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MCMC-Based Tracking and Identification of Leaders in Groups

Avishy Y. Carmi, Lyudmila Mihaylova, François Septier, Sze Kim Pang,
Pini Gurfil and Simon J. Godsill

Abstract

We present a novel framework for identifying and track-
ing dominant agents in groups. Our proposed approach
relies on a causality detection scheme that is capable of
ranking agents with respect to their contribution in shap-
ing the system’s collective behaviour based exclusively on
the agents’ observed trajectories. Further, the reasoning
paradigm is made robust to multiple emissions and clutter
by employing a class of recently introduced Markov chain
Monte Carlo-based group tracking methods. Examples are
provided that demonstrate the strong potential of the pro-
posed scheme in identifying actual leaders in swarms of in-
teracting agents and moving crowds.

1. Introduction

In recent years there has been an increasing interest in
tracking a number of interacting objects moving in a coor-
dinated fashion. Such situations are frequently encountered
in many fields, such as video surveillance, feature tracking
in video sequences, biomedicine, neuroscience and meteo-
rology, to mention only a few. Although individual objects
in the group can exhibit independent movement at a certain
level, overall the group will move as one whole, by synchro-
nizing the movement of the individual entities and avoiding
collisions. In most of the multi-object tracking methods, as
opposed to groups tracking methods, tracking of individual
objects is the common approach.

It is clear that inference in such environments have
to cope with an ever growing complexity induced by
the spatio-temporal interrelations among individuals in the
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scene. In some cases where the number of objects becomes
excessively large, it might be impractical to track them all
individually (e.g., based on image features). An efficient ap-
proach would then consist of tracking the clustering struc-
ture formed by object concentrations rather than individual
entities.

Groupsare often referred to as structured objects, a term
which reflects the ingrained interplay between their com-
ponents. These endogenous forces give rise to group hi-
erarchies and are instrumental in producing emergent phe-
nomena. Fortunately, these are exactly the factors essential
for maintaining coordination within and between groups,
a premise which to some extent allows us to treat them
as united entities in a high level tracking paradigm. Any
knowledge of existence of such interrelations facilitates
sophisticated agent-based behavioural modeling which, in
practice, comprises of a set of local interaction rules or mu-
tually interacting processes (e.g., Boids system [21], causal-
ity models [12,20]) - an approach which by itself provides
insightful justifications of characteristic behaviours inthe
fundamental subsystem level and likewise of group hierar-
chies and emergent social patterns (see [20]).

1.1. Reasoning About Behavioural Traits

Being the underlying driving mechanism for evoking
emergent phenomena, hierarchies and principal behaviour
patterns, the ingrained interactions between agents are pos-
sibly the most pivotal factors that should be scrutinized in
high level scene understanding. Such interrelations can take
the form of a causal chain in which an agent’s decisions and
behaviour are affected by its neighbours and likewise have
either direct or indirect influence on other agents. The abil-
ity to fully represent these interrelations based exclusively
on passive observations such as velocity and position, lays
the ground for the development of sophisticated reasoning
schemes that can potentially be used in applications such
as activity detection, intentionality prediction, and artificial
awareness.

In this work we demonstrate this concept by developing
a causality reasoning framework for ranking agents with re-
spect to their cumulative contribution in shaping the collec-
tive behaviour of the system. In particular, our framework is
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able to distinguish leaders and followers based exclusively
on their observed trajectories.

1.2. Novelties and Contributions

The contribution of this work is twofold. Firstly, a
novel causality reasoning scheme is derived for ranking
agents with respect to their decision-making capabilities
(dominance) as substantiated by the observed emergent be-
haviour. Dominant agents in that sense are considered to
have a prominent influence on the collective behaviour and
are experimentally shown to coincide with actual leaders in
groups. Secondly, the causality scheme is consolidated with
a recently introduced Markov chain Monte Carlo (MCMC)-
based particle method [6,19] for tracking agents and group
hierarchies in potentially cluttered environments.

The subsequent sections (1.3 – 2) provide an overview
of existing group tracking schemes with an emphasis on the
underlying MCMC-based particle methods.

The remaining part of this paper is organised as follows.
Section3 develops the causality-driven agent ranking ap-
proach. Section4 demonstrates the performance of the
causality identification scheme using a few illustrative ex-
amples. Finally, concluding remarks and some open issues
are discussed in Section5.

1.3. Multiple Group Tracking

Over the past decade various methods have been devel-
oped for group tracking. These can be divided into two
broad classes, depending on the underlying complexities:
1) methods for a relatively small number of groups, with
a small number of group components [10, 16, 19], and 2)
methods for groups comprised of hundreds or thousands of
objects (normally referred to as cluster/crowd tracking tech-
niques) [2, 6]. In the second case the whole group is usu-
ally considered as an extended object (an ellipse or a circle)
which centre position is estimated, together with the param-
eters of the extent.

Different models of groups of objects have been pro-
posed in the literature, such as particle models for flocks
of birds [14], and leader-follower models [17]. However,
estimating the dynamic evolution of the group structure has
not been widely studied in the literature, although there are
similarities with methods used in evolving network mod-
els [1,8].

Typically tracking many objects (hundreds or thousands)
can be solved by clustering techniques or other methods
where the aggregated motion is estimated, as it is in the
case of vehicular traffic flow prediction/ estimation, with
fluid dynamics type of models combined with particle fil-
tering techniques [18]. For thousands of objects forming
a group, the only possible solution is to consider them as
an extended object. The extended object tracking problem
reduces then to joint state and parameter estimation.

Estimation of parameters in general nonlinear non-
Gaussian state-space models is a long-standing problem.
Since particle filters (PFs) are known with the challenges
they face for parameter estimation and for joint state and
parameter estimation [4], most solutions in the literature
split the problems into two parts:i) state estimation, fol-
lowed by ii ) parameter estimation (see e.g., [3]). In [3] an
extended object tracking problem is solved when the static
parameters are estimated using Monte Carlo methods (data
augmentation and particle filtering), whereas the states are
estimated with a Mixture Kalman filter or with an interact-
ing multiple model filter.

PFs for Tracking in Variable State Dimensions

An extension of the PF technique to a varying number of
objects is introduced in [23], [19] and [16]. In [23] a PF
implementation of the PHD filter is derived. This algorithm
maintains a representation of the filtering belief mass func-
tion using random set realizations (i.e., particles of vary-
ing dimensions). The samples are propagated and updated
based on a Bayesian recursion consisting of set integrals.
Both works of [19] and [16] develop a MCMC PF scheme
for tracking varying numbers of interacting objects. The
MCMC approach outperforms the conventional PF due to
its efficient sampling mechanism. Nevertheless, in its tra-
ditional non-sequential form it is inadequate for sequential
estimation. The techniques used by [19] and [16] amend the
MCMC for sequential filtering (see also [5]). The work in
[16] copes with inconsistencies in state dimension by utiliz-
ing the reversible jump MCMC method introduced in [13].
In [19], on the other hand the computation of the marginal
filtering distribution is avoided as in [5]. The algorithm op-
erates on a fixed dimension state space through indicator
variables for labeling of active object states (the two ap-
proaches are essentially equivalent).

2. Models and Algorithms for Group Tracking

This section briefly reviews the fundamental concepts
underlying the MCMC-based group tracking approaches in
[19] and [6].

2.1. Virtual Leader Model

The idea of group modeling is to adopt a behavioural
model in which each member of a group interacts with the
other members of the group, typically making its veloc-
ity and position more similar to that of others in the same
group. In [19], this idea has been conveniently formulated
in continuous time through a multivariate stochastic dif-
ferential equation (SDE) and then derived in discrete time
without approximation errors, owing to the assumed linear
and Gaussian form of the model. In particular, two differ-
ent models have been proposed. In the first, the basic group



model, the group parameter is modeled as a deterministic
function of the objects. In the second, the group model with
a virtual leader, an additional state variable is introduced in
order to model the bulk or group parameter. This second
approach is closer in spirit to the bulk velocity model and
virtual leader-follower model [17]. Such model provides a
more flexible behaviour since the virtual leader is no longer
a deterministic function of the individual object states. Fig-
ure 1 gives a graphical illustration of the restoring forces
towards the virtual leader for a group of five objects.
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Figure 1. Group model with virtual leader - Illustration of the
restoring forces (a) and of a single realisation showing a group
of 4 objects that splits into 2 groups of 2 objects (b).

The spatio-temporal structure for theith object in a
group, as defined in [19], is given by :

dµ̇x
t,i =

{

−α[µx
t,i − vx

t ]− γ1µ̇
x
t,i

−β[µ̇x
t,i − v̇x

t ] + ri
}

dt+ σxdW
x
t,i (1)

dv̇x
t = −γ2v̇

x
t dt+ σgdG

x
t (2)

Hereµx
t,i is the Cartesian position in theX direction

of the ith object in the group at timet, with µ̇x
t,i the cor-

responding velocity.vx
t and v̇x

t represent respectively the
Cartesian position and the velocity both in theX direction
of the unobserved virtual leader of the group.W x

t,i andGx
t

are two independent standard Brownian motions.W x
t,i is

assumed to be independently generated for each objecti in
the group, whereasGx

t is a noise component common to
all members of a group. The parametersα andβ are pos-
itive, and reflect the strength of the pull towards the group
bulk. The “mean reversion” termsγ1µ̇x

t,i andγ2v̇x
t simply

prevent the velocities of the object and the virtual leader
drifting up to very large values with time. Finally, in order
to reduce or eliminate behaviour in which objects become
colocated or collide spatially, which are clearly infeasible
or highly unlikely in practice, an additional repulsive force
ri is introduced in (1) when objects become too close.

2.1.1 Modeling Groups of Extended Objects

In practice, objects may produce more than a single emis-
sion, and in some cases they may indeed consist of many

individual entities moving in a coordinated fashion (i.e.,
clusters). Such scenarios normally involve additional ex-
tent parameters that embody the potentially dynamic phys-
ical boundary of an object. In this respect, the fairly simple
idea adopted in [6] represents a dynamically evolving group
of extended objects by means of a time-varying Gaussian
mixture model (i.e., each mixture component corresponds
to an individual object). The underlying properties of the
instantaneous clustering configuration, namely, the number
of mixture components, their associated weights, means and
covariances, are then estimated exclusively from the possi-
bly cluttered and noisy emissions.

2.2. Sequential Inference Using MCMC-Based PF

The group tracking problems discussed above can be ef-
ficiently solved via the MCMC-based particle method ini-
tially proposed for solution of group tracking problems in
[19]. This method aims at sequentially approximating the
following joint posterior distribution

p(xk,xk−1|z0:k) ∝ p(zk|xk)p(xk|xk−1)p(xk−1|z0:k−1)
(3)

where the state vectorxk comprises of the objects’ instan-
taneous position, velocity and extent parameters at timetk,
andz0:k = {z0, . . . , zk} is the observation history up to
time tk. In what follows we would refer to the (discrete)
time tk as simplyk.

Since the closed form expression of the distribution
p(xk−1|z0:k−1) is generally unknown, the proposed scheme
approximates it by using a set of unweighted particles

p(xk−1|z0:k−1) ≈
1

Np

Np
∑

j=1

δ(xk−1 − x
(j)
k−1) (4)

whereNp is the number of particles and(j) is the parti-
cle index. Then, by plugging this particle approximation
into (3), an appropriate MCMC scheme can be used to draw
from the joint posterior distributionp(xk,xk−1|z0:k). The
converged MCMC outputs are then extracted to give an em-
pirical approximation of the posterior distribution of interest
at timek, thus seeding the next step of the filtering at time
k + 1.

At themth MCMC iteration, the following procedure is
performed to obtain samples fromp(xk,xk−1|z0:k):

1. Make a joint draw for{xk,xk−1} using a Metropolis-
Hastings step ,

2. Update successively some elements inxk by using a
series of Metropolis-Hastings-within-Gibbs.

3. Causality-Driven Agent Ranking

The so-called probabilistic approach to causality, which
has reached maturity over the past two decades (see for ex-



ample Pearl [20], Geffner [9] and Shoam [22] for an exten-
sive overview), establishes a convenient framework for rea-
soning and inference of causal relations in complex struc-
tural models.

Many notions in probabilistic causality rely extensively
on structural models and in particular on causal Bayesian
networks which are normally referred to as simply causal
networks (CN’s). A CN is a directed acyclic graph compat-
ible with a probability distribution that admits a Markovian
factorization and certain structural restrictions [20].

Causal Hierarchies

In this work the termcausal hierarchiesrefers to ranking
of agents with respect to their cumulative effect on the ac-
tions of the remaining constituents in the system. The word
“causal” here reflects the fact that our measure of distinction
embodies the intensity of the causal relations between the
agent under inspection and its counterparts. Adopting the
information-theoretic standpoint, in which the links of a CN
are regarded as information channels [7], one could readily
deduce that the total effect of an agent is directly related to
the local information flow entailed by its corresponding in
and out degrees. To be more precise, the total effect of an
agent is computed by summing up the associated path coef-
ficients (obtained by any standard Bayesian network learn-
ing approach) of either inward or outward links. This con-
cept is further illustrated in Fig.2.
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Figure 2. From left to right: depiction of the causal hi-
erarchies (based on out degrees)(X,Y, Z), (Y,X,Z), and
(Z, Y,X). The most influential agents in the causal diagrams
from left to right are X, Y andZ, respectively.

Inferring Causal Hierarchies Via PCA

To some extent, causal hierarchies can be inferred using the
class of principal component analysis (PCA)-based meth-
ods. Probably the most promising one in the context of
our problem is the multi-channel singular spectrum analy-
sis (M-SSA), which is otherwise known as extended empir-
ical orthogonal function (EEOF) analysis [11]. The novel
approach we suggest has some relations with M-SSA. The
relevant details, however, are beyond the scope of this work.
A performance evaluation of both our method and M-SSA
is provided in the numerical study part in the following sec-
tions.

3.1. Structural Dynamic Modeling Approach

Structural equation modeling is commonly used for rep-
resenting the underlying links of a CN [20]. In our case,
this formulation assumes a rather dynamic form (i.e., com-
prising of multiple time series of the agents’ observed traits
such as velocity and position)

x
i
k =

∑

j 6=i

p
∑

m=1

αj→i(m)xj
k−m + εik, i = 1, .., n (5)

where{xi
k}

∞
k=0 and{εik}

∞
k=0 denote theith random process

and a corresponding white noise driving sequence, respec-
tively. The coefficients{αj→i(m)}pm=1 quantify the causal
influence of thejth process on theith process. Notice that
the Markovian model (5) has a finite-time horizon of the or-
derp (also referred to as the wake parameter). In the stan-
dard multivariate formulation, the coefficientsαj→i(m) are
square matrices of an appropriate dimension. For maintain-
ing a reasonable level of coherency we assume that these
coefficients are scalars irrespectively of the dimension of
x
i

k
. Nevertheless, our arguments throughout this Section

can be readily extended to the standard multivariate case.
The methodology underlying the so-called Granger

causality [12] considers an F-test of the null hypothesis
αj→i(m) = 0, m = 1, . . . , p for determining whether the
jth process G-causes theith process. The key idea here fol-
lows the simple intuitive wisdom that the more significant
these coefficients are, the more likely they are to reflect a
causal influence. In the framework of CNs the causal co-
efficients are related to the conditional dependencies within
the probabilistic network, which in turn implies that their
values can be learned based on the realizations of the time
series{xi

k}
∞
k=0, i = 1, . . . , n. In what follows, we demon-

strate how the knowledge of these coefficients allows us to
infer the fundamental role of individual agents within the
system. Before proceeding, however, we shall define the
following key quantity.

Definition 1 (Causation Matrix) The causal influence of
the processxj on the processxi can be quantified by

Aij =
∑

m

[

αj→i(m)
]2

≥ 0. (6)

In the above definition,Aij denotes the coefficient relat-
ing the two processesxj andxi so as to suggest an overall
matrix structure that would provide a comprehensive picture
of the causal influences among the underlying processes.
The matrixA = [Aij ] ∈ R

n×n, termed thecausation ma-
trix, essentially quantifies the intensity of all possible causal
influences within the system (note that according to the def-
inition of a CN, the diagonal entries inA vanish). It can be
easily recognized that a single row in this matrix exclusively
represents the causal interactions affecting each individual



process. Similarly, a specific column inA is comprised of
the causal influences of a single corresponding process on
the entire system. This premise motivates us to introduce
the notion of total causal influence.

Definition 2 (Total Causal Influence Measure) The total
causal influence (TCI)Tj of the processxj

k is obtained as
the l1-norm of thejth column in the causation matrixA,
that is

Tj =

n
∑

i=1

Aij . (7)

Having formulated the above concepts we are now ready
to elucidate the primary contributions of this work, both of
which rely on the TCI measure defined above.

3.2. Dominance and Similarity

A rather intuitive, but nonetheless striking, observation
about the TCI is that it essentially reflects the dominance of
each individual process in producing the underlying emer-
gent behaviour. This allows us to decompose any com-
plex act into its prominent behavioural building blocks (pro-
cesses) using a hierarchical ordering of the form

Least dominantTj1 ≤ Tj2 ≤ . . . ≤ Tjn Most dominant
(8)

Equation (8) is given an interesting interpretation in the ap-
plication part of this work, where the underlying processes
{xj

k}
n
j=1 correspond to the motion of individual agents

within a group. In the context of this example, the domi-
nance of an agent is directly related to its leadership capa-
bilities. By using the TCI measure it is therefore possible to
distinguish between leaders and followers.

Another interesting implication of the TCI is exemplified
in the following argument. Consider the two extreme pro-
cesses in (8), one of which is the most dominant,x

jn
k , while

the other is the least dominant,xj1
k . Now, suppose we are

given a new processxi
k, i 6= j1, jn and are asked to as-

sess its dominance based exclusively on the two extremals,
with respect to the entire system. Then, a common intuition
would suggest to categorizexi

k as a dominant process in
the system whenever it resemblesx

jn
k more thanxj1

k in the
sense of|Tjn − Ti| < |Tj1 − Ti| and vice versa. This idea
is summarized below.

Definition 3 (Causal Similarity) A processxj
k is said to

resemblexi
k more thanxl

k if and only if |Tj −Ti| < |Tj −
Tl|.

In the context of the previously–mentioned example, we
expect that dominant agents with high leadership capabili-
ties would possess similar TCIs that would distinguish them
from the remaining agents, the followers.

3.3. Bayesian MCMC Estimation ofαj→i

In typical applications the coefficientsαj→i(m), m =
1, . . . , p in (5) may be unknown. Providing that the realiza-
tions of the underlying processes are available it is fairly
simple to estimate these coefficients by treating them as
regressors. Such an approach by no means guarantees an
adequate recovery of the underlying causal structure (see
the discussion about the identifiability of path coefficients
and a related assertion concerning non-parametric func-
tional modeling in [20] pp. 156 – 157, both have a clear
connotation to the “fundamental problem of causal infer-
ence” [15]). Nevertheless, it provides a computationally
efficient framework for making inference in systems with
exceptionally large number of components. This premise
is evident by noting from (5) that while fixing i the coef-
ficientsαj→i(m), ∀j 6= i, m = 1, . . . , p are statistically
independent ofαj→l(m), ∀l 6= i.

In a Bayesian framework we confine the latent causal
structure by imposing a prior on the coefficientsαj→i(m).
Let piα andpj→i

α be the priors of{αj→i(m), ∀j 6= i}, and
αj→i(m), respectively. Let alsopiε be some prescribed (not
necessarily Gaussian) probability density of the white noise
in (5). Then,

p({αj→i(m), ∀j 6= i} | x1:n
0:k ) ∝

piα

k
∏

t=p

p(xi
t | {α

j→i(m),xj
t−p:t−1, ∀j 6= i})

= piα

k
∏

t=p

piε(x
i
t−

∑

j 6=i

p
∑

m=1

αj→i(m)xj
t−m), i = 1, . . . , n

(9)

where x
1:n
0:k = {x1

0, . . . ,x
n
0 , . . . ,x

1
k, . . . ,x

n
k}, and

x
j
t−p:t−1 = {xj

t−p, . . . ,x
j
t−1}. A viable estimation scheme

for αj→i(m) which works well in most generalized settings
is a Metropolis-within-Gibbs sampler that operates either
sequentially or concurrently on the conditionals

p(αj→i(m) | x1:n
0:k , {α

l→i, ∀l 6= j, i}) ∝

pj→i
α

k
∏

t=p

p(xi
t | {α

l→i(m),xl
t−p:t−1, ∀l 6= i}) (10)

The obtained estimates at timek are then taken as the av-
erage of the converged chain (i.e., subsequent to the end of
some prescribed burn-in period).

3.4. Causal Reasoning in Cluttered Environments

In many practical applications the constituent underlying
traits, which are represented here by the processes{xj

k}
n
j=1,

may not be perfectly known (in the context of our work
these could be the object position and velocity,µ

j
k, µ̇j

k).



Hence instead of the actual traits one would be forced to
use approximations that might not be consistent estimates
of the original quantities (e.g.,̂µj

k, ˆ̇µj
k) . As a consequence,

the previously suggested structure might cease being an ad-
equate representation of the latent causal mechanism. A
plausible approach for alleviating this problem is to intro-
duce a compensated causal structure that takes into account
the exogenous disturbances induced by the possibly incon-
sistent estimates. Such a model can be readily formulated
as a modified version of (5), that is

µ̂i
k =

∑

j 6=i

p
∑

m=1

αj→i(m)µ̂j
k−m + εik + ζi

k, i = 1, .., n,

(11)
where the additional factorζi

k denotes an exogenous bias.
Hence, one can use (11) to predict the effects of interven-
tions in ζi

k directly from passive observations (which are
taken as an output of a tracking algorithm, e.g.,µ̂

j
k or ˆ̇µj

k)
without adjusting for confounding factors. See [20] (p. 166)
for further elaborations on the subject.

4. Illustrative Examples

We demonstrate the performance of our suggested rea-
soning methodology and some of the previously mentioned
concepts using both synthetic and realistic examples. All
the scenarios considered here involve a group of dynamic
agents, some of which are leaders that behave indepen-
dently of all others. The leaders themselves may exhibit
a highly nonlinear and non-predictive motion pattern which
in turn affects the group’s emergent behaviour. We use a
standard CN (5) with a predetermined time horizonp for
disambiguating leaders from followers based exclusively on
their instantaneous TCIs. In all cases the processesx

i
k,

i = 1, . . . , n are taken as either the incrementµ̇i
k or po-

sition µi
k of each individual agent in the group. In addi-

tion, the unified tracking and reasoning paradigm is demon-
strated by replacing the actual position and increment with
the corresponding outputs of the MCMC cluster tracking
algorithm, ˆ̇µi

k andµ̂i
k.

The performance of the causality inference scheme is di-
rectly related to its ability to classify leaders based on their
TCI values. As leaders are, by definition, more dominant
than followers in some measure space, essentially shaping
the overall group behaviour, we expect that their TCI val-
ues would reflect this fact. Furthermore, the hierarchy (8)
should allow us to disambiguate them from the remaining
agents according to the notion of causal similarity which
was introduced in Section3.2. Following this argument we
define a rather distinctive performance measure which al-
lows us to assess the aforementioned qualities.

Let G be a set containing the leaders indices, i.e.,

G = {j | xj
k is a leader’s instantaneous position or velocity}.

Let alsov be a vector containing the agents’ ordered indices
according to the instantaneous hierarchy at timek

Tj1 ≤ · · · ≤ Tjn , (12)

i.e.,v = [jn, . . . , j1]
T . Having stated this we can now de-

fine the followingperformance index

e = arg max
i∈[1,n]

(vi ∈ G) . (13)

The above quantity indicates the worst TCI ranking of a
leader. As an example, consider a case with, say, 5 leaders.
Then the best performance index we could expect would be
5, implying that all leaders have been identified and were
properly ranked according to their TCIs. If the performance
index yields a value greater than 5, say 10, it implies that
all leaders are ranked among the top 10 agents according
to their TCIs. The performance index cannot go below the
total number of leaders and cannot exceed the total number
of agents.

Swarming of Multiple Interacting Agents (Boids)

Our first example pertains to identification of leaders and
followers in a dynamical system of multiple interacting
agents, collectively performing in a manner usually referred
to asswarmingor flocking.

In the current example, Reynolds-inspired flocking [21]
is used to create a complex motion pattern of multiple
agents. Among these agents, there are leaders, who inde-
pendently determine their own position and velocity, and
followers, who interact among themselves and follow the
leader agents.

The inference scheme performance over 100 Monte
Carlo runs, in which the agents initial state and velocity
were randomly picked, is provided in Fig.3. The synthetic
scenario considered consists of 30 agents, 4 of which are ac-
tual leaders. The performance index cumulative distribution
function (CDF) for this scenario, which is illustrated via the
50, 70 and 90 percentile lines, is shown over the entire time
interval in the left panel in this figure. The percentiles indi-
cate how many runs out of 100 yielded a performance index
below a certain value. Thus, 50 percent of the runs yielded
a performance index below the 50 percentile, 70 percent
of the runs attained values below the 70 percentile, and so
on. Following this, it can be readily recognized that from
aroundk = 150 the inference scheme is able to accurately
identify the actual leaders in 50 percent of the runs. A fur-
ther examination of this figure reveals that the 4 actual lead-
ers are ranked among the top 6 from aroundk = 180 in 90
percent of the runs.

A comparison of leaders ranking capabilities of the pro-
posed approach with that of the M-SSA method is provided
in the right panel in Fig.3. The instantaneous CDFs of both



techniques are shown when using either position or velocity
time series data. This figure clearly demonstrates the supe-
riority of the proposed approach with respect to the M-SSA.

Identifying Extended Leaders in Clutter

In the following example the actual agent tracks are re-
placed by the output of an MCMC-based tracking approach
that was initially derived in [6,19] and is briefly described
in Section2. The scenario consists of 4 agents out of
which 2 are leaders. As before we use the Boids system
for simulating the entire system. This time, however, the
produced trajectories are contaminated with clutter and ad-
ditional points representing multiple emissions from possi-
bly the same agent (i.e., agents are assumed to be extended
objects). These observations are then used by the MCMC
tracking algorithm of which the output is fed to the causality
detection scheme, in a fashion similar to the one described
in Section3.4.

The tracking performance of the MCMC algorithm is
demonstrated both in Fig.4 and in the left panel in Fig.5.
In Fig.4, the estimated tracks and the cluttered observations
are shown for a typical run. The averaged tracking perfor-
mance of the MCMC approach is further illustrated based
on 20 Monte Carlo runs using the Hausdorff distance [6]
in Fig. 5. From this Figure it can be seen that the mean
tracking errors become smaller than 1 after approximately
50 time steps in either cases of cluttered and non-cluttered
observations.

The averaged leaders ranking performance in this exam-
ple is illustrated for 3 different scenarios in the right panel
in Fig. 5. Hence, it can be readily recognized that the two
leaders are accurately identified after approximately 10 time
steps when the agent positions are perfectly known. As ex-
pected, this performance is deteriorated in the presence of
clutter and multiple emissions, essentially attaining an av-
eraged ranking metric of nearly 2.5 after 60 time steps.

Identifying Group Leaders from Video Data

Our third, more practical example, deals with the follow-
ing application. Consider a group of people, among which
there are subgroups of leaders and followers. The follow-
ers coordinate their paths and motion with the leader. Using
video observations only of the group, determine who the
group leaders are. To that end, one must first develop a
procedure for estimating the trajectories ofn people from a
given video sequence. The input to the described procedure
is a movie withn moving people, wheren is known. The
objective is to track each person along the frame sequence,
and then feed this information into the CN mechanism for
inferring the leaders and followers.

As we are dealing with a rather noiseless and non-
cluttered scenario, a simple k-means clustering was used to

recover individual person tracks from SIFT (scale-invariant
feature transform) features. This approach was applied to
two different video sequences in which there were 5 fol-
lowers and 1 leader. Snapshots are shown in the upper panel
in Fig. 6. In these videos, the actual leader (designated by
a red shirt) performs a random trajectory, and the follow-
ers loosely follow its motion pattern. The clustering pro-
cedure described above is used to estimate the trajectories
of the objects (the trajectories were filtered using a simple
moving-average procedure to reduce the amount of noise
contributed by the k-means clustering method). These tra-
jectories were fed into the causality inference scheme.

The results of this procedure are shown in the bottom
panel in Fig.6, which depicts the causality performance in-
dex for two values of the finite-time horizon (wake param-
eter),p. It is clearly seen that from a certain time point the
algorithm identifies theactual leader in both videos irre-
spective to the value ofp.
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Figure 3. Identification performance over time (abscissa)
of the causality scheme (left) and the ranking CDF at time
t = 220 (right) of both the causality scheme and the M-SSA
method (using either velocity or position data) based on 100
Monte Carlo runs.
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Figure 4. Point observations and estimated tracks over time
(abscissa).

5. Concluding Remarks

A novel causal reasoning framework has been proposed
for ranking agents with respect to their contribution in shap-
ing the collective behaviour of the system. The proposed
scheme copes with clutter and multiple emissions from ex-
tended agents by employing a Markov chain Monte Carlo
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Figure 5. Tracking performance and causality ranking over
time (abscissa) averaged over 20 Monte Carlo runs.
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Figure 6. Reconstructed instantaneous causal diagrams
shown with the corresponding video frames (upper panel), and
causality ranking performance over time (lower panel).

group tracking method. This approach has been success-
fully applied for identifying leaders in groups in both syn-
thetic and realistic scenarios.
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