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Estimation of Generalized Mixtures and
Its Application in Image Segmentation

Yves Delignon, Abdelwaheb Marzouki, and Wojciech Pieczynski

Abstract—We introduce in this work the notion of a generalized
mixture and propose some methods for estimating it, along
with applications to unsupervised statistical image segmentation.
A distribution mixture is said to be “generalized” when the
exact nature of components is not known, but each belongs
to a finite known set of families of distributions. For instance,
we can consider a mixture of three distributions, each being
exponential or Gaussian. The problem of estimating such a
mixture contains thus a new difficulty: We have to label each
of three components (there are eight possibilities). We show
that the classical mixture estimation algorithms—expectation-
maximization (EM), stochastic EM (SEM), and iterative condi-
tional estimation (ICE)—can be adapted to such situations once
as we dispose of a method of recognition of each component
separately. That is, when we know that a sample proceeds from
one family of the set considered, we have a decision rule for
what family it belongs to. Considering the Pearson system, which
is a set of eight families, the decision rule above is defined by
the use of “skewness” and “kurtosis.” The different algorithms
so obtained are then applied to the problem of unsupervised
Bayesian image segmentation. We propose the adaptive versions
of SEM, EM, and ICE in the case of “blind,” i.e., “pixel by pixel,”
segmentation. “Global” segmentation methods require modeling
by hidden random Markov fields, and we propose adaptations of
two traditional parameter estimation algorithms: Gibbsian EM
(GEM) and ICE allowing the estimation of generalized mixtures
corresponding to Pearson’s system. The efficiency of different
methods is compared via numerical studies, and the results of
unsupervised segmentation of three real radar images by different
methods are presented.

Index Terms—Bayesian segmentation, generalized mixture esti-
mation, hidden Markov fields, mixture estimation, unsupervised
segmentation.

I. INTRODUCTION

OUR WORK addresses the mixture estimation problem
with applications to unsupervised statistical image seg-

mentation. In the case of independent observations, some iter-
ative mixture estimation algorithms giving generally satisfying
results have been proposed. The expectation-maximization
(EM) [5], [9], [31], which allows, in some circumstances,
to reach the maximum likelihood, is the pioneer one. Some
variants, such as stochastic EM (SEM) [24], [26], which tend
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W. Pieczynski is with the Département Signal et Image, Institut National des

Télécommunications, 91000 Evry, France (e-mail: wojciech.pieczynski@int-
evry.fr).
Publisher Item Identifier S 1057-7149(97)07026-7.

to facilitate calculations or improve the EM’s performances,
have since been proposed. An alternative method, called
iterative conditional estimation (ICE) [3], [4], [26]–[28], is
based on the conditional expectation instead of the maxi-
mum likelihood, and still allows estimate mixtures. All these
methods allow one to treat the case where the nature of the
components of a given mixture is known. The aim of our
work is to introduce a more general model, called “generalized
mixture,” and propose some methods deriving from EM,
SEM, or ICE for its estimation. A generalized mixture is a
mixture of components where the nature of
each is not known exactly; however, this nature belongs
to a given finite set of natures. For
instance, if we consider a mixture of two densities
each of them being exponential or Gaussian, we have
exponential laws Gaussian laws There are four
possibilities of “classical” mixtures (both exponential,
both Gaussian, exponential and Gaussian,
Gaussian and exponential) and we do not know in what
case we are. The problem of the estimating such a generalized
mixture becomes twofold: First, we have to decide to which
family of each of the densities belongs; second, what
are the parameters defining them.
The generalized mixture estimators we propose below are

then applied to the statistical unsupervised image segmentation
problem. Among numerous methods of image segmentation,
the family of statistical ones turns out to be of exceptional
efficiency in some situations [1]–[8], [10]–[29], [31]–[36]. The
use of such methods requires modeling by random fields: For
(the set of pixels) we consider two sets of random variables

called “random fields”. Each
takes its values in a finite set of classes and
each takes its values in The problem of segmentation is
then that of estimating the unobserved realization of
the field from the observed realization of the field
where is the digital image to be segmented. The
problem is then solved by the use of a Bayesian strategy, which
is the “best” in the sense of some criterion. If we want to use a
given Bayesian strategy , we need to know some parameters
defining the distribution of The latter distribution is
generally defined by the distribution of and the family

of the distributions of conditional to Let us denote
by all parameters concerning and by all parameters
concerning the family we need. Making the strategy
unsupervised amounts to proposing a way of estimating and
from the only data available. The parameter is
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generally of the form where defines the
distribution of conditional to If these distributions
are Gaussian, which is the most frequently considered case,
each is of the form with being the mean
and being the variance. The previous parameter estimation
problem is then the Gaussian mixture estimation problem. In
real situations, the nature of the grey-level distribution can
vary in time. For instance, the nature of the radar grey-level
distribution of the sea surface depends on its state [8], the
latter depending on the weather. Thus, if we want to segment
a radar image where sea is one of the classes and we wish
to dispose of an algorithm insensitive to weather conditions,
we must consider the problem of estimating a generalized
mixture.
The organization of the paper is as follows. In the next sec-

tion, we address the generalized mixture estimation problem
without reference to the image segmentation problem. Such a
mixture is defined and a method of its estimation based on the
SEM is proposed.
Section III contains a description of Pearson’s system, which

is a set of eight families of distributions, and different methods
for estimating generalized mixtures whose components belong
to this set are proposed. In fact, it is shown that the classical
methods EM, SEM, or ICE can be generalized resulting in
generalized EM, SEM, ICE (denoted by GEM, GSEM, GICE,
respectively).
In Section IV, we address the problem of unsupervised

image segmentation, treating “local” and “global” methods.
In the first case, GEM, GSEM, and GICE can be applied
directly and we show that the use of their adaptive versions
is of interest. The second case, where the segmentation is
performed by the maximum posterior mode (MPM) [21],
requires modeling by hidden Markov random fields. Different
parameter estimation methods have been proposed; let us
mention Gibbsian EM [5], the algorithms of Zhang et al. [37],
[38], stochastic gradient [35], the algorithm of Lakshmanan et
al. [20], the algorithm of Devijver [16], and ICE. We consider
two of them (Gibbsian EM and ICE) and show that they can
be generalized in order to deal with the generalized mixtures
estimation problem we are interested in.
Section V contains results of some simulations, and seg-

mentations of three real radar images are presented.
Conclusions are in the sixth section.

II. GENERALIZED MIXTURE ESTIMATION
The “classical” mixture estimation problem can be treated

with methods like EM, SEM, or ICE. In this section, we will
limit our presentation to GSEM. Furthermore, for the sake
of simplicity, we shall consider the case of two classes and
two families of distributions; its generalization is immediate
and does not pose any problem. Let us note that the results
of this section can be applied to any problem outside image
segmentation.

A. Classical Mixture Estimation and the SEM Algorithm
Let us suppose that the random variables with

are independent and identically distributed (i.i.d.),

each taking its values in and in
The distributions of conditioned on are
Gaussians respectively. So, given

the parameter defining the distribution of
is SEM is an iterative procedure that
runs as follows.
1) Initialization: let be an initial
guess of

2) Calculation of
from and

, as follows.
a) Compute, for each the distribution of
conditioned on If we denote by the
based densities this distribution is given

by

(1)

(2)

b) Sample, for each a realization in
according to the distribution above and

consider the “artificial” sample
of so obtained.

c) Consider the partition of
defined by

and (3)

d) Calculate
by

(4)

(5)

3) Stop when the sequence stabilizes.

B. Generalized Mixture Estimation
Let us consider a set of two families of

distributions, a real random variable whose distribution
belongs either to or to and
a sample of realizations of Let us temporarily assume that
we dispose of a decision rule , which allows us to
decide from in what set between and the distribution
of lies. Such a decision rule, still called “ recognition,”
will be made more explicit in what follows.
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In order to simplify things, we expose the generalized
mixture estimation algorithm in the case of two classes and
two possible families, but the generalization to any number
of classes and any number of possible families is quite
straightforward. Thus, we consider two random variables
where takes its values in and in The
distribution of is given by

and the distributions of conditional to are
given by densities , respectively. Let with
the Gaussian family and the exponential one. We assume

that is Gaussian or exponential and
likewise for Thus, we have four possibilities for “classical”
mixture (both Gaussian, both exponential,
Gaussian and exponential, exponential and Gaussian)
and we do not know in what case we are. We observe a sample

of realizations of , and the problem is to

1) estimate priors;
2) choose between the four cases above;
3) estimate the parameters of the densities chosen.

The GSEM we propose runs as follows.

1) Initialization.
2) At each iteration

a) sample as in the case of the SEM;
b) apply, on and the rule determining the
families that and belong to;

c) use and for estimating parameters (mean and
variance if the family is Gaussian, mean if the family
is exponential), in the same way that with SEM.

Thus, the GSEM will be defined once we propose a decision
rule
In this paper, we will consider a well suited to the

Pearson family described in the next section; however, other
possibilities exist [14].

III. SYSTEM OF PEARSON AND RECOGNITION

A. System of Pearson
In this section, we specify the family we will use in the

unsupervised radar image segmentation and a decision rule
Our statement about Pearson’s system we will use is rather
short, and further details can be found in [17].

A distribution density on belongs to Pearson’s system
if it satisfies

(6)

The variation of the parameters provides dis-
tributions of different shape and, for each shape, defines the
parameters fixing a given distribution. Let be a real random
variable whose distribution belongs to Pearson’s system. For

let us consider the moments of defined by

(7)
and (8)

and two parameters defined by

(9)

is called “skewness” and “kurtosis.”
On the one hand, the coefficients are related to

by (10)–(13), shown at the bottom of the page.
On the other hand, given

the eight families of the
set whose exact shape will be given in the
next section, are defined by

(14)

The eight families are illustrated in the Pearson’s graph
given in Fig. 1.
What is important is that moments can be easily

estimated from empirical moments, from which we deduce
the estimated values of by (9). Finally, we estimate
the family using (14). Once the family is estimated, values
of given by (10)–(13) can be used to solve
for parameters defining the corresponding densities (given

(10)

(11)

(12)

(13)
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Fig. 1. The eight families of Pearson’s system function of

in Section III-B, where the shapes of the eight families are
recalled).
Let us consider an i.i.d. sequence of real random variables

whose distribution belongs to Pearson’s system.
We now specify the estimator used in step 2 of GSEM (see
Section II-B).
1) Consider the partition of
2) For each class use in order to estimate by

(15)

for (16)

3) For each class calculate from
according to (9).

4) For each class use and (14) to estimate which
family among the density belongs to.

5) With the estimated family and the computed
[(10)–(13)], estimate the parameters of the distribution.
(For each the exact relationship between
density parameters and the computed is
given in the next section.)

B. Shape of Pearson’s System Densities
In this section, we specify the shape of the eight distribution

families forming Pearson’s system.
(Beta Distributions of the First Kind): Densities are

given by

for
otherwise

(17)

with

(18)

(19)

Parameters are called form parameters. can
take five different forms according to To be more precise
1) for density is bell shaped;
2) for density is shaped with

;
3) for density is shaped with

;
4) for density is shaped with

;
5) for density is uniform.

(Type II Distributions): These distributions are particu-
lar cases of obtained for in (17), as follows:

for
otherwise

(20)

with

(21)

(22)

(Gamma Distributions): Densities are given by

for
otherwise

(23)

with

(24)

(Type IV Distributions): Densities are given by

(25)

with such that and
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Fig. 2. Ring image, its noisy version, and results of unsupervised segmentations based on GGICE, GGEM, ASEM, and GSEM.

(Inverse Gamma Distributions): Densities are given by

for
otherwise

(26)

with

(Beta Distributions of the Second Kind): Densities are
given by

for
otherwise

(27)

with

where is the scale parameter and are the form
parameters.

(Type VII Distributions): Densities are given by

(28)

with such that

(Gaussian Distributions): Densities are given by

(29)

with and

C. Generalized EM and ICE Algorithms
The EM and ICE algorithms are two other mixture estima-

tion methods that can also be “generalized” to give the GEM
and GICE. We briefly describe below their operation.
1) GEM: Let be the distributions

computed from
the current parameter Priors are reestimated by formula
(30), which is the same as that in the EM algorithm, and
the recognition is the same as that the recognition
described at the end of Section III-A, with the difference that

given for by formulas
(31) and (32), are used instead of those given by formulas
(15) and (16).

(30)

(31)

(32)

2) GICE: In the context of this paper, the GICE used is
a “mixture” of GSEM and GEM. In fact, the reestimation of
priors is the same as in GEM, and the family recognition and
noise parameter reestimation is the same as in GSEM.
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Fig. 3. Image 1: SEASAT image of the Brittany coast.

IV. UNSUPERVISED IMAGE SEGMENTATION
In this section, we propose some applications of different

generalized mixture estimators to the problem of unsupervised
image segmentation. We shall consider two well known ap-
proaches: the “blind” approach and the “global” one. In the
blind approach the generalized SEM, EM, and ICE algorithms
above can be applied directly. In the global one we propose
two adaptations of Gibbsian EM and ICE. For each method
we specify here the reestimation formulas; the initialization of
different algorithms is described in Section V.

A. Blind Approach
The “blind” approach consists of estimating the realization

of each from This is the simplest one and, generally,
the least efficient. However, its “adaptive” version can be very
competitive in some situations [26]. Let be priors and

be densities of the distribution of conditional to
The blind Bayesian strategy is

if
if (33)

This strategy is made unsupervised by the direct use of the
GSEM algorithm described above: One chooses a sequence of
pixels and considers that is the value of the
grey level at pixel In an “adaptive” version of the “blind”
approach, one considers that priors depend on the position
of the pixel in The blind adaptive Bayesian strategy is
the same as above with instead of The
GSEM algorithm is modified as follows. Let
be the sequence obtained by sampling at a given iteration.
In GSEM the priors are reestimated by the frequencies
computed using all the sample points; in “adaptive” GSEM one
considers, for each a window centred at and
are reestimated by frequencies computed from Let
us note that in “adaptive” GSEM the sequence of pixels

has to cover In the following, the generalized
adaptive SEM, EM, and ICE will be denoted by GASEM,
GAEM, and GAICE.

B. Global Approach
1) Markovian Model and Global Segmentation: In the

global approach, each is estimated from
The field is a Markov random field and we will
consider Ising’s model, which is the simplest one. In order to
simplify notations we will limit our presentation to the case of
two classes; however, the generalization to any other number
of classes poses no particular problem.
The distribution of is given by

(34)

with

and

if
,if (35)

Thus, is defined by The random variables
will be assumed independent conditionally to and further-
more, the distribution of each conditional to will be
assumed equal to its distribution conditional on Under
these hypothesis all distributions of conditional to are de-
fined by the two distributions of conditional to
respectively. Let us denote by the densities of these
distributions and assume that they belong to Pearson’s system.
They are thus given by parameters and

, respectively.
Finally, all distributions of conditional to are defined

by and thus defines the distribution
of
The possibility of simulating realizations of according to

its posterior, i.e. conditional to distribution constitutes the
main interest of this model.
2) Generalized Global ICE (GGICE): According to the

ICE principle, let us suppose that is observable. We have
then to propose
There exist numerous estimators of the parameter
from such as the coding method [2], the least squares

error method [12], or the maximum likelihood estimate [35].
As our model is very simple, we can use an empirical
frequency based estimator. In fact, there exists a simple link
between and probabilities “ knowing that the
neighborhood of contains times,” where can take 0,
1, 2, 3, 4 as values. For instance, if we take we select in
the image a sample of neighborhoods of containing
two and two The probability “ knowing that
the neighborhood of contains two ” is estimated by the
proportion of the sample giving On the other hand
this probability is given by

(36)

which gives an estimated value of
We take for the same estimator as in the case of

independent mixture, Section III-A.
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Fig. 4. Unsupervised segmentation results of Image 1, Fig. 3.

Fig. 5. Image 2 and its unsupervised segmentations.

Finally, the GGICE runs as follows.

1) Sample according to .
2) Compute .
3) Consider and

and apply 2–5 of the end of Section
III-A.

3) Generalized Gibbsian EM (GGEM)
The difference between GGICE above and GGEM is sit-

uated at the noise parameter reestimation level. We have
two noise distributions conditional to the two classes and we
are interested in estimating the four first moments of each
of them. In the case of GGICE, these two problems are
treated separately by considering the partition on

and of the set of
pixels In the case of GGEM each of them is treated by the
use of the whole set Let us put

(37)

The first four moments of the noise corresponding to the first
class are given by

(38)

and

(39)

for
Use analogous formulas for the second class.

V. EXPERIMENTS
We present in this section some results of numerical appli-

cations. Let us note that in the global case the segmentation is
performed by the maximizer of posterior marginals (MPM)
and, in the local case, it is performed by the rule (33).
Thus, unsupervised segmentation algorithms considered in this
paper mainly differ by their parameter estimation step: We
will note them by the parameter estimation method used. For
instance, GEM will denote the local segmentation (33) based
on parameters estimated with generalized EM, GGEM will
denote the global MPM segmentation based on parameters
estimated with generalized Gibbsian EM, and so on. The first
section is devoted to synthetic images and in the second one
we deal with three real radar images.
The initialization of GEM, GSEM, and GICE is as follows.

We assume that we have a mixture of two Gaussian distribu-
tions. With denoting the cumulated histogram we take

and
In order to initialize GGEM and GGICE, we use the

segmentation obtained by the blind unsupervised method,
which gives The noise parameters are initialized by the
final parameters obtained in the parameter estimation step of
the blind unsupervised method used.

A. Experiments on a Synthetic Image
Let us consider a binary image “ring” given in Fig. 2. White

is class 1 and black class 2. The class 1 is corrupted by a beta
noise of the first kind (family in Pearson’s system) and the
class 2 is noised by a beta noise of the second kind (family

in Pearson’s system). The parameters defining the noise
distributions, their estimates with different methods, and the
segmentation error rates are given in Table I. The noisy version
of the ring image and some segmentation results are presented
in Fig. 2. We have taken the same means and variances on
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TABLE I
PAR: PARAMETERS; TH: REAL VALUES OF PARAMETERS; MEAN AND VARIANCE; SKEWNESS AND KURTOSIS;

TYPE: FAMILY IN PEARSON’S SYSTEM; ERROR: SEGMENTATION ERROR RATE; ITE: NUMBER OF ITERATIONS OF ALGORITHMS.
PARAMETER OF THE MARKOV DISTRIBUTION OF GGICE: GLOBAL GENERALIZED ICE, GGEM: GENERALIZED GIBBSIAN EM

TABLE II
PARAMETERS ESTIMATED FROM IMAGE 1, FIG. 3

purpose: The human eye is essentially sensitive to the two
first moments and, in fact, it is difficult to see anything in the
noisy version of the ring image.
According to Table I, the behavior of the GSEM and the

GICE is quite satisfactory when results obtained with GEM
are clearly worse. In particular, GEM does not find the right
families and Furthermore, the GSEM- and GICE-
based segmentation error rates are very close to the theoretical
one. On the other hand, the behavior of both the GGICE and
GGEM methods is very good. This is undoubtedly due to
a good initialization with GSEM; however, the estimates of
skewness and kurtosis are still improved. We do not dispose
of the theoretical segmentation error rate, as the ring image is
not a realization of a Markov field. However, the error rates
obtained seem quite satisfactory. As a conclusion, we may say
that the new difficulty of noise nature recognition is correctly
treated by the methods proposed, and the final segmentation
quality is not affected significantly. We also present in Fig.
2 the result of segmentation with generalized adaptive SEM
(GASEM) whose quality is nearly comparable with the quality
of global methods. The result obtained with GSEM is very

poor compared to the results of global methods: This is not
surprising, and is due to the segmentation method and not to
the parameter estimation step.

B. Segmentation of Real Images
We present in this section some examples of unsupervised

segmentation of three real radar images. The first one, given
in Fig. 3, does not seem particularly noisy and adaptive local
segmentation seems to be competitive compared to global
methods. The second one, given in Fig. 5, is more difficult
to segment, and the third one, given in Fig. 7, is very noisy.
From the results of Table II, we draw the following remarks.
1) Starting from Gaussian distributions (type 8) GSEM,
GEM and GICE all find beta distributions of the first
kind (kind 1) for both classes. Furthermore, all param-
eters get stabilised in these three methods at approxi-
mately the same values which can be relatively far from
the initialized values. From this we may conjecture, on
one hand, that real distributions are best represented by
beta distributions of the first kind and, on the other hand,
that the parameters are correctly estimated.
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Fig. 6. Segmentation of the Image 1 into four classes by generalized EM (GEM), generalized adaptive EM (GAEM), normal Gibbsian EM (NGEM),
and generalized Gibbsian EM (GGEM).

TABLE III
PARAMETERS ESTIMATED FROM IMAGE 2, FIG. 5

2) Global methods keep beta distributions of the first kind
given with the initialization by GSEM and thus we can
imagine that these distributions are well suited to the
image considered.

As in the case of the synthetic ring image, the GSEM-based
local segmentation, the only one represented on Fig. 4, gives
visually slightly better results that the GEM- and GICE-based

ones. Parameters are perhaps better estimated but no clear
explanation appears when analyzing the results in Table II,
apart from the fact that is close to values estimated by
GGEM and GGICE. The use of adaptive GSEM improves
the segmentation quality, which approaches the quality of
global segmentation methods. The efficiencies of the latter
ones appear quite satisfying (see Fig. 4).
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Fig. 7. Image 3 (Amazonia) and its segmentation into three classes by generalized global ICE (GGICE), generalized adaptive ICE (GAICE), and classical
adaptive ICE, which uses Gaussian densities (NAICE).

Concerning Image 2, all methods apart GSEM find beta
distributions of the first kind (type 1) for the first class
distribution and beta of second kind (type 6) for the second
class distribution; thus, we can reasonably assume that they
are well suited, among distributions of Pearson’s system, to
real distributions. Image 2 is rather noisy and the difference
between global and local methods appears clearly. We note
that global methods provide visually better results that the local
ones, and, among the latter, the adaptive manner of parameter
estimating provides some improvement.
Let us briefly examine how the different methods work in

the case of more than two classes.
We present in Fig. 6 the segmentations of the Image 1 into

four classes by GEM, GAEM, GGEM, and NGEM respec-
tively. NGEM means “normal Gibbsian,” or “normal global”
EM, in that no generalized mixture problem is considered and
all noise densities are assumed Gaussian. Thus, note that GEM
is generalized and local, and NGEM is traditional and global.
According to Fig. 6, we note that GEM meanly indicates the
presence of two classes and, as in the case of two classes
segmentation, the results obtained by GAEM are visually close
to the results, which means that the use of generalized mixture
estimation instead of the classical Gaussian mixture estima-
tion can have strong influence. Although their comparison is
difficult in the absence of the truth of the ground, we may

conjecture, as the Gaussian case is a particular case of the
generalized one, that the results obtained with GGEM are
better. As a curiosity, we note that the results obtained by
GAEM look like the results obtained by NGEM.
As a second example, we present in Fig. 7 some results

of segmentation into three classes of an ERS 1 image of a
forest area of Amazonia. ICE is the basic parameter estimation
method used, and we compare GGICE, GAICE, and NAICE.
As above, “N” means that only Gaussian densities are used,
which means that NAICE is the traditional AICE. Image 3 is
very noisy and comparison between the results of the these
segmentations is difficult in absence of the ground truth. Only
we can say is that GGICE produces a result that seems visually
the most consistent.

VI. CONCLUSIONS
We have proposed in this work some new solutions to the

problem of generalized mixture estimation, with applications
to unsupervised statistical image segmentation. A distribution
mixture is said to be “generalized” when the exact nature of
components is not known, but each of them belongs to a given
finite set of families of distributions. The methods proposed
allows one to
1) identify the conditional distribution for each class;
2) estimate the unknown parameters in this distribution;



1374 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 10, OCTOBER 1997

3) estimate priors;
4) estimate the “true” class image.
Assuming that each of unknown noise probability distri-

bution is in the Pearson system, our methods are based on
merging two approaches of classical problems. On the one
hand, we use classical mixture estimation methods like EM
[5], [9], [31], SEM [24], [26], or ICE [3], [4], [26]–[28].
On the other hand, we use the fact that if we know that the
sample considered proceeds from one family in the Pearson
system, we dispose of decision rule, based on “skewness” and
“kurtosis,” for which family it belongs to. Different algorithms
proposed are then applied to the problem of unsupervised
Bayesian image segmentation in a “local” and “global” way.
The results of numerical studies of a synthetic image and
some real ones, and other results presented in [22], show the
interest of the generalized mixture estimation in the unsuper-
vised image segmentation context. In particular, the mixture
components are, in general, correctly estimated.
As possibilities for future work, let us mention the possibil-

ity of testing the methods proposed in many problems outside
the image segmentation context, like handwriting recognition,
speech recognition, or any other statistical problem requiring
a mixture recognition. Furthermore, it would undoubtedly
be of purpose studying other generalized mixture estimation
approaches, based on different decision rules and allowing one
to leave the Pearson system.

ACKNOWLEDGMENT
The image of Fig. 3 was provided by CIRAD SA under

the project GDR ISIS. The authors thank A. Bégué for her
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