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ABSTRACT

This paper deals with the optimal (in the maximum likeli-

hood sense) detection performance of binary transmission in

a mixture of a Gaussian noise and an impulsive interference

modeled as an alpha-stable process. The main contribution is

in the Monte Carlo simulation that shows that the Gaussianity

assumption for the test statistic as reported in earlier works is

not valid unless a very large number of repetitions is used.

Index Terms— Network interference, Alpha-Stable Pro-

cess, Optimal Receiver, Maximum Likelihood Estimation,

Impulsive Noise.

1. INTRODUCTION

We are concerned in this paper with network interference. In

many applications, Multiple Access Interference (MAI) is the

sum of numerous independent and identically distributed (iid)

random variables (RV). A first idea is then to use a Gaussian

approximation, thanks to the central limit theorem (CLT).

However in several situations this asymptotic result gives

poor performance. One way to explain it is the absence of

control on interfering users (for instance in ad hoc networks

or cognitive radio). Consequently the variability between

users can be very large and is badly modeled with finite vari-

ance RV: infinite variance variables are much better adapted

although this infinite variance (meaning infinite power) can

sometimes raise some trouble. As a consequence, the gener-

alized CLT has to be used: stable distributions are the only

distributions that can be obtained as limits of normalized

sums of iid RV [1, p 5, definition 1.1.5].

Stable distributions are a rich class of probability distri-

butions that includes the Gaussian, Cauchy and Lévy laws in

a family that allows skewness and heavy tails. In the gen-

eral case, no closed-form expression of the probability den-

sity function (pdf) is available. However those distributions

exhibit important properties that make them attractive for our

proposed applications. It is possible, based on this infinite

variance model, to have a mathematical proof for the validity

of the stable distribution model for the resulting MAI (RV) as

discussed in several papers [2, 3, 4, 5, 6]. Win et al. [5], for

instance, present a general framework for interference in net-

work resulting in stable models with application to ad hoc or

sensor networks but also cognitive radio. An interesting point

is that the two significant parameters (characteristic exponent

α and dispersion γ) can be linked to the system parameters

(channel attenuation, physical layer definition).

Detection strategies have been proposed in α-stable noise,

for instance in [3], or in a mixture of stable and gaussian noise

[7]. One underlying question is to know what would give an

optimal strategy in the maximum likelihood sense. Previous

works [4, 3, 8] suggest to model the test statistic as a Gaussian

random variable. We discuss in this paper the limits of this

model and propose a Monte Carlo approach that gives a more

accurate error probability.

The rest of the paper is structured as follows. We give

in Section 2 a brief description of the α-stable random vari-

ables. In Sections 3 and 4 we describe the detection problem

and give the main mathematical quantities of interest to our

analysis. Finally in Section 5 we present our simulation re-

sults and the main contributions of this paper.

2. ALPHA-STABLE RANDOM VARIABLES

In this section, we introduce a statistical model based on the

class of symmetric α-stable (SαS) distributions which is

suited for describing signals that are impulsive in nature. A

good reference in the area is the monograph [1]. An extensive

review of stable processes from a signal processing point of

view can be found in [8].

The symmetric α-stable (SαS) distribution is best defined

via its characteristic function as

φX(w) = exp (iδω − γ |ω|α)

where the characteristic exponent α is restricted to the values

0 < α ≤ 2. The location parameter δ(−∞ < δ < ∞) cor-

responds to the mean of the SαS pdf when 1 < α ≤ 2, while

for 0 < α ≤ 1, when the (SαS) pdf does not have a finite

mean, δ correponds to its median. The dispersion parameter

γ(γ > 0) is a measure of the spread of the pdf around its lo-

cation parameter δ, similar to the variance of a Gaussian pdf.



The characteristic exponent α is the most important param-

eter and it determines the heaviness of the tail of the distri-

bution. A stable distribution is called standard if δ = 0 and

γ = 1. Although the SαS density behaves approximately like

a Gaussian density near the origin, its tails decay at a lower

rate than the Gaussian tails. The smaller the characteristic

exponent α is, the heavier the tails of the SαS density, see

Fig. 1.
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Fig. 1. A close-up view of the tails of the Standard stable

densities γ = 1, δ = 0.

3. PROBLEM FORMULATION

The mathematical model is the following hypothesis testing

problem :

H0 : x(k) = s0(k) + ng(k) + nα(k), k = 1, 2, ..., N

H1 : x(k) = s1(k) + ng(k) + nα(k), k = 1, 2, ..., N

where si(.), i = 0, 1, is one of two possible transmitted

signals, nα(.) is a realization of a sequence of N independent,

identically distributed zero-mean symmetric α-stable (SαS)
random variables of characteristic exponent α (0 < α ≤ 2)
and dispersion γ, and ng(.) is a realization of a sequence of

N iid zero-mean Gaussian random variables with variance σ.

Furthermore, the Gaussian and the impulsive noises are inde-

pendent of each other and of the signal.

The (SαS) random variable with zero-mean is defined

through its charateristics function

φX(ω) = exp(−γ |ω|α).

The characteristic function of the total additive noise is

φX(ω) = exp

(

−σ2

2
ω2 − γ |ω|α

)

.

The density function is given by the inverse-Fourier transform

fX(x) =
1

π

∫

∞

0

φX(t).cos(xt)dt. (1)

A numerical integration can be used to evaluate fX(x).

4. OPTIMUM RECEIVER

To decide between the two hypotheses H0 and H1, the op-

timum (in the maximum likelihood sense) receiver computes

the test statistic

Λ =
N
∑

k=1

log

{

fX [x(k)− s1(k)]

fX [x(k)− s0(k)]

}

and compares it to a preset threshold η. When Λ ≥ η, the

receiver decides that s1(.) was sent, otherwise that s0(.) was

sent.

For large N , from the central limit theorem, the authors

in [3, 7] assume that Λ has a Gaussian distribution and for

equiprobable signaling, the probability of error is given by

Pe =
1

2
erfc

(

µ0√
2σ2

)

where erfc(.) is the complementary error function, µ0 is the

mean of Λ given that s0 was sent and σ2

0
is the variance of Λ

µ0 =
N
∑

k=0

∫

∞

−∞

fX(ξ − s0(k)) log

{

fX(ξ − s1(k))

fX(ξ − s0(k))

}

dξ,

and

σ2

0
=

N
∑

k=0

∫

∞

−∞

fX(ξ−s0(k)) log
2

{

fX(ξ − s1(k))

fX(ξ − s0(k))

}

dξ−µ2

0

N
.

As explained in [3] the expression for the probability of error

is only asymptotically valid, i.e. they hold true only when

the length N of the data sequence is large enough for the true

distribution of the test statistic to be well approximated by a

Gaussian distribution. However, it is not guaranteed that for a

high number N of data samples, the asymptotic expressions

for the probability of error will always be valid because of

sensitivity of the probability of error to the far tails of the pdf

of the test statistic for which the Gaussian pdf provides only

a poor approximation. A better estimate of the probability of

error of the receiver can be obtained by performing extensive

Monte Carlo simulations.

It is rather straightforward to draw samples from a stable

law [8, 9]. However, the fact that rare events have a major im-

pact on the performance results, a large numbers of samples

have to be simulated. It is out of the scope of the paper but

strategies to fasten the procedure would be welcome.

5. SIMULATION RESULTS

To test the normality assumption, we apply the Kolmogorov-

Smirnov test at the 5% significance level for 10000 samples

drawn from the log-likelihood ratio Λ for different values of

the Signal over Noise ratio and the repetition paramater N .



A sample of our results for α = 1.5 and γ = 0.3 are shown

in Fig. 2. We see, as the Signal over Noise ratio grows that

the number of samples N necessary for the Gaussian approx-

imation to be accepted gets larger. The same pattern holds for

different values of the parameters α and γ.
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Fig. 2. Kolmogorov-Smirnov tests for Gaussianity α = 1.5
and γ = 0.3.

The Kolmogorov-Smirnov goodness of fit test statistic Dn

is drawn in Fig. 3 and is given by

Dn = sup
x∈

|Fn(x)− F (x)|,

where Fn(x) is the empirical cumulative distribution func-

tion of the log-likelihood ratio Λ and F (x) is the cumulative

Gaussian distribution function. Whenever Dn is greater than

the critical value of the test, the Null hypothesis that Λ has a

normal distribution is rejected.
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Fig. 3. Kolmogorov-Smirnov goodness of fit test statistic Dn

for α = 1.5 and γ = 0.3.

We confirm in Fig. 3 that the number N necessary for the

Gaussian hypothesis to be valid gets larger when the Gaussian

noise becomes weaker. At classical SNR levels (5 to 10 dB),

we see that N has to be very large, which will not necessary

be true. However we can further wonder if, altough not val-

idated by KS test, the Gaussian approximation will not give

a sufficiently accurate result for the error probability estima-

tion. As a consequence we compute the probability of error

of our optimal receiver in two ways, by using the Normality

assumption and by extensive Monte Carlo simulations. The

simulations are done with a number of samples large enough

to ensure 1000 errors per data samples. In the implementation

the data are generated from the α-stable generator proposed

by [9]. Next, because of the lack of a closed form expression

for the general SαS density, we use an extensive numerical

integration to compute the density function from the charac-

teristic function based on Equation (1). The results confirm in

another way that the Normality assumption is far from being

a reasonable approximation of the log-likelihood ratio Λ. We

present in Fig. 4 the probabilities of error for α = 1.5 and

γ = 0.05, 0.3, 0.5.

6. CONCLUSION

In this paper, we have considered the discrete-time detec-

tion of a binary signal in a mixture of Gaussian and α-stable

noises. We have studied through simulation the Normality

assumption usually made of the log-likelihood ratio Λ and

the probabilities of error with and without this assumption.

We have shown that this assumption is accurate only for very

large N and the probability of error is under-estimated in

many practical situations.
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(a) N = 5, α = 1.5, and γ = 0.05.
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(b) N = 5, α = 1.5, and γ = 0.3.

−10 −5 0 5 10 15
10

−3

10
−2

10
−1

10
0

Signal to Noise Ratio (dB)

P
ro

b
a
b

il
it

y
 o

f 
E

rr
o

r 
(P

e
)

 

 

Gaussian Approximation

Monte Carlo Simulation

(c) N = 5, α = 1.5, and γ = 0.5.
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