enough amount of time. As JerkTilts are

quick back-and-forth gestures, this means that the device must be
turned back to its (approximate) initial position in less than
500ms. The gesture was otherwise ignored and had no effect.

Experiment 2, which focused on an eyes-free task, aimed at
comparing the performance of device tilts vs. thumb motion on
the touch screen (i.e., as in Marking menus [12], a technique that
is notoriously efficient and served here as a baseline). Contrary to
Experiment 1, here each gesture was followed by recognition

feedback, as would happen in real life applications where the user
normally knows if (s)he has successfully performed the desired
command.

Another difference is that the recognition algorithm was then run
in adaptive mode. A personal learning base was created for each
user. This learning base initially contained all the gestures
collected during Experiment 1, except a few outliers, which were
manually removed. Then, each time the user performed a correct

gesture, it would be added to its own personal learning base. This
simple algorithm enabled the recognition system to adapt to the
specific gestural repertoire of each user. Such an algorithm makes
sense in the context of mobile interaction because smartphones
are essentially personal devices—it does not prevent other people
from using the device, but it improves performance for the device
owner.

Two improvements were added to this adaptive algorithm. First,
when recognition results seemed good enough we stopped adding

new gestures to the learning base not to excessively raise the
recognition computing time, which depends on the number of
gestures in the learning base. Second, it appeared that South-East
and North-East gestures are more difficult to perform and
recognize than other gestures. The previous algorithm does not
work well in this case: as "difficult gestures" tend to be poorly
recognized (especially when the learning base has not been
personalized yet), very few of them would be added to the

personal learning base, so that the learning base would never
adapt to this sort of gestures. This would result in an unbalanced
database, containing a small percentage of difficult gesture
samples. The adaptive algorithm would then decrease

performance for these gestures instead of improving their
recognition.

We used an heuristic approach to solve this problem: wrongly
recognized samples of difficult gestures are added to the learning
base if they are close enough to a sample of the expected gesture

that is already in the database (“closeness” here corresponds to the
number of votes of the KNN algorithm). In other words, we
forced the algorithm to consider some wrong gestures as correct,
which helped it to learn the user’s more or less unique way of
making difficult gestures.

We also developed a simple self-calibration mechanism that
allowed users to perform the gesture from any arbitrarily chosen
hand position. This mechanism just consisted in resetting the

neutral point after a stationary episode of at least 200ms. Hence,
users were asked neither to hold their device slanted at a specific
angle nor to reposition it in Experiment 2 (this mechanism was
not used in Experiment 1, aimed at collecting raw gestures).

Finally, in a third experiment, we asked about the inadvertent
activation of the gestures. For this purpose we developed a
logging system for evaluating whether accidental accelerations of
the device could lead to false identifications of JerkTilt gestures.

4. EXPERIMENT 1: SMALL JERKY

DEVICE ROTATIONS
We wished to get a first sense of the extent to which a set of eight
different back-and-forth rotations of the handheld device induced
by fast, short-amplitude hand movements mainly involving the
wrist could be recognized by the system. In this first experiment
there was no online system recognition as a learning algorithm
was used. Another question was whether the rotations would still
work with the thumb maintained in contact with the screen.

In this experiment the visual stimulus indicating the particular tilt

that had to be produced appeared on the handheld screen, and that
screen also served to signal device horizontality, and so the
participants permanently fixated the device. Note, however, that
the participants received no real-time feedback on whether their
tilt gestures had been recognized by the system, the gestures made
in this first experiment actually serving to create the database for
recognition to be later exploited in Experiment 2.

4.1 Method

4.1.1 Equipment
We used an HTC Hero device running Android 2.1, with a 3.5’,
320x480pixel touch screen. The software was developed in Java
with Google Android API. The participant were comfortably
seated, handling the device in their right hand—all our
participants were right-handed and all happened to manipulate
their own handheld with that hand.

4.1.2 Task and conditions
Each trial consisted of the participant performing, in response to a
visual stimulus (Figure 3), one of eight possible tilts resulting
from differing combinations of pitch and roll motion (for
example, a counter-clockwise roll produced by wrist supination
was labeled “West”, and the same roll component combined with

an upward or downward pitch produced a tilt that was labeled “N-
W” or “S-W”, respectively, etc.).

The participants were to perform the gestures either with or
without the thumb in contact with the screen. The device had to be
brought back to its horizontal orientation after each tilt,
horizontality being signaled by a grey square appearing at screen
center. The trial was validated by a terminal thumb tap (or a

thumb release in the thumb-on condition), which triggered the
presentation of the next stimulus.

Figure 3. The stimulus being still displayed (green square), the

central gray square signals device horizontality. A thumb tap

(or release) will trigger the delivery of the next stimulus.

4.1.3 Procedure
After some warm up terminated by the participant’s decision that
(s)he felt familiar enough with the task, four 32-trial blocks were
run, each composed of four occurrences of each of the eight

possible directions. Twelve adult volunteers (all right-handed, ten
male) participated in a single 15-min session. We used a within-
participant design, with 2 postural conditions x (8 gestural
directions x 4 times a block) x 4 blocks = 256 individual
movements per participant.

4.1.4 Recognition Algorithm
A K-nearest-neighbors algorithm served, after the experiment, for
automatic gesture classification [11]. The data of even-numbered
blocks were reserved for algorithm training, the remaining blocks
serving for recognition. Each individual data set was submitted to
the algorithm twice, after training with the data of all but this
particular participant and after training with the participant’s own

data.

4.1.5 Results and Discussions
Recognition rates were fairly high, especially with the participant-

specific training algorithm (Figure 4). The hand-posture factor
exerted no significant effect (F1,11<1) neither did it interact with
training type (F1,11<1). This suggests the possibility that the thumb
be used—e.g., as a mode controller—to enrich the gestural input
vocabulary.

0%

20%

40%

60%

80%

100%

Group training P-specific training

% correct

recognition

Thumb off

Thumb on

Figure 4. Offline recognition rate for the two gesture

recognition options, and with the thumb off vs. on the touch

screen. Error bars are confidence intervals based on between-

participant standard deviations.

As expected, the recognition rates were consistently higher with
the individually-trained algorithm (F1,11=33.90, p<.0001),
presumably a reflection of subtle individual idiosyncrasies in the
making of gestures. This result confirms the improved efficiency
of recognition algorithms that adapt themselves to the user.

Another interesting result is that recognition rates remained just as
high with the thumb in contact with the screen, a promising
outcome, as will become apparent later in this paper.

5. EXPERIMENT 2: DEVICE TILTS VS.

THUMB MARKING
This experiment exploited the database built in Experiment 1,
with the participants now receiving immediate feedback, after
each gesture, on how the tilt had been classified by the system.
But here JerkTilts were evaluated in a more realistic and more
challenging setting than in Experiment 1. Participants have no

indication of device orientation instead a self-calibration
mechanism was triggered whenever the device, no matter its
orientation, remained stationary for 200ms. Device rotations being
now relative, the participants no longer had to start the gesture
from the horizontal.

Another important difference was that in Experiment 2 all
gestures had to be carried out eyes-free. The system recognition
feedback that followed each gesture was presented away from the

handheld, on a vertical screen facing the participant at usual
viewing distance (Figure 5). The participants were actually not
allowed to look at the mobile device during this experiment. This
setting mimicked the case of users navigating an application, say a
music player, without looking at the device, using non-visual
(auditory) feedback.

Selection performance was evaluated with device tilts in
comparison with touch-screen thumb slides, implementing the

notoriously efficient Marking menus, the reference baseline. The
rationale was to compare the efficiency of the two sorts of motion
of Figure 1 (left) for making an eight-item radial selection.

Figure 5. Examples of the feedback delivered on an external

screen after a selection classified by the system as correct (left)

and incorrect (right). The gray arrow indicate the intended tilt

direction.

5.1 Method
We used the same HTC Hero device as in Experiment 1, but now
the output came from an external 22’ screen (Figure 5) placed at a
distance of about 50 cm. The stimulus was an arrow appearing
over a square whose color varied. It was initially displayed in grey
and turned green in response to a correct selection (Figure 5, left).
Following an error the square would remain grey, the response

recognized by the system being shown as a red square (Figure 5,

right), and the movement had to be made again. The participant’s
hand and the mobile were out of sight.

5.1.1 Procedure
Twelve adults volunteers (all right-handed, one female)
participated in a single 25min session. After some warm up, each
participant ran ten 32-trial blocks with each technique, each block
requiring four times each of the eight different movements in a
random order. Participants held the device in their right hand, the

preferred option for all.

Data inspection having revealed that performances had taken
several blocks to stabilize (unsurprisingly, since the learning
algorithm needs time), we decided to discard the first three trial
blocks as warm up. Warm up gestures were still integrated in the
database. Our within-participant design thus involved 2
techniques x (8 directions x 4 times per block) x 7 blocks = 448
gestures per participant overall.

5.1.2 Results and Discussions
Our dependent variables were recognition rate and total selection
time (TT), the latter representing the sum of a reaction time (RT)
and a movement time (MT). Below we will leave aside the

negligible amount of time taken by the algorithm for input
processing, which never exceeded 50ms.

Concerning performance accuracy, on average the recognition
rates (Figure 6) were similar, 91.0% and 92.6%, for the JerkTilts
and the thumb slides (F1,11<1). The only significant effect for this
dependent measure was movement direction (F7,77 =2.25, p<.04),
an effect common to both technique (for the interaction,
F7,77 =1.41, p>.2). The direction effect was consistent but quite

small in the absolute, mean recognition rates revolving around a
pretty acceptable 92%.

Figure 6. Mean recognition rate for the two techniques and

the eight directions.

Concerning performance speed, it took participants on average
936ms and 707ms to prepare and perform a JerkTilt and a thumb
slide respectively (F1,11=8.19, p<.02), as illustrated in Figure 7.

Mean MT was shorter with the tilts (177.2ms vs. 211.3ms) but not
significantly so (p>.05). On RT the difference was in the opposite
direction (694.8ms vs. 494.9ms) and it was significant
(F1,11=19.8,p<.001).

There was a significant technique x direction interaction on TT
(F7,77=2.44, p<.03) (Figure 7): unsurprisingly, the fastest
directions were not exactly the same for the two kinds of gestures.
For example, the South direction was somewhat favorable to the

thumb and somewhat unfavorable to the tilts.

Figure 7. Mean total selection time for the two techniques and

the eight directions.

It should be realized that our implementation of the baseline
technique, i.e. thumb slides, was rather benevolent, the marking
gestures being doable in the absence of any modal change. In
actual practice, implementing Marking menus on mobile devices
would require activating a software or hardware button first
(entailing additional time) because, unlike mouse-based
interfaces, passive touch screens do not provide interaction states

[1]. In contrast, current interfaces do accommodate JerkTilts.
Thus while the data of this experiment suggest that JerkTilts are
no less accurate as Marking menus, there is every reason to expect
them to be faster than Marking Menus for one-handed shortcut
activation. JerkTilts can work as gestural shortcuts to input
commands directly, without having to enter a mode. The reason
why Marking menus require either a physical/soft button press or
a time out is simply because they rely on finger slides, which are

already interpreted by applications (e.g., for scrolling). The lack
of an interaction-state control, like the mouse right button, on
passive touch screens of mobile devices raises a tricky mode
problem, which JerkTilts solve without sacrificing the possibility
of single-handed input. Thus the efficiency of Marking menus can
only drop in the case of one-handed device utilization, due to the
biomechanical limitations of thumb movements in such
conditions, described by [4]. Such an observation seems quite

relevant as many users routinely operate the touch screen with the
thumb of their holding hand.

In our experiment performance was eyes-free, which entails an
error cost for both techniques. Such a condition might look harsh,
but it is far from being unrealistic on a mobile device, especially
for activating shortcuts (e.g. launching a given application or
rapidly switching from one to another).

6. EXPERIMENT 3: REAL-WORLD

LOGGING
We finally conducted an experiment with permanent logging of
all accelerations of a mobile device to evaluate the workability of

JerkTilts in the context of real-life mobility. Even if JerkTilts are
performable we want them to be actually practicable without
jeopardizing other input resources. Our main concern was the
false positive, the misinterpretation of an involuntary acceleration
as a JerkTilt.

We developed a logging system and recorded all acceleration
signals from the device during twenty-four hours of normal use
(but not when phone was in sleep mode). We sent e-mail to recruit

volunteers, attaching the application package to install and
instructions on a PDF document. Fourteen users accepted to apply
for the experiment (12 using their own phone and 2 using our
device, a HTC Hero). The application logged every acceleration
of the device and after twenty-four hours of recording proposed to

users to send the data files by FTP. To preserve anonymousness
users were able if they wished to ask for the destruction of their
data once analyzed.

Table 1. Mean false detection and awake time.

 Mean 95% confidence interval

False Detections 0.7 0.02 1.4

Awake Time (min) 665 340 992

On average we found only 0.7 false detections a day per user, for

an average awake time (i.e., with phone logging) of 665 minutes
(Table 1, Figure 8). This result suggests that JerkTilts are suitable
for everyday use. We were not surprised by this outcome,
because, as already mentioned, a JerkTilt is by definition a jerky
sort of gesture that generates quite conspicuous accelerations
signals.

Figure 8. Number of false positives per participant over the

24h real-world logging period.

We plan to conduct a more extensive long-term study to confirm
these results and to study how users perform in various real-world
conditions, including public transportation, which impose
constraints on attention and gesturing space.

7. SOME APPLICATIONS OF THE

JERKTILTS CONCEPT
Various applications can benefit from JerkTilts. In general it is
possible with 3D gestures to design gestural commands that do
not interfere with standard on-screen interaction and do not
require standard menu widgets. Moreover recourse to gestures

allows eyes-free commands to be triggered easily. The concept of
proprioception itself encourages gestures for one-handed
interaction, users being well aware of the spatial location and the
posture of their hand, and hence of the location and orientation of
the device they are holding. These gestures, we believe, enjoy a
light cognitive load.

We have started to design and develop three sorts of exploitation
of JerkTilts. One, JerkTilts Window, takes place at the system
level and is conditional upon thumb contact to minimize the risk

of false detections. The other two, JerkTilts Copy&Paste and
JerkTilts Music Remote, take place at the application level

7.1 JerkTilts Window
JerkTilts Window is a technique for quickly switching between

application windows on a mobile. We have developed two
different versions, one for navigating within the set of currently
opened applications, and the other for navigating among favorite
applications. With these implementations one can easily switch
applications, as suggested in Figure 9. One sensible option is to
minimize the risk of false detections at the top level by making
JerkTilts conditional on thumb contact on the touch screen.

Figure 9. An example of an implementation of JerkTilts for

switching among applications.

This application reduces the actual sequence of action a user has
to face on commercial mobile devices to switch to another
application. In the state of the art, switching between application
requires at least two actions: clicking a button (often with a delay
or a double-click for instance) then selecting the correct

application. To open a favorite application one typically needs to
first return to the home screen and then select the application.

In the same vein, JerkTilts can be used to easily reach previously
saved favorite bookmarks in a web browser application. Users
will be in a better position to concentrate on and interact with the
page they are looking at if access to their favorite web pages does
not require navigation through a list of thumbnails or a classic
menu interface.

7.2 JerkTilts Copy and Paste
We have implemented a version of JerkTilts that makes it possible
to copy and paste an object between two different applications in
a three-step sequence: (1) copy an object, (2) switch applications,
and (3) paste the object. For example, one may copy an image
from a web page to another application as shown in Figure 10.

The same logic obviously applies to the cut-and-paste operation.

In comparison with the complex manipulations required on
current smartphones, with delays and/or multiple pointing actions,
this application reduces user actions to a considerable extent.

Figure 10. An example of a copy-and-paste operation between

two different applications. A JerkTilt to the South copies

whatever object is under the thumb; a JerkTilt to the East

switches applications; a JerkTilt to the South-West pastes the

object at the location designated by thumb contact.

7.3 JerkTilts Music Remote
Let us describe an implementation of JerkTilts that seems tailor-

made for an eyes-free utilization of handheld devices. We have
developed two versions of the technique for controlling a music
player. One version makes it possible to control the player of a
laptop, the mobile playing the role of a remote control; in the
other version JerkTilts serves to control music playing on the
mobile itself, with the advantage that the user can still control the
music when the device is locked. In either version the gestures are
mapped onto the commands as shown in Figure 11. The suggested

layout of commands is consistent with the old conventional
arrangement for sound players. Also notice that the most
frequently used commands correspond to the four cardinal
directions: the gestures they require are easiest to make for users.

Figure 11. Association between gesture and music player

commands.

The version of this technique that we have developed provides
users with wireless remote control over a computer music player,
using AppleScript. This application can easily be adapted to video
players.

8. CONCLUSIONS AND FUTURE WORK
JerkTilts are quick back-and-forth device tilts that can be
performed eyes free, relying on fast open-loop control and
leveraging the natural elasticity of the wrist. They actually do not
require any resetting of device orientation and they need not start
from a horizontal orientation. No mode-switching button presses
are required with JerkTilts, these input gestures being self-
delimiting. Therefore they do not interfere with common
interaction techniques based on touch screen events and they can

serve as gestural shortcuts in most application contexts (one
obvious exception being games that involve 3D gestures). The
JerkTilts technique requires little space because the motion
consists of an essentially stationary rotation of the handheld
device. The gestures are discreet, thanks to their short duration
and amplitude, meaning that JerkTilts should be practicable is
most social contexts. And because the technique relies on large
amplitude acceleration signals, it is well immune to the risk of

inadvertent false detections.

In this paper we reported some performance data illustrating the
efficiency of JerkTilts in a laboratory selection task. Our
participants were able to make eight-item selections as accurately
with JerkTilts as with touch-screen thumb movements, and nearly
as fast—in fact there is reason to expect thumb moves to be
slower in realistic settings, where touch-screen operation actually
requires mode switching, than in our experiment. We also showed

that JerkTilts can be as efficiently performed with the thumb
either on or off the touch screen, meaning the thumb may be used
in combination with JerkTilts.

We developed three applications that illustrate how the JerkTilts
gestures can be exploited. By reducing the number of steps

required to express highly-frequent commands, these applications
alleviate some tricky interaction problems that have been a real
concern so far for mobile users.

Designing efficient methods for the parallel exploitation of finger
motion on touch screens (leveraging the opportunities offered by
multi-touch technologies) and device motion in 3D space is
probably one of the most important challenges currently faced by
HCI research [7]. In the future we plan to perform a long-term

field study so as to extend our first data about false detections. We
also envision studying the use of the gyroscope to enhance gesture
recognition and will test alternative recognition algorithms. We
want to go further in the exploitation of JerkTilts. Of special
interest, we believe, are combinations of JerkTilts and on-screen
marking thumb gestures, which leverage the complementary
advantages of the two techniques. While JerkTilts allows quick
activation of discrete commands, marking gestures can be very

useful to control continuous values as shown in [15].

9. ACKNOWLEDGMENTS
This work was funded by Ubimedia, a joint research laboratory of
Alcatel-Lucent Bell Labs and Institut Telecom. We thank
anonymous reviewers for thoughtful criticisms and constructive

suggestions.

10. REFERENCES
[1] Bragdon A., Nelson E., Li Y., Hinckley K. 2011.

Experimental Analysis of Touch-Screen Gesture Designs in
Mobile Environments. In Proc. CHI’11.

[2] Dachselt, R., Buchholz, R.: Natural Throw and Tilt
Interaction between Mobile Phones and Distant Displays. In
Proc. CHI '09 Extended Abstracts.

[3] Dearman, D., Karlson, A., Meyers, B., and Bederson, B.
2010. Multi-modal text entry and selection on a mobile
device. In Proc GI’10.

[4] Francone, J., Bailly, G., Lecolinet, E., Mandran, N., and
Nigay, L. 2010. Wavelet menus on handheld devices:
stacking metaphor for novice mode and eyes-free selection
for expert mode. In Proc. AVI’10.

[5] Harrison, B. L., Fishkin, K. P., Gujar, A., Mochon, C., and

Want, R. 1998. Squeeze me, hold me, tilt me! An exploration
of manipulative user interfaces. In Proc. CHI’98,
ACM/Addison-Wesley, p. 17-24.

[6] Hinckley, K., Pierce, J., Sinclair, M., and Horvitz, E. 2000.
Sensing techniques for mobile interaction. In Proc. UIST’00.
ACM, New York, NY, 91-100.

[7] Hinckley K., Song H., 2011. Sensor Synaesthesia: Touch in
Motion, and Motion in Touch. In Proc. CHI’11.

[8] Jones, E., Alexander, J., Andreou, A., Irani, P., and
Subramanian, S. 2010. GesText: accelerometer-based
gestural text-entry systems. In Proc. CHI '10. ACM, New
York, NY, USA, 2173-2182.

[9] Guiard, Y. 1993. On Fitts' and Hooke's laws : simple
harmonic movement in upper-limb cyclical aiming. Acta
Psychologica, 82, 139-159.

[10] Kauppila M. 2008. Filler Models for Accelerometer Based
Continuous Gesture Recognition. Sc.Thesis, Dept. of
Mathematical Sciences, University of Oulu, May 2008.

[11] KNN:
http://en.wikipedia.org/wiki/K_nearest_neighbor_algorithm

[12] Kurtenbach, G. and Buxton, W. 1991. Issues in combining
marking and direct manipulation techniques. In Proc UIST
'91. ACM, New York, NY, 137-144.

[13] Oakley, I. and Park, J. 2007. A motion-based mark-ing menu
system. In Proc. CHI’07. ACM, New York, NY, 2597-2602.

[14] Partridge, K., Chatterjee, S., Sazawal, V., Borriello, G., and
Want, R. 2002. TiltType: accelerometer-supported text entry
for very small devices. In Proc. UIST '02.

[15] Pook, S., Lecolinet, E., Vaysseix, G., and Barillot, E. 2000.
Context and interaction in zoomable user interfaces. In Proc.
AVI '00. ACM, New York, NY, USA, 227-231.

[16] Rahman, M., Gustafson, S., Irani, P., and Subrama-nian, S.
2009. Tilt techniques: investigating the dex-terity of wrist-
based input. In Proc. CHI’09. ACM, New York, NY, 1943-
1952.

[17] Rekimoto, J. (1996). Tilting operations for small screen
interfaces. In Proc. UIST '96. ACM, .167-168.

[18] Rehm, M., Nikolaus, B., and André, E. 2008. Wave like an
Egyptian: accelerometer based gesture recognition for culture
specific interactions. In Proc. BCS-HCI '08, Vol. 1. British
Computer Society, Swinton, UK, UK, 13-22.

[19] Roudaut A., Baglioni M. et Lecolinet E. 2009. TimeTilt:
Using Sensor-Based Gestures to Travel Through Multiple
Applications on a Mobile Device. In Proc. INTERACT'09.

[20] Ruiz J., Li Y. 2011 DoubleFlip: A Motion Gesture Delimiter
for Mobile Interaction. In Proc. CHI '11. ACM Press.

[21] Sazawal, V., Want, W., and Borriello, G. 2002. The
Unigesture Approach. In Proc. Mobile HCI '02. Fabio
Paternè (Ed.). Springer-Verlag, London, UK, 256-270.

[22] Van Tonder, B., and Wesson, J. 2010. Is tilt interaction better
than keypad interaction for mobile map-based applications?.
In Proc. SAICSIT '10. ACM, New York, NY, USA, 322-331.

[23] Wigdor, D. and Balakrishnan, R. 2003. TiltText: using tilt for
text input to mobile phones. In Proc. UIST’03. ACM, New
York, NY, 81-90.

