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ABSTRACT

In digital communication, phase distortions introduced by local
oscillators is one of the major concerns in designing low-cost high
frequency wireless communication systems. Hence, for phase
tracking and symbol detection, we propose an original algorithm
which performs both phase tracking and symbol detection by a
particle filtering based on the hybrid importance function. Per-
formances of this algorithm are analyzed and compared to phase-
locked loop performances in terms of bit error rate and mean square
error. Asymptotic posterior Cramér-Rao bound is also derived to
show performances of the optimum receiver.

Keywords : Phase tracking, Particle filter, Hybrid importance
function, Decision feedback loop, Asymptotic posterior Cramér-
Rao bound.

1. INTRODUCTION

Synchronization is an important practical problem in communi-
cation systems. Indeed, non perfect local oscillators used in the
receiver and the transmitter seriously damage the baseband re-
ceived signal. These distortions correspond to the constant shift
between the frequency clocks of the transmitter and the receiver
and to the random jitter in frequency, known as phase noise,
coming from electronic components. Moreover, the phase noise
effect is much more significant when the carrier frequency of the
digital communication system is large [1, 2] so that it has to be
seriously fought against when designing future 40 GHz or 60 GHz
communication systems.

The induced time variation of the frequency carrier is esti-
mated and eliminated by a phase tracking device among which
the phase-locked loop (PLL) and its digital version (DPLL) are the
most commonly used devices.

Recent developments in signal processing and digital commu-
nications have shown that it is possible to avoid such approxi-
mations by using particle filters. Many wireless communication
problems have been solved with success in that way [3]
including detection in fast fading channels [4] and multiuser de-
tection in fading code division multiple access (CDMA) channels
[5].

In [6], phase noise tracking performance with a prior
importance function based particle filter has been examined in a
bandlimited additive gaussian channel distortions and compared
to phase-locked loop in term of Asymptotic Mean Square Error.
In this approach, only the phase tracking problem has been con-
sidered.

In this paper, we focus our attention on the joint estimation of
phase distortions and transmitted symbols. We propose a particle
filter based on the hybrid importance function (PF-SDPT) intro-
duced by Huang and Djuric [7]. Let us note that in [8], authors
have proposed an algorithm which combines particle filtering and
extended kalman filtering for this joint estimation. However, this
approach does not take into account the linear drift and requires
the linearization of the dynamic state space model which limits its
performance especially when the phase noise rate increases.

The paper is organised as follows :
In section 2, the digital bandlimited communication system

and the phase distortion model are described. Section 3 is devoted
to particle filtering. We describe the proposed particle filter algo-
rithm for joint phase tracking and symbol detection. Results are
given in section 4. The proposed algorithm is compared to the de-
cision feedback loop (DFL) and particle filter algorithm (PF-PT)
proposed by [6] in terms of bit error rate (BER) and mean square
error (MSE) of phase estimation. We also derive the asymptotic
posterior Cramér-Rao bound (PCRB) which corresponds to the
lowest achievable MSE in the estimation of phase distortions.

2. SYSTEMMODEL

We consider the baseband communication system in a
bandlimited gaussian channel shown in Fig. 1. Phase distortions at
the receiver result from two phenomena. One is the constant shift
between the frequency clocks of the transmitter and the receiver.
The other is the random jitter introduced by the thermal noise of
electronic components, known as phase noise. The constant drift
and the phase noise are modeled by a multiplicative term p(t) after
the pulse shape filtering. In the case of an AWGN channel, p(t)
takes into account the phase noise produced by both the transmitter
and the receiver.
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Fig. 1. Baseband system model.



In a baseband complex equivalent form, the carrier delivered
by the noisy oscillator can be modeled as :

p(t) = exp(j�(t)) (1)

where the phase distortion �(t) is a Brownian process with a linear
drift [1]. Its power spectral density has a Lorentzian shape con-
trolled by the parameter � representing the two-sided 3dB band-
width. This model produces a 1/f 2 type noise power behavior
that agrees with experimental measurements carried out on real RF
oscillators. The phase noise rate is characterized by the bandwidth
� normalized with respect to the symbol rate 1/Ts, namely by the
parameter �Ts.

At the sampling rate of the receiver �/Ts, the discrete form of
the phase distortion is :

�k = �k�1 + � + vk (2)

where � is the unknown constant drift between the transmitter and
the receiver and vk is a zero mean gaussian variable with variance
�2

v = 2��Ts/�.
The baseband transmitter delivers i.i.d symbols, which belong

to an alphabet A, going through a pulse shaping filter.
At the receiver, the maximum likelihood detection can be carried
out either on the sampled signal following the matched filter, or
directly from the oversampled received signal. In the first case,
the Nyquist criterion for bandlimited transmission is not fulfilled,
since phase noise causes additive and multiplicative distortions
that are statistically intractable [9]. As a consequence, particle
filter implementation after the matched filter is inappropriate.

Thereby, we focus on the maximum likelihood detection per-
formed on the received signal which is oversampled by a factor �.
In order to avoid Intersymbol Interference (ISI) at each sampling
point, a multi-Nyquist pulse is used at the transmitter [10, 11].

2.1. Dynamic state space model

At the receiver side, the two unknown states are the transmitted
symbols and the phase distortions. The nonlinear state space model
can then be written as follows :

(
�k = �k�1 + � + vk, � : unknown constant
yk = exp(j�k)s� k

� �
+ Bk

(3)

where Bk � NC(0, �2
B) is a circular zero mean gaussian

white noise with power �2
B and vk � N(0, �2

v) is a zero mean
gaussian white noise with variance �2

v . The operator �X� repre-
sents the largest integer lower than or equal to X. The system state
is a three dimensional vector

“
�, s� k

� �
, �k

”
where the phase varies

at each sampling time, the symbols vary at each symbol time and
� is constant during all the transmission and independent of both
vk and the transmitted symbols. Moreover, the oversampling is at
the origin of the following relation :

�k � {1 + i�, ..., (1 + i)� � 1|i � Z}, s� k
� �

= s� k�1
� � (4)

3. PARTICLE FILTER

3.1. Introduction

The maximum a posteriori (MAP) estimation of the state from
the measurement is obtained in the framework of the Bayesian

theory which has been mainly investigated in Kalman filtering [12].
The Kalman filter is optimal when state and measurement equa-
tions are linear and noises are independent, additive and gaussian.
When these assumptions are not fulfilled, various approximation
methods have been developed among which the extended Kalman
filter (EKF) is the most commonly used technique [12].

Since the nineties, particle filters have become a powerful
methodology to cope with non-linear and non gaussian problems
[13] and an important alternative to the EKF. The advantage lies in
an approximation of the distribution of interest by discrete random
measures, which does not involve any linearization.

Based on sequential importance sampling, particle filtering is
an extension of the sequential Monte Carlo methodology [14]. It
consists in recursively computing the required posterior density
function p(x0:k|y0:k) by approximating by a set ofN random sam-
ples with associated weights, denoted by {x(m)

0:k , w(m)
k }m=1..N :

bp(x0:k|y0:k) =
NX

j=1

�(x0:k � x(j)
0:k) ew(j)

k (5)

where x(j)
k is drawn from the importance function

�(xk|x(m)
0:k�1, y0:k),

�(.) is the Dirac delta function and
ew(j)

k = w(j)
k /

PN
m=1 w(m)

k is the normalized importance weight
associated with the j-th particle.

The weights w(m)
k are updated according the concept of im-

portance sampling :

w(m)
k �

p(yk|x(m)
0:k )p(x(m)

k |x(m)
0:k�1)

�(x(m)
k |x(m)

0:k�1, y0:k)
w(m)

k�1 (6)

In order to overcome the degeneracy problems of particle
filtering after few iterations [14, 15], we integrate in the algorithm
a resampling step as in [16].

Performances of particle filter mainly depend on the choice of
the importance function. The most common choices are the prior
density function and the optimal density function. The first one
is the most widely used [17], which is largely due to the imple-
mentation simplicity. However, this distribution does not incor-
porate any information contained in the most recent observation
and, therefore, may be inefficient and especially sensitive to out-
liers. The optimal density based particle filter has been introduced
in [18]. In this paper, Zaritskii has shown that it minimizes the va-
riance of the importance weights ew(m)

k conditional upon the parti-
cle trajectories x(m)

0:k and the observations y0:k. When dealing with
a state process which can be divided into two independent parts,
Huang and Djuric have proposed the hybrid importance function
[7] which combines the prior and the optimal density.

3.2. Particle filtering for phase tracking and symbol detection

In this paragraph, we develop particle filter based on the hybrid
(PF-SDPT) for joint phase distortion estimation and symbol
detection.

The design of the particle filter requires both a simulation
method for the generation of particles and the formula for
updating importance weights. Since the state vector we want to es-
timate xk =

“
�, �k, s� k

� �

”
includes three processes among which



only the phase �k and the transmitted symbol s� k
� �
are time vary-

ing, the particle generation is carried out at steps 0 and 1. The
step 0 consists in drawing each particle coordinate {�(m)}m=1..N

according to the uniform law on a predefined range and does not
depend on the importance function unlike steps 1 and 2.

In our context, this hybrid importance function can be written
as :

�(s� k
� �

, �k|s(m)

0:� k�1
� �

, �(m)
0:k�1, y0:k) = p(�k|�(m)

k�1)

�p(s� k
� �
|s(m)

0:� k�1
� �

, �(m)
0:k , y0:k) (7)

where
p(�k|�(m)

k�1) = N(�k; �(m)
k�1 + �(m), �2

v) (8)
and,

p(s� k
� �
|s(m)

0:� k�1
� �

, �(m)
0:k , y0:k) =

p(yk|s� k
� �

, �(m)
k )p(s� k

� �
|s(m)

0:� k�1
� �

)

P
s� k

� �
�A p(yk|�(m)

k , s� k
� �

)

(9)
This last expression can be simplified when k is a multiple of

� by :

p(s� k
� �
|s0:� k�1

� �, �0:k, y0:k) =
p(yk|s� k

� �
, �k)

card(A)p(yk|�k, s� k�1
� �)

(10)

where
p(yk|�k, s� k

� �
) = NC(yk; s� k

� �
ej�k , �2

B) (11)

Otherwise, (9) takes the form :

p(s� k
� �
|s0:� k�1

� �, �0:k, y0:k) =

(
1 if s� k

� �
= s� k�1

� �

0 otherwise
(12)

The PF-SDPT does not take into account the received signal
for sampling �k. Indeed, we draw N samples �(m)

k from the prior
probability density function p(�k|�(m)

0:k�1) given by (8). In this con-
text, the update of the weights can be computed using (11) as :

w(m)
k � 1

card(A)

X

s� k
� �
�A

p(yk|s� k
� �

, �(m)
k )w(m)

k�1 (13)

, if k is a multiple of �.

w(m)
k � p(yk|s� k

� �
= s� k�1

� �, �
(m)
k )w(m)

k�1 (14)

, otherwise.
Every element required in the implementation of the particle

filtering algorithm have been identified. The miniminum mean
square error (MMSE) estimate of �k can be easily calculated
according to :

b�mmse
k =

MX

j=1

�(j)
k ew(j)

k (15)

and the maximum a posteriori (MAP) estimate of the data per-
formed at the end of each symbol (i.e. k + 1 multiple of �) is

bsmap

� k
� �

= argmaxs� k
� �

(
MX

j=1

ew(j)
k �((�k, s� k

� �
)� (�k, s� k

� �
)(j))

)

(16)
The PF-SDPT algorithm is summed up in Table 1.

Table 1. PF-SDPT algorithm
For each particle m � {1, ..., N} :

0. Draw �(m) from the uniform distribution on the
range [0; �/�]

At the k-th iteration, for each particle m � {1, ..., N} :

1. (a) Draw particles using (8) :

�(m)
k � p(�k|�(m)

k�1)

(b) Draw particles :

s(m)

� k
� �
� p(s� k

� �
|s(m)

0:� k�1
�

�
, �(m)

0:k , y0:k)

If k multiple of �, use (10) and (11) else,
use (12)

2. Evaluate the importance weights :

w(m)
k � p(yk|�(m)

k , s(m)

� k�1
� �

)w(m)
k�1

If k multiple of �, use (13) else, use (14).

3. Normalize the importance weights :
ew(j)

k = 1/
PN

m=1 w(m)
k

4. Resampling step if Neff < N/2

4. RESULTS

The performance of the proposed particle filtering algorithm
using hybrid importance function is studied for a binary phase shift
keying (BPSK) modulation. We have randomly generated 2,000
signal bursts of duration T = 500 Ts (i.e., 1,000,000 bits). The
linear drift � is set at 0.5/� which corresponds to a very bad syn-
chronization. The particle filter algorithms have been implemented
with 600 particles.

Let us note that the DFL and the PF-PT described in [6] are
only phase tracking algorithms. Indeed, the maximum likelihood
detection is carried out on the � available samples of the received
signal after phase distortion correction. In the proposed PF-SDPT,
phase distortions and symbols are jointly estimated according to
respectively MMSE and maximum a posteriori criteria.

Figure 2 shows the performance in term of BER achieved for
different phase noise rates and with an oversampling factor � = 4.
It can be seen that the proposed PF-SDPT algorithm outperforms
the DFL and the PF-PT whatever the signal-to-noise ratio (SNR).
However smaller the SNR is, closer are the curves. The Mean
Square Error (MSE) of the phase distortion estimates depicted in
Figure 3 is obtained by :

MSE = E

»“
(�k � b�k)[2�]

”2
–

where b�k is the phase distortion estimate at time k. This MSE
confirms that estimation is achieved by PF algorithms with a bet-
ter accuracy. We can denote that MSE is always weaker with
the PF-SDPT than with other algorithms. We can also remark in
Figure 3 that the PF-SDPT is more robust when the phase noise
rate increases. At 20 dB, MSE of PF-SDPT and PF-PT are close to
the optimum (asymptotic PCRB analytically derived in Appendix
A) up to respectively �Ts = 0.05 and �Ts = 0.04. When the
phase noise rate increases, the MSE increases rapidly due to the



symbol error detection. Even if the MSE performances of the two
PF algorithms are very close at high SNR and for a low phase noise
rate, symbol detection by PF-SDPT is nevertheless better achieved
than by PF-PT (Fig. 2). Since the PF-PT corrects the phase before
the symbol detection, its performance in term of BER is related
directly to the quality of the phase distortion estimate. On the other
hand for the PF-SDPT, the symbol detection is based on the MAP
criterion and performed jointly with the phase tracking, which im-
proves to him more robustness and thus a greater effectiveness in
detection.

Finally, we study the influence of the oversampling factor.
Figure 4 represents the BER versus phase noise rate for two
different values of � and with a SNR fixed at 10 dB. The figure
shows that with � = 2, the BER curves for all the algorithms de-
grade faster but they are still efficient for a low phase noise rate.
The results of the proposed approaches are still better than the PF-
PT and the DFL results.
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Fig. 2. BER of the algorithms versus phase noise rate �Ts with
three different SNR and � = 4.
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Fig. 3. MSE of the algorithms versus phase noise rate �Ts with
SNR = 10 dB (solid lines) and SNR = 20 (dashed lines).
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Fig. 4. BER of the algorithms versus phase noise rate �Ts with
two different oversampling factors with SNR = 10 dB.

5. CONCLUSION

In this paper, we have considered the problem of phase synchro-
nization in digital communications. To solve this problem, we
have proposed a particle filter based on the hybrid importance
function. The main originality of this work is the joint
estimation of phase distortions and transmitted symbols by particle
filtering based on the hybrid importance function. This one takes
advantages of both the posterior and the prior importance function.
Moreover, the algorithms are implemented in the case of multiple
samples per symbol, which provides implicit diversity and allows
a better phase tracking. Numerical simulations demonstrate the ef-
fectiveness of the proposed PF-SDPT algorithm compared to the
PF-PT and the DFL both in terms of BER and MSE of the phase
estimate.

Appendix A - Posterior Cramér-Rao bound.

Here, we wish to derive the PCRB associated to the phase distor-
tion process (�k, �k) in order to obtain a lower bound for the MSE
of the phase distortion estimates. Under the model (3), the Fisher
information matrix (FIM) for (�k, �k) can be denoted by :

Jk =

„
J11

k J12
k

J21
k J22

k

«

that can be obtained by a recursive method which sequentially
evaluates the inverse MSE of (�k, �k) as shown in [19] :

J11
k+1 = H33

k � (H13
k )2

J11
k + H11

k

(17)

J12
k+1 = J21

k+1 = H23
k � H13

k (J12
k + H12

k )
J11

k + H11
k

(18)

J22
k+1 = J22

k + H22
k � (J12

k + H12
k )2

J11
k + H11

k

(19)



Elements of matrixHk are obtained as follows :

H11
k = E[���k

�k
log pk] (20)

H12
k = E[���k

�k
log pk] (21)

H13
k = E[��

�k+1
�k

log pk] (22)

H22
k = E[���k

�k
log pk] (23)

H23
k = E[��

�k+1
�k log pk] (24)

H33
k = E[��

�k+1
�k+1

log pk] (25)

where

pk = p(�k+1|�k, �k)p(yk+1|�k+1, s� k+1
� �) (26)

and, � denotes the second derivative operator, defined as
�

�k+1
�k = �2/��k��k+1 and log(.) is the natural logarithm.
Using equations (8) and (11), we obtain :

H11
k = 1/�2

v (27)
H12

k = 1/�2
v (28)

H13
k = �1/�2

v (29)
H22

k = 1/�2
v (30)

H23
k = �1/�2

v (31)

H33
k =

1
�2

v
+

E[2|sk+1|2]
�2

B

=
1
�2

v
+

2
�2

B

(32)

Then, assuming that J11
k+1 converges and using (17), (20), (22)

and (25), we obtain for its limit the following result :

J11
� =

2�2
v ± 2

p
�2

v(�2
v + 2�2

B)

2�2
v�2

B

(33)

In the same way, J12
� = �1/�2

v and J22
� diverges. Consequently,

it is sufficient to assume that the parameter �k is known. With this
assumption, the Fisher information matrix Jk corresponds to the
J11

k and follows the recursion :

Jk+1 =
1
�2

v
+

2
�2

B

� 1/�4
v

Jk + 1/�2
v

(34)

So the Cramér-Rao bound can be written recursively :

Ck+1 =
1

1/�2
v + 2/�2

B � 1/�4
v

1/Ck+1/�2
v

(35)

Assuming convergence of the sequence, we deduce from (35) its
asymptotic bound :

C� = ��2
v

2
+

p
�2

v(�2
v + 2�2

B)

2
(36)
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