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HOW ACCURATE CAN BLOCK MATCHES BE IN STEREO VISION?

N. SABATER , J.-M. MOREL , AND A. ALMANSA

Abstract. This article explores the sub-pixel accuracy attainable for the disparity computed
from a rectified stereo pair of images with small baseline. In this framework we consider translations
as the local deformation model between patches in the images. A mathematical study shows first
how discrete block-matching can be performed with arbitrary precision under Shannon-Whittaker
conditions. This study leads to the specification of a block-matching algorithm which is able to
refine disparities with sub-pixel accuracy. Moreover, a formula for the variance of the disparity error
caused by the noise is introduced and proved. Several simulated and real experiments show a decent
agreement between this theoretical error variance and the observed RMSE in stereo pairs with good
SNR and low baseline. A practical consequence is that under realistic sampling and noise conditions
in optical imaging, the disparity map in stereo-rectified images can be computed for the majority of
pixels (but only for those pixels with meaningful matches) with a 1/20 pixel precision.

Key words. Block-matching, sub-pixel accuracy, noise error estimate.

1. Introduction. Stereo algorithms aim at reconstructing a 3D model from two
or more images of the same scene acquired from different angles. Assuming for a
sake of simplicity that the cameras are calibrated, and that the image pair has been
stereo-rectified, our work will focus on the matching process. The matching of stereo
images has been studied in depth for decades. We refer to [43] and [6] for a complete
comparison of different methods.

Generally stereo matching methods are divided in two classes, the local algorithms
and the global ones. Given two images of the same scene, the local methods compare
a small block of pixels surrounding each pixel in the first image to the candidate
blocks on the epipolar line in the second image. The blocks are usually compared
by the normalized cross correlation (NCC) or the sum of squared differences (SSD).
Having a minimum of the SSD does not guarantee at all that the match is correct.
In general, only a significant proportion of the image can be reliably matched (about
40 to 80%). Block-matching methods can indeed produce wrong disparities near the
intensity discontinuities in the images. This “fattening effect” is a classic problem in
block-matching methods. It occurs when a salient image feature (typically an edge)
lies within the comparison window ϕ but away from its center. This can produce a
large error near points at which the disparity ε has a jump. Several papers have at-
tempted with some success to alleviate this problem by using adaptive shape windows
[21, 48, 22, 18], adaptive support-weight windows [53], a barycentric correction [12],
or by feature matching methods [44]. If the images of the stereo pair u1 and u2 have
little aliasing, [12] showed that the recovered disparity map obtained by minimizing a
continuous quadratic distance between u1 and u2 has therefore two main error terms:
the fattening error, and the error due to noise. There are other causes for mismatches.
Some image parts are simply occluded in one of the images and cannot be observed
in the other one. Often, image regions are too flat to reliably minimize the block
distance, particularly the dark regions where noise dominates, and the saturated re-
gions. The fractal structure of vegetation and the glossy surfaces are other causes of
error, their aspect changing drastically even with a small change of viewpoint. We
shall call such errors gross errors. Luckily, there are several techniques to avoid the
gross errors: for example the coarse-to-fine scale refinement [17], the SIFT threshold
[28] and the a contrario methods [31]. In this paper an a contrario rejection algorithm
[41, 42] is used to detect and eliminate a priori all unreliable pixels. In geographic
information systems, where high accuracy is particularly relevant, the reliable points
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Fig. 1.1: Optimal disparity obtained with a global stereo functional and an efficient
graph cuts algorithm (experiment taken from [5]). Such stereo methods depend on
(at least) two parameters which it is difficult to estimate. Notice the obvious errors:
the house and the sky have the same disparities. On the top-left the disparities of the
tree branches and of the sky are mixed up. Global methods are not well adapted to a
strong sub-pixel accuracy because they quantize the disparity to avoid a complexity
blow up. In this experiment, there are only eight disparity levels.

correspond in general to the interior points of textured regions (roofs, lawn, terrains).
The unreliable pixels, which include the pixels risking fattening, usually cover less
than half the image.

Here lies, however, the main objection to a precision analysis in stereo vision:
what is the use of giving sub-pixel error estimates, if a significant part of the matched
points is simply mismatched? Block matching methods are nevertheless prone to an
error analysis, precisely because there are techniques to rule out the risky pixels.

It would be nonetheless tempting to extend the error analysis to global methods.
Global variational methods providing a dense disparity map are in significant progress,
thanks to efficient new optimization techniques such as graph cuts [25], and clever uses
of dynamic programming [33, 15]. Unfortunately, because of the global nature of the
optimization process, these methods are not prone to a local precision analysis. The
error can only be measured globally, and no formula can be derived for their local
precision, because of the global nature of the optimization process. The dense results
given by global methods can include many errors as illustrated in Fig. 1.1, taken from
[5]. The left image is one of the matched images and the right image is the obtained
disparity. Even though no ground truth is available for this classic example, the errors
are obvious: parts of the sky seen through the tree branches inherit the disparity of
the branches, and a wide stripe in the middle of the image mixes up house, sky and
trees which get all the same disparity. Variational methods for stereovision depend
necessarily on at least two parameters: Indeed, they all have at least three terms
depending on the disparity: one is the cost for not attributing a disparity, namely the
cost of the occlusions. The second term is the disparity regularity term penalizing
oscillation and big jumps of the disparity. The third term is the fidelity term measuring
the matching performance for a given disparity. The relative weighting of these three
terms leaves two parameters to the user [25]. The optimal solution can change with
a change in the parameter choice. Yet, the state of the theory does not seem to
guarantee a reliable theory for the (crucial) estimation of these parameters, which
can vary from an image pair to another. Another Achilles’ heel of recent optimization
techniques for stereo is their complexity, which blows up when the number of disparity
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quanta increases.1 This fact makes them poorly adapted to strong sub-pixel accuracy
requirements.

These considerations explain why this paper will only analyze the stereo matching
precision for a sub-pixel block-matching method.

1.1. Small Baseline and Sub-pixel Accuracy. Another aspect of the dis-
cussion is the geometric setting of the image pair. As we mentioned above, a large
baseline increases considerably the risks of gross errors. Stereovision has nonetheless
tended to consider pairs of images with a large baseline. The reason is to have a large
disparity (measured in pixels) and therefore to get by triangulation a more accurate
3D reconstruction. But, as was pointed out in the seminal patent [17] and in [12], this
argument against a small baseline becomes invalid if a reliable sub-pixel matching
is possible. Particularly in satellite or aerial imaging, where the images are taken
by two sweeps or snapshots from the same overflying object, the shadows can have
moved, unless the snapshots are taken just after one another. The baseline proposed
in [12], [17] is around 0.1 and even 0.05 instead of the more conventional ratios of
the order of 1. It therefore requires a ten or twenty times sharper accuracy. With
such small baselines the occlusion regions are very thin and the image aspect changes
very little. Small baselines in conjunction with larger ones were considered in [34], a
pragmatic study where different baselines were used to eliminate errors. However, its
final sub-pixel results were computed with the large baseline samples.

To summarize, a low baseline is very desirable but requires a sharp sub-pixel
accuracy. Yet, this question has seldom been tackled in the vast stereo literature.
Birchfield and Tomasi [3] presented a dissimilarity measure which is insensitive to
sampling and an algorithm which computes disparities at a pixel resolution. In or-
der to get a sub-pixel disparity resolution they suggested to zoom in the image by
a factor of about 10 to 15 before using their algorithm. Such an approach is sound
but computationally very expensive. But there are clever solutions to refine the sub-
pixel accuracy of a disparity map while adding little computation. For example, [47]
has compared several sub-pixel registration algorithms where the surface maximum
is computed in the sampling grid. These algorithms can be used for the sub-pixel
refinement using an iterative gradient descent technique [29]. Similarly, the refine-
ment can be computed by fitting a quadratic curve to the correlation at the discrete
disparity [21]. The sub-pixel disparity is then reached with little additional compu-
tation. However, a systematic bias called pixel-locking has been observed when the
disparities are computed at discrete values [45]. To avoid this effect [35] performs
a linear interpolation and maximization of an enhanced NCC similarity measure. A
more complex solution to avoid pixel-locking is the symmetric refinement strategy
considered by [32]. Indeed, the images are treated symmetrically and a 2D surface
fitting of the function cost is required to get sub-pixel coordinates for both matched
points.

The sub-pixel accuracy is even more rare in global methods because of the com-
plexity burden. [16] suggested a semi-global matching approach at a quarter pixel level
which is computationally efficient. However the accuracy is hidden by the gross errors
committed in the low-textured regions. Sub-pixel disparities in global methods can

1This shortcoming has been circumvented for instance in the case of graph-cuts algorithms for
TV denoising in [8, 11, 20] where the optimization is solved for arbitrarily accurate gray-levels, by
dyadic subdivision of the original problem into a sequence of binary ones. Such an approach has
nevertheless not yet been extended to more complex and non-convex optimization problem such as
those found in stereo.
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be obtained in special cases by plane fitting [24]. (On a number of published results
in the Middlebury evaluation benchmark it is assumed that the scenes are piecewise
planar.) Some authors like Paparoditis and Dissard [23] even assume that the average
matching precision is no more than a quarter of pixel. A sub-pixel refinement of the
disparity can also be obtained by a direct anisotropic diffusion [2, 14].

The possibility of rigorous block-matching with sub-pixel accuracy by using a
zero-padding factor 2 oversampling was first noticed in [46]. Its mathematical justifi-
cation will be developed here. The first theoretical arguments towards high accuracy
in stereovision were given in [12], who claimed that high precision matches can be
obtained from a small baseline stereo pair of images if the Shannon-Whittaker condi-
tions are met. However, this paper neither gave an accurate formula for the attain-
able precision (the given upper bound of the error due to noise is too pessimistic) nor
demonstrated its practical feasibility. From an algorithmic point of view, there also
differences with the work presented here. Their multiresolution algorithm (MARC)
computes a disparity at each point and at each scale in order to use it as a initial-
ization map in the next scale. Doing so, gross errors are propagated from the coarser
scales to the finest one. A comparison of our algorithm with MARC has been done
in [40].

Several contributions on the performance bounds on motion estimation have been
published recently. Even if these contributions try to solve the registration problem
instead of the stereo problem, the presented theoretical results are relevant. There
are actually much more relevant to stereo than for global image registration, because
these studies mainly focus on translations. A real image registration implies at least
the compensation of a homography. The major contribution on this theme is due to
Robinson and Milanfar [37] who studied the performance limits of image registration
techniques and proposed a Cramer-Rao upper performance bound. Furthermore, they
studied the bias inherent to the problem of image registration and in particular the
bias of the gradient-based estimators. In order to minimize this bias, [38] proposed a
methodology for designing filters based on image content which improves the estimator
performance.

The Robinson and Milanfar approach is also followed and further refined in subse-
quent papers [52, 50, 26]. Kybic [26] addresses the problem of estimating uncertainty
of image registration algorithms using the bootstrap resampling. The same paper also
studies a fast registration accuracy estimation (FRAE) method whose performance
is inferior to a bootstrap, but has a negligible computation overhead. Yetik and
Nehorai [52] studied the Cramer-Rao bounds on a wide variety of geometric deforma-
tions including translation, rotation, shearing, rigid, more general affine and nonlinear
transformations. But, as Xu et al. [50] pointed out, their Cramer-Rao lower bounds
are functions of the unknown rotation angle and may be difficult to obtain in practice.
For this reason Xu et al. assume that the prior information regarding the uncertainty
model is known. In particular they address the rigid transformation case and study
the Ziv-Zakai Bayesian bound.

The Fourier interpolation model which actually eliminates bias was ruled out in
the previous registration bibliography since [37], who argue that it is not a good model
for natural images. This is precisely the model we seek to numerically approximate
here. Furthermore, in contrast to image registration, we use here much smaller win-
dows sizes, which are better adapted to stereo problems. When using such small
window sizes, and by being careful when dealing with discretization and the numerics
of the Fourier interpolation model, we found that the bias in stereo block-matching is
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negligible with respect to the variance due to noise in realistic noise conditions. For
this fact we provide here theoretical and experimental evidence. This gives a new
perspective to the problem of performance estimation, with practical results different
from those obtained in the image registration context. From a theoretical point of
view our work is still consistent with previous results. Our performance estimator
is dominated by the noise error and lies between the upper bound given by Delon
[12] and the Cramer-Rao lower bound. In fact, depending on image contents, the
Cramer-Rao lower bound is off with respect to our estimate by a factor that varies
between 1 and 2.

The subpixel accuracy in image registration has also been studied and related to
the underlying image interpolation models. [36, 9, 1] addressed the problem by phase
correlation. [36] proposed a method based on linear weighting the main phase correla-
tion peak and the difference between its two neighboring sidepeaks. [9] proposed high
order statistics in order to attain subpixel accuracy when registering in noisy images
with a low SNR. [1] showed that the continuous and discrete phase difference is a 2D
sawtooth signal. They count the number of cycles of the phase difference and give
the noninteger fraction of the last cycle as the subpixel shift. Meanwhile [39] studied
the oscillation artifacts caused by interpolation of the correlation and proposed high
degree B-spline interpolation. This interpolation is close to the interpolation (sinc)
used in this paper.

Contributions of the paper. This paper analyzes the attainable precision in
stereo with a block-matching method and proposes a theoretical sub-pixel accuracy
estimate whose principal term is caused by the noise. In particular, a formula for the
variance of the disparity error at each image point x is proved. This formula depends
on the noise variance in both images and on the image gray levels within the block
around x.

In our theoretical analysis we also study i) the conditions under which the discrete
block-matching distance is equal to the continuous one and ii) how the block-matching
distance should be sampled in order to satisfy the Shannon-Whittaker conditions.
Under ideal Shannon conditions, this permits to avoid the block matching errors due
to wrong interpolation and wrong sampling.

The theoretical error formula due to noise is matched experimentally to the real
error, thanks to a method discarding the potentially wrong matches. While this a
contrario method developed in [41, 42] is not the object of this paper, the existence of
algorithms filtering out all risky pixels is crucial for this study. Otherwise the precision
could never be checked. So we will assume that the reliable pixels are selected a priori
on each image pair.

Simulated pairs and real examples including benchmark data will examine to
which extent the theoretical error bounds are reached.

Furthermore, on several realistic simulations and on benchmark examples, theory
and practice will confirm a 1/20 pixel accuracy. From the experiments

one observes that that the predicted theoretical error variance at reliable pixels
has the same order of magnitude as the observed error, the difference between RMSE
and predicted error being of about 20%. The formula for the main disparity error
term due to noise given is new, exact, and actually far more accurate than the upper
bound proposed in [12] for the same error, (which was more than 10 times larger).

Plan of the paper. Section 2 describes the theoretical assumptions and the
accurate interpolation techniques permitting to compute sub-pixel disparities. Section
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3 proves a formula for the theoretical noise error. Section 4 gives all details on the
algorithms and a complexity analysis.

Section 5 shows the obtained results for several stereo pairs with simulated and
real ground truths, and compares the practical error with their theoretical prediction.

2. Preliminaries on Sub-Pixel Interpolation. We denote by x = (x, y) an
image point in the continuous image domain, and by u1(x) = u1(x, y) and u2(x) the
images of a stereo rectified image pair. The epipolar direction will always be the x axis.
The underlying depth map can be deduced from the disparity function ε(x) giving
the shift of an observed physical point x from the left image u1 in the right image u2.
The physical disparity ε(x) may be quite irregular (especially in urban environments),
and therefore is not well-sampled (in the Shannon-Nyquist sense) with respect to the
sampling rate of the stereo pair. Therefore, it cannot be recovered at all points, but
only essentially at points x around which the depth map is continuous and with small
derivative. Around such points, a deformation model holds:

u1(x) = u(x+ ε(x), y) + n1(x)

u2(x) = u(x) + n2(x), (2.1)

where ni are Gaussian noises and u(x) is the ideal bandlimited image that would
be observed instead of u2(x) if there was no noise. The deformation model (2.1)
is a priori valid when the angle of the 3D surface at x with respect to the camera
changes moderately, which is systematically true for small (0.02 to 0.15) baseline stereo
systems. The restriction brought by (2.1) is moderate. Indeed, the trend in stereo
vision is to have multiple views of the 3D object to be reconstructed and therefore
many pairs with small baseline.

Consider the two images u1(x) and u2(x) defined on a square [0, a]2 and a window
function ϕ(x). Block-matching is the search for a value of µ minimizing the continuous
quadratic distance

ex0
(µ) :=

∫
[0,a]2

ϕ(x− x0)
(
u1(x)− u2(x + (µ, 0))

)2
dx. (2.2)

This section will prove a discrete formula for the quadratic distance which is
faithful to the continuous image interpolates. Thanks to it, an accurate sub-pixel
matching becomes possible. Without loss of generality, all considered images u, u1,
etc. are defined on the [0, a]2 and are supposed to be square integrable. Thus, the
Fourier series decomposition applies

u(x, y)=
∑
k,l∈Z

ũk,le
2iπ(kx+ly)

a , (2.3)

where the ũk,l are the Fourier series coefficients (or shortly the Fourier coefficients)
of u. By the classic Fourier series isometry, for any two square integrable functions
u(x) and v(x) on [0, a]2,

∫
[0,a]2

u(x)v(x)dx = a2
∑
k,l∈Z

ũk,lṽk,l. (2.4)

The digital images are usually given by their N2 samples u(m) for m in the grid

Z1
a = [0, a]2 ∩

(( a

2N
,
a

2N

)
+

a

N
Z2
)
.
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Similarly, the over-sampling grid with four times more samples is denoted by

Z1/2
a = [0, a]2 ∩

(( a

4N
,
a

4N

)
+

a

2N
Z2
)
. (2.5)

N is always an even integer. In all that follows we shall assume that the images
obtained by a stereo vision system are band-limited. This assumption is classical
and realistic, the aliasing in good quality CCD cameras being moderate. Another
classical assumption in image processing which we adopt is the (forced) a-periodicity
assumption. Under this assumption a band-limited image becomes a trigonometric
polynomial. This periodicity assumption is not natural, but it only entails a minor
distortion near the boundary of the image domain [0, a]2. The payoff for the band-
limited + periodic assumption is that the image can be interpolated, and its Fourier
coefficients computed from discrete samples. Indeed, given N2 samples um for m in
Z1
a, there is a unique trigonometric polynomial in the form

u(x, y)=

N/2−1∑
k,l=−N/2

ũk,le
2iπ(kx+ly)

a (2.6)

such that u(m) = um. We shall call such polynomials N -degree trigonometric poly-
nomials. The coefficients ũk,l are again the Fourier coefficients of u in the Fourier

basis e
2iπ(kx+ly)

a , k, l ∈ Z. The map um → uk,l is nothing but the 2D Discrete Fourier

Transform (DFT), and the map (um) → N(ũk,l) is an isometry from CN2

to itself.
The function u(x, y) is therefore usually called the DFT interpolate of the samples
um. In consequence, there is an isometry between the set of N -degree trigonometric
polynomials endowed with the L2([0, a]2) norm, and CN2

endowed with the usual
Euclidean norm:

∫
[0,a]2

|u(x, y)|2dx = a2
N/2−1∑

k,l=−N/2

|ũk,l|2 =
a2

N2

∑
m∈Z1

a

|u(y + m)|2 , (2.7)

where the relation is valid with a grid with arbitrary origin y. If u(x) and v(x) are
two N -degree trigonometric polynomials, we therefore also have

∫
[0,a]2
u(x)v(x)dx =a2

N/2−1∑
k,l=−N/2

ũk,lṽk,l =
a2

N2

∑
m∈Z1

a

u(y + m)v(y + m) , (2.8)

where v is the complex conjugate of v. Taking four times more samples, it follows
from (2.8) that∫

[0,a]2
u(x)v(x)dx =a2

N−1∑
k,l=−N

ũk,lṽk,l =
a2

4N2

∑
m∈Z

1/2
a

u(m)v(m). (2.9)

which is also valid if u(x) and v(x) are 2N -degree trigonometric polynomials in
x.

This last fact has a first important consequence in block-matching leading to the
next
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Proposition 2.1 (Equality of the discrete and the continuous quadratic
distance). Let u1(x) and u2(x) be two N -degree trigonometric polynomials on [0, a]2

and let ϕ(x) be a window function which we assume to be a 2N -degree trigonometric
polynomial. Then

ex0
(µ) = edx0

(µ), where (2.10)

edx0
(µ) :=

a2

4N2

∑
m∈Z

1/2
a

ϕ(m− x0)
(
u1(m)− u2(m + (µ, 0))

)2
. (2.11)

Proof. Since
(
u1(x)−u2(x+(µ, 0))

)2
and ϕ(x−x0) are 2N -degree trigonometric

polynomials in x, by (2.9) the discrete scalar product defining edx0
(µ) equals the

continuous scalar product defining ex0
(µ).

Thus the continuous block distance is a finite sum of discrete samples. �

The block distance function µ → ex0
(µ), whose minimization is our main objec-

tive, can itself easily be sampled. By (2.11) it is a 2N -degree trigonometric polynomial
with respect to µ. This proves:

Proposition 2.2 (Sub-pixel correlation requires ×2 zoom). Let u1(x) and
u2(x) be two N -degree trigonometric polynomials. Then the quadratic distance edx0

(µ)
is well-sampled provided it has at least 2N successive samples. Thus the computation
of edx0

(µ) at half samples µ ∈ aZ
2 (via zero-padding of u1 and u2) allows the exact

reconstruction of edx0
(µ) for any real µ by DFT interpolation. (The bottom line

argument here is that the block matching is a squared distance, and the bandwidth of
u2 is the double of the bandwidth of u by the Fourier convolution theorem.) Remark
that the last proposition does not require any assumption on the window function
ϕ(x). Prop. 2.2, which opens the way to rigorous block-matching with sub-pixel ac-
curacy, has been noticed in [46]. It is also used in the MARC method [17] used by the
French space agency (CNES). But Prop. 2.1 and the simple proof of Prop. 2.2 are new.

Interpolating the noise too. Sub-pixel block-matching requires the interpolation
of noisy images, whose noise is by nature discrete. Thus, following Shannon’s classical
observation, the noise itself will also be interpolated as a band-limited function. In the
periodic framework it therefore becomes a trigonometric polynomial. We shall need
some estimates on the interpolated noise, in particular its variance and the variance
of its derivative at each point. Assume that (nm),m ∈ Z1

a are N2 independent
N (0, σ2) noise samples, implying that (nm) is a Gaussian vector. Since the DFT is
an isometry, the noise Fourier coefficients N(ñk) also form a Gaussian vector with
diagonal covariance matrix σ2Id. By (2.8), the mapping (nm)m∈Z1

a
→ (n(x+m))m∈Z1

a

is an isometry from CN2

to itself. It follows that n(x) is N (0, σ2) for every x.
An estimate of Var(nx(x)) will also be needed, where nx(x) = ∂n

∂x (x, y).

Var(nx(x)) = Var

 N/2−1∑
k,l=−N/2

ñk,l
2ikπ

a
e2i

kπx+lπy
a

 =

=
4π2σ2N

N2a2

N/2−1∑
k=−N/2

k2 ' 4π2σ2

a2N

N3

12
=
π2N2

3a2
σ2.
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Since n(x) is a normal law, n(x)2 is a χ2 law of order 1. Thus its variance is 2σ4.
Finally we shall need to evaluate Var(n1(x)n2(x)), where ni are two independent
interpolated white noises of the above kind. Thus n1(x)n2(x) is the product of two
normal laws. The expectation of the product is zero and the variance is therefore
Var(n1n2) = E(n1n2)2 = En21En22 = (En2)2 = Var(n)2 = σ4. In summary:

Lemma 2.3. Let (nm)m∈Z1
a

be N2 independent white Gaussian noise samples
with variance σ2. Then the DFT interpolate n(x) on [0, a]2 is N (0, σ2) for every x.
If n1 and n2 are two independent noises like n, one has

Var(n2(x))=2σ4, (2.12)

Var(nx(x))'π
2N2

3a2
σ2, (2.13)

Var(n1(x)n2(x))=σ4. (2.14)

Lemma 2.4. Take a = N and let n(x) be the DFT interpolate on [0, N ]2 of
a white noise with variance σ2 on Z1

N , as defined above. Let ϕ(x) be a 2N -degree
trigonometric polynomial on [0, N ]2. Then

Var

(∫
[0,N ]2

ϕ(x)n(x)nx(x)dx

)
6
σ4

2

∫
[0,N ]2

ϕx(x)2dx, (2.15)

and the expectation of this random variable is null. Let g(x) be any square inte-
grable function on [0, N ]2 and let gN be its least square approximation by a N -degree
trigonometric polynomial. Then

Var

(∫
g(x)n(x)dx

)
= σ2

∫
[0,N ]2

gN (x)2dx 6 σ2

∫
[0,N ]2

g(x)2dx. (2.16)

The proof of this lemma is in appendix.

3. Block-Matching Errors Due to Noise. Consider the digital images of a
stereo pair and their DFT interpolates u1(x), u2(x) satisfying (2.1). Block matching
amounts to look for every x0 for the estimated disparity at x0 minimizing

ex0
(µ) =

∫
[0,N ]2

ϕ(x− x0)
(
u1(x)− u2(x + (µ, 0))

)2
dx. (3.1)

where ϕ(x− x0) is a soft window function centered at x0. For a sake of compactness
in notation, ϕx0

(x) stands for ϕ(x−x0),
∫
ϕx0

u(x) will be an abbreviation for
∫
ϕ(x−

x0)u(x)dx; we will write u(x + µ) for u(x + (µ, 0)) and ε for ε(x). The minimization
problem (3.1) rewrites

min
µ

∫
ϕx0

(
u(x + ε(x)) + n1(x)− u(x + µ)− n2(x + µ)

)2
dx.

Differentiating this energy with respect to µ implies that any local minimum µ = µ(x0)
satisfies

9



∫
ϕx0

(
u(x+ε(x))+n1(x)−u(x+µ)−n2(x+µ)

)
×
(
ux(x+µ)+(n2)x(x+µ)

)
dx = 0.

(3.2)
One has by Taylor-Lagrange formula ux(x + µ) = (u(x + ε))x +O1(µ− ε), with

O1(µ− ε) ≤ |µ− ε|max |u(x + ε)xx| (3.3)

and u(x + ε(x))− u(x + µ) = (u(x + ε))x(ε− µ) +O2((ε− µ)2), where

|O2((ε− µ)2)| ≤ 1

2
max |(u(x + ε))xx|(ε− µ)2 .

Thus equation (3.2) yields

∫
ϕx0

(
(u(x + ε))x(ε− µ) +O2((ε− µ)2) + n1(x)− n2(x + µ)

)
×(

(u(x + ε))x +O1(µ− ε) + (n2)x(x + µ)
)
dx = 0. (3.4)

and therefore

µ

∫
ϕx0

(u(x + ε))2xdx =

∫
ϕx0

(u(x + ε))2x ε(x) dx + Ã+ B̃ +O1 +O2, (3.5)

where

Ã =

∫
ϕx0

(u(x + ε))x
(
n1(x)− n2(x + µ)

)
dx; (3.6)

B̃ =

∫
ϕx0

(
n1(x)− n2(x + µ)

)
(n2)x(x + µ)dx; (3.7)

O1 =

∫
ϕx0

(u(x + ε))x(ε− µ)(n2)x(x + µ)dx

+

∫
ϕx0

O1(µ− ε)
(
n1(x)− n2(x + µ)

)
dx; (3.8)

O2 =

∫
ϕx0

O2(ε− µ)2(u(x + ε))xdx

+

∫
ϕx0

O2(ε− µ)2[O1(µ− ε) + (n2)x(x + µ)]dx

+

∫
ϕx0

O1(µ− ε)(u(x + ε))x(ε− µ)dx. (3.9)

Denote by ε the average of ε weighted by ϕ(x−x0). By the Taylor-Lagrange theorem
we have

Ã = A+OA ,
10



where

A =

∫
ϕx0

(u(x + ε))x
(
n1(x)− n2(x + ε)

)
dx (3.10)

and

OA = (ε− µ)

∫
ϕx0

(u(x + ε))x(n2)x(x + ε̃(x))dx, (3.11)

where ε̃(x) satisfies ε̃(x) ∈ [min(µ, ε),max(µ, ε)]. In the same way,

B̃ =

∫
ϕx0

(
n1(x)− n2(x + µ)

)
(n2)x(x + µ)dx .

so that B̃ = B +OB, where

B =

∫
ϕx0

(
n1(x)− n2(x + ε)

)
(n2)x(x + ε)dx (3.12)

and

OB = (µ− ε)
∫
ϕx0

n1(x)(n2)xx(x + ε̃(x))− (n2)x(x + ε̃(x))dx. (3.13)

The terms A and B are stochastic and we must estimate their expectation and vari-
ance. The terms O1, O2, OA, OB are higher order terms with respect to ε − µ and
therefore negligible if ε − µ is small. The next lemma computes the variances of the
main error terms caused by the noise.

Lemma 3.1. Consider the main error terms

A =

∫
ϕx0

(u(x + ε(x)))x
(
n1(x)− n2(x + ε)

)
dx

and

B =

∫
ϕx0

(
n1(x)− n2(x + ε)

)
(n2)x(x + ε)dx

as defined above. One has EA = EB = 0 and

Var(A) = 2σ2

∫
[ϕ(x− x0)u(x + ε)x]

2
N dx

≤ 2σ2

∫
ϕ(x− x0)2(u(x + ε))2x;

Var(B) ≤ 2π2σ4

3

∫
ϕ(x− x0)2dx + σ4

∫
ϕx(x− x0)2dx.

See the appendix for the proof of this lemma.
Theorem 3.2. (Main disparity formula and noise error estimate) Let

u1(x) and u2(x) be two images related by the geometrical deformation model described

11



in (2.1) and consider an optimal disparity µ(x0) obtained as any global minimizer of
ex0

(µ) (defined by (2.2)). Then

µ(x0) =

∫
ϕx0

[u(x + ε(x))]2xε(x)dx∫
ϕx0

[u(x + ε(x))]2xdx
+ Ex0 + Fx0 +Ox0 , (3.14)

where

Ex0 =

∫
ϕx0

(u(x + ε(x)))x
(
n1(x)− n2(x + ε)

)
dx∫

ϕx0
[u(x + ε(x))]2xdx

is the dominant noise term,

Fx0 =

∫
ϕx0

(
n1(x)− n2(x + ε)

)
(n2)x(x + ε)dx∫

ϕx0
[u(x + ε(x))]2xdx

and

Ox0
=
O1 +O2 +OA +OB∫
ϕx0

[u(x + ε(x))]2xdx
,

is made of smaller order terms in ε− µ. In addition the variances of the main error
terms due to noise satisfy

Var(Ex0) = 2σ2

∫
[ϕ(x− x0)u(x + ε)x]

2
N dx( ∫

ϕ(x− x0)u(x + ε)2xdx
)2 ; (3.15)

Var(Fx0
) 6

2π2

3 σ4
∫
ϕ(x− x0)2dx + σ4

∫
ϕx(x− x0)2dx( ∫

ϕ(x− x0)u(x + ε)2xdx
)2 . (3.16)

Proof: All above results are a direct consequence of the decomposition formula for the
disparity, (3.5), the definitions of the error terms (3.11), (3.13) and (3.6), completed
with the variance estimates in Lemma 3.1. �

Remark In all treated examples, it will be observed that Var(B) � Var(A), which
by Lemma 3.1 will be true if

σ2

[
2π2

3

∫
ϕ(x− x0)2 +

∫
ϕx(x− x0)2

]
� 2

∫
[ϕ(x− x0)u(x + ε)x]2N , (3.17)

therefore if the noise variance σ is small enough with respect to the average image
contrast of ux in the block.

Discussion about the meaning of the theorem The expressions “dominant noise
term” and “made of smaller terms” in the statement of Theorem 3.2 are mere inter-
pretations of the terms of the formula. The first term in (3.14) gives a deterministic
estimate of the correlation-maximizing µ, as weighted average of the real disparity ε
in the block. This estimate is exact in the noiseless case at points around which ε is
constant. Otherwise the difference between this deterministic term and the real ε(x0)
is the “fattening error”, as pointed out in [12].

12



The variance of the second main term Ex0
given by (3.15) will experimentally

prove very close to the empirically observed RMSE of the measured disparity. The
error term Ox0

, being formally an O(ε − µ), will be small if µ = µ(x0) is close to
ε(x0). Yet, this last fact is neither assumed nor ensured by the theorem. The theorem
only assumes that µ is one global minimizer of ex0(µ). Thus, Theorem 3.2 will be
useful only if we can by some oracle select the points x0 at which µ(x0) is very close
to ε(x0) and therefore make Ox0

small. On the other hand, if we happen to dispose
of an oracle discarding the wrong matches, Theorem 3.2 gives a precise estimate of
the dominant noise error term. Section 5 will compare the orders of magnitude of the
overall error term and of its prediction (3.15).

4. The Numerical Implementation. The numerical implementation aiming
at sharp sub-pixel accuracy and optimality must be very careful. This section details
the main steps, namely the choice of the soft window ϕ, and the discrete correlation
algorithm.

4.1. Choice of the Function ϕ. Section 2 showed that the minimization of

ex0(µ) only requires its knowledge for µ ∈ Z1/2
a . The other values of ex0(µ) are obtained

by DFT interpolation. The 2-over-sampling of u1 and u2 is easy by zero-padding. The
one-dimensional interpolation of ex0

is done by a numerical approximation to the DFT
interpolation.
Concerning the window function ϕ we would like it to be simultaneously:

• of small spatial support, say a few pixels, in order to both reduce computa-
tions, and to make the distance as local as possible, thus avoiding fattening
(a.k.a. adhesion) effects; and
• sufficiently regular (a trigonometric polynomial of degree no larger than

2N), in order to preserve the equality between the discrete and continuous
quadratic distances (see proposition 2.1). This is required to make precise
continuous computations possible on discrete samples, which is essential to
make the link between accuracy the results in Theorem 3.2 (which is necessar-
ily stated in teh continuous domain) with any discrete computer algorithm.

Since no function can have compact support both in the spatial and frequency
domain

both requirements are apparently contradictory, but there is a sensible solution
in this case.

Let us concentrate first on the small spatial support, then on the spectral support.
At the end we explain how to construct a window function ϕ that conciliates both
criteria.
ϕ with small spatial support. Here we relax slightly the band-limitedness assump-
tion in favor of a small spatial support, to reduce computations and to better localize
the result.

A prolate window function ϕ is optimal [27], in the sense that for a given spatial
support [−b, b]2 of size (2b)2

it concentrates its Fourier coefficients as much as possible within [−N,N − 1]2.

ϕprolate = arg max
ϕ∈L2([0,a]), supp(ϕ)⊆[−b,b]2,

∫
|ϕ|=1

∑
k∈([−N,N−1]∩Z)2 |ϕ̃k|2∑

k∈Z2 |ϕ̃k|2
(4.1)

For instance for a spatial support b = 1.5 a
2N of 3 × 3 half-pixels the prolate

function concentrates more than 99.8% of its L2 energy within its central (2N)2
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Fourier coefficients. Typical correlation window sizes are larger (about 13 × 13 or
even 17 × 17 half-pixels, in order to ensure a sufficiently dense set of meaningful
matches [41, 42]), which leaves many more degrees of freedom, and quasi 100% energy
concentration within the low-frequency band [−N,N − 1]2. The additional degrees
of freedom may be used to satisfy further constraint as in [4]. This parameter choice
makes the discrete correlation ed almost equal (up to less than 0.2% error) to the
continuous one e, in agreement with (2.10). The cost is just a 2 over-sampling, as
specified in formula (2.11).

The fact that doubling the sampling rate was necessary to obtain accurate results
had already been observed in [46], but their use of cubic interpolation and step window
functions for ϕ limited the accuracy of their results. Exact interpolation and prolate
functions have to be used to attain the twentieth of pixel. This is a crucial point:
Otherwise, the resulting error is considerably higher, as shown in Section 5.2.
ϕ with compact spectral support and small discrete spatial support. The
previous choice of ϕ is computationally convenient but it has the disadvantage that
it only approximately satisfies the hypothesis of proposition 2.1. Thus the equality
between the computed ed and the continuous e is only approximate (up to about 0.2%
error), and so are all our error estimates, which are based on the continuous version
e.

Alternatively we can take any spatial support [−b, b]2, arbitrarily choose the values
of ϕ at half-pixels

ϕdf (n) =

{
f(n) if n ∈ [−b, b]2 ∩ Z

1/2

a

0 otherwise (i.e. n ∈ Z
1/2

a )

and define ϕf as the 2N -degree trigonometric polynomial interpolating those sam-
ples.2 Such a construction ensures the equality between discrete and continuous dis-
tances ed and e, and the small (discrete) spatial support allows to make computations
fast. However, it has the disadvantage that the continuous ϕf may have a large
spatial support thus loosing localization of the result and potentially introducing fat-
tening effects. This is especially true if ϕdf is chosen as a box-function, thus leading

to ringing artifacts when calculating the interpolated ϕf . However if we choose ϕdf to

decay smoothly to 0 near the borders of [−b, b]2 then those ringing artifacts will be
minimized. This is the idea of the combined solution explored next.
The final compromise. In order to conciliate both criteria we shall choose the
half-pixel samples f within the spatial support [−b, b]2 of ϕdf so as to minimize the

L2 energy of ϕf outside this spatial support:

ϕ = argminf∈Rm

∫
[0,a]2\[−b,b]2 |ϕf (x)|2dx∫

[0,a]2
|ϕf (x)|2dx

where dm = ]([−b, b]2 ∩ Z
1/2

a ). The construction is similar to the prolate window
described in the previous paragraph, but inverting the roles of the Fourier and spa-
tial domains and adding zero-interpolation constraints at half-pixel locations outside

2To be consistent with the common choice of a 0-centered window function ϕf , we used here a
0-centered grid

Z
1/2
a =

[
−
a

2
,
a

2

]2
∩
(( a

4N
,

a

4N

)
+

a

2N
Z2
)

instead of the one defined in equation (2.5).
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(a) (b)

(c)

(d)

Fig. 4.1: (a) Reference image. The secondary image is a trivial DFT translation of
the reference. (b) Unsigned error image. Small errors appear close to the edges of the
disk due to the lack of samples in the interpolation. (c) Plot of a horizontal line of
the error image. The error peak is approximately of 3 ∗ 10−2 pixels. (d) Plot of the
same line error when using 2N samples for interpolating ed. The error peaks close
to the disk boundaries disappear and the error is smaller than 5 ∗ 10−4 for all the
pixels of the line image. However, this is more expensive computationally. The use
of a function ϕ as explained in Section 4.1 alleviates the numerical error due to the
lack of samples. Indeed, the error doubles when a step window function ϕ is used, all
other parameters being equal (peak of the order of 6 ∗ 10−2).

[−b, b]2. This way we can obtain a window function ϕ for which the equality e = ed

is exactly true, and which has a small discrete spatial support (3× 3 half-pixels), and
a concentration of 99.8% of the L2 energy of the continuous ϕ within this discrete
spatial support, which is sufficient to avoid fattening effects beyond the size of the
discrete window [−b, b]2. In practice, we can obtain almost the same window and
energy concentration by choosing ϕf , the vector f being the half-integer samples of
ϕprolate within [−b, b]2.

Numerical Error. In practice, the Shannon hypotheses are not completely satisfied
in the interpolation of ed. Indeed, not all of the 2N samples will be used for complexity
reasons in this 1D interpolation. A slight accuracy loss in pixels close to edges of the
image can therefore be observed in the toy example of a translated disk (see Fig.
4.1). In this example, we have compared the committed error when interpolating the
truncated ed with some samples and the complete ed with 2N samples. The small
error committed with the truncated ed will be neglected in the sequel, because it is
much smaller than the noise error.
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4.2. The discrete Correlation Algorithm. Since the quadratic distance ex0
(µ)

may present several local minima, the algorithm for accurately finding the minimizing
µ is composed of two steps:

1. Localization of the “correct” local minimum along the epipolar line of x0

within an interval of length less than one pixel and elimination of errors by
an “oracle” ruling out false matches happening by chance.

2. Fine localization of the selected local minimum up to the desired or attainable
accuracy.

The oracle in step 1 is not the subject of this paper. It uses the a contrario
method presented in [41, 42]. Here we suppose that the set of reliable matches in the
images are known as well as the disparities with one pixel accuracy. So, the algorithm
presented in this paper aims to refine such disparities.

Our algorithm is actually very similar to the “classic” correlation algorithm but
using the theoretical results in Section 2 makes the difference. Indeed, Propositions
(2.1) and (2.2) and a good choice of the window ϕ are the secrets to obtain very
accurate disparities. In particular, the critical aspect is how g = ex0

(µ) is interpo-
lated. The common approach, which consists in sampling g for integer disparities and
interpolating these samples, provides a wrong result because of insufficient sampling
rate. But DFT interpolation of a set of half-integer samples of g provides an exact
interpolation, as shown in Section 2 (cf. Proposition 2.2). This is why the images are
previously zoomed by a factor of 2 (see line 1 in Algorithm 1).

On the other hand, the spatial extent of the DFT has to be limited in order to save
computational time. Here we used a DFT interpolation within an interval of length
L = 8 around the initial search point µ0 (see line 3 in Algorithm 1). Furthermore g
is computed with a W ×W (W = 17 in our case) half-pixels window size for ϕ. (see
subsection 4.1 for the choice of ϕ.) The complete pseudo-code of our algorithm is:

Algorithm 1: Pseudo-code

input : Images u1 and u2. Set of meaningful points x0 and its integer
disparities µ0.

output: Subpixel disparities for the meaningful points.

Zoom x2 of the images u1 and u2 (zero-padding);1

foreach meaningful point x0 and its associated µ0 do2

Compute ex0
(µ) using the zoomed images (Eq. (2.11)) for3

µ ∈ [µ0 − L
2 , µ0 + L

2 ];
Compute ẽx0

(µ) = DFT interpolation (x32) of ex0
(µ);4

Compute µ̃0 = argminµẽx0(µ);5

Refine µ̃0 with the analytical minimum of the parabola fitting the current6

µ̃0 and its two closest points.
end7

Return the set of disparities µ̃0;8

Let us now analyze the complexity of our algorithm:
Initialization Computation of the half-integer samples ex0

(µ) for µ ∈ µ0 + 1
2 (Z∩

[−L2 ,
L
2 ]) requires

1. 2x zoom by zero-padding to obtain u1(m) and u2(m) at half integer

locations m ∈ Z1/2
a . This is done only once globally for the whole image

((16 + 20 log2N) flops/pixel).
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2. Computation of ex0
(µ) using equation (2.11)

for each of the L samples: (L× 2W 2 flops/pixel)
Total: 2LW 2 + 16 + 20 log2N

2 flops/pixel
Evaluation of ex0(µ) for a new value of µ ∈ µ0 + [−0.5, 0.5] requires a 1D Fourier

translation (DFT interpolation) of length L, i.e. 2L log2 L flops/pixel/iteration.
Note that we pay no penalty for each new interpolation and just a small initialization
penalty with respect to the inexact version based on integer disparity sampling. On
the other hand, an equally exact but brute-force solution based on image-interpolation
instead of quadratic distance interpolation would transfer the burden of the initial-
ization cost to each new evaluation of the distance function:
Initialization 2x zoom by zero-padding for u1 and u2 ((16 + 20 log2N) flops/pixel).
Evaluation of e(x0, µ) for a new value of µ ∈ µ0 + [−0.5, 0.5] requires:

1. Non-integer translation of a W × W patch of the zoomed u1 by the
computationally least expensive among 1D sinc interpolation of size L
or Fourier translation of size M = L+W .
(min(LW, 2M log2M)W flops/pixel)

2. Computation of ex0
(µ) using equation (2.11).

(2W 2 flops/pixel)
Total: (2W + min(LW, (L+W ) log2(L+W )))W flops/pixel/iteration

So, if the optimum search takes K iterations then the algorithm takes 16 +
20 log2N + 2LW 2 + K × [2L log2 L] whereas the brute force approach would take
16 + 20 log2N +K × [(2W + min(LW, (L+W ) log2(L+W )))W ] The previous math-
ematical analysis shows that the proposed method is as accurate as the brute force
method, but for typical values of W = 17, L = 8 and N = 1024 it computes each
iteration 50 times faster at the cost of a longer initialization. For typical values of
K (5 to 7) this still means a global speedup of a factor 3.

5. Results and Evaluation. Three experiments were performed to evaluate
the attainable disparity error under realistic noise conditions. The standing problem
of such evaluations is to obtain a reliable ground truth. So much more so for high
sub-pixel accuracy, since there is no validated highly accurate benchmark data. Two
ways were found to go around this problem. The first was to simulate urban aerial
stereo pairs with realistic depth map and noise. Several simulated translations were
also applied to Brodatz textures, thus avoiding the adhesion problem and focusing
on the noise factor. Finally, images from the Middlebury dataset3 were tested. In
that case the noise was estimated, and we shall see that the quantized manual ground
truth can be improved by cross-validation. In all cases, the resulting performance is
evaluated by the Root Mean Squared Error (RMSE) measured on all pixels q in the
set M of reliable match points,

RMSE =

(∑
q∈M

(
µ(q)− ε(q)

)2
#M

) 1
2

,

where µ(q) is the computed disparity and ε(q) is the ground truth disparity. This
RMSE will be compared to the theoretical prediction of the noise error given by (3.15).

For the simulated cases the influence of noise in the matching process is studied

with several image signal to noise ratios SNR =
‖ u ‖2
σn

, where σn is the standard

3www.vision.middlebury.edu/stereo/
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deviation of the noise. In each case σn is known and the predicted noise error is given
by formula (3.15).

A main feature of the experimental setting is the use of a blind a contrario re-
jection method that does not use the ground truth. Thus, the percentage of wrong
matches is also given, bad matches being those where the computed disparity differs
by more than one pixel from the ground truth.

As explained in the introduction, the accuracy of matches can only be evaluated
on pixels not exposed to fattening effect, which therefore lie away from disparity
edges. These edges being a priori unknown, security zones were computed by dilating
the strong grey level edges by the same window used for block-matching. The other
pixels were matched only if they passed an a contrario test to ensure that the match is
meaningful. As shown in [41, 42], the conjunction of both safety filters usually keeps
more than half the pixels and ensures that the matched pixels are right with very high
probability. For all experiments the sub-pixel refinement step goes up to 1

64 pixel.

5.1. Simulated Stereo Pair. In order to provide the quantitative error when
doing stereo sub-pixel matching, a secondary image was simulated from a reference
image and a ground truth provided by IGN (French National Geographic). In this case
the resulting couple of images has a low baseline (B/H = 0.045) and a 25 cm/pixel
resolution. Figure 5.1 shows the reference stereo image, its ground truth, the mask of
matched points, the sparse disparity map obtained by the sub-pixel block-matching
algorithm, and the theoretical predicted error variance caused by the noise predicted
by Formula (3.15) at each point. In this Figure the results obtained by Graph-Cuts
[25] with the public code of Kolmogorov and Zabih are shown as well. This last
algorithm is not well adapted to image pairs where a sub-pixel accuracy is needed.
The range of disparity being [-2, 2] for this image, the obtained disparity map with
Graph-Cuts is piecewise planar with only four labels. The image could be previously
zoomed to get sub-pixel labels, as Birchfield and Tomasi suggested, but the ensuing
complexity is unbearable with large images.

After the simulation of the secondary image a Gaussian noise was added inde-
pendently to both images. Table 5.1 gives the RMSE on the disparity committed
by the sub-pixel algorithm for decreasing SNRs. This table also gives the theoretical
disparity RMSE, as predicted from the noise variance, the percentage of matched
pixels, and the percentage of wrong matches. The case without noise (SNR = ∞)
shows the limit of the sub-pixel accuracy, with a 0.023 numerical error (see Section
4.1). In presence of noise the observed RMSE differs by less than 0.008 pixel from
its prediction. Thus, when the RMSE increases, the gap between predicted and real
accuracy becomes very small, but this better estimate is obtained on fewer pixels.

5.2. Matching Textured Images. This experiment simulates the ideal case of
two textured images (Figure 5.2-(a)) obtained from each other by a 2.5 pixels trans-
lation using zero-padding. An independent Gaussian noise was added independently
to both images. Again, the observed RMSE has the same order of magnitude as the
predicted noise error. For several textured images and signals the results were similar
(see Table 5.2).

The very same test was led with cubic interpolation as proposed in [46] instead
of the exact DFT interpolating method. The match of two textured images without
noise had a RMSE of 0.24 instead of 0.0053. This test confirms that adopting the
right interpolation is crucial for a sub-pixel stereo technology.
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(a)

(c)

(e)

(b)

(d)

(f)

Fig. 5.1: Results for the simulated stereo pair. (a) Reference aerial image. (b) Ground
truth. (c) Mask of matched points (white points (70.6%)). (d) Sparse disparity
map. (e) Noise error prediction at each point. The darker the pixel, the higher the
predicted error. Low gradient regions (e.g. shadows) have a larger predicted error. (f)
Disparity map obtained by Graph-Cuts. Original stereo-pair and ground-truth were
kindly provided by CNES, who holds the copyright. Simulated stereo-pair courtesy
of Gabriele Facciolo [13].
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SNR RMSE RMSE Matched points Wrong matches
(predicted) (observed) percentage percentage

∞ 0 0.023 70.6% 0.00%
357.32 0.029 0.033 63.3% 0.00%
178.66 0.041 0.049 54.2% 0.01%
125.06 0.052 0.058 41.5% 0.02%

Table 5.1: Qualitative results for the simulated stereo pair (Fig. 5.1). From left to
right: image signal to noise ratio; RMSE (in pixels) predicted by Formula (3.15);
RMSE to ground truth (in pixels); percentage of matched points and percentage of
bad matches.

Fig. 5.2: Brodatz texture.

Table 5.3 summarizes the orders of magnitude of the terms in our main error
formula (3.5) for the images in figs 5.1 and 5.2. For these images we know exactly
the ground truth and the standard deviation σ of the added noise. The standard
deviations of the main error terms in Theorem 3.2, Ex0 and Ex0 + Fx0 and Ox were
computed (RE , RE+F and RO respectively) where Var(Ex0

+Fx0
) was bounded from

above by Var(Ex0
) + Var(Fx0

) + 2(Var Ex0
VarFx0

)1/2 in the computation of RE+F .
This table confirms that the formula (3.5) scales correctly the orders of magnitude,
and that the main error term is due to the noise and not to the adhesion.

5.3. Simulated 3D scene. In this experiment a virtual 3D scene with perfect
planes was created. Then a texture was projected on each plane. Finally two high
resolution simulated snapshots of the scene were used as input for the sub-pixel algo-
rithm (with a 0.04 B/H ratio). In this simulated example the ground truth is known
with a 0.001 pixel precision. Figure 5.3 shows the used images, the ground truth
and the result and Table 5.4 summarizes the qualitative results of this experiment, in
particular the predicted and obtained error when adding independent white noises to
the images.

5.4. Middlebury Images. The last experiments were done on the Middlebury
classic dataset, which also publishes a hand-made ground truth. The first test was
made on Sawtooth, a piecewise planar stereo pair. Table 5.5 gives (column R0) a
20/100 pixel distance to the ground truth. Dequantizing the Middlebury ground
truth (column R1) improves slightly this distance to the ground truth to roughly
16/100. Still, with comparable noise level, this distance is thrice the error in the
simulated experiments! Yet a closer analysis of the results shows that the real error is
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SNR RMSE RMSE Matches Wrong matches
(predicted) (observed) percentage percentage

∞ 0 0.0053 100% 0.0%
96.38 0.0048 0.0073 99.8% 0.0%
48.19 0.0096 0.0109 99.8% 0.0%
32.12 0.0141 0.0160 98.7% 0.0%
24.09 0.0192 0.0203 87.1% 0.0%

Table 5.2: Quantitative results for textures (Fig. 5.2). From left to right: image
signal to noise ratio; RMSE (theoretical prediction (3.15)); observed RMSE (in pixels);
percentage of matched points, percentage of wrong matches.

Fig. 5.3: Top: Two high precision simulated snapshots of a 3D scene. Bottom: ground
truth and disparity map. Ground truth and synthetic stereo-pair courtesy of Lionel
Moisan [30] and CNES, who holds the copyright of these images.
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SNR RE RE+F RO

∞ 0 0 0
357.32 0.029 0.030 0.0015
178.66 0.041 0.044 0.0027
125.06 0.052 0.053 0.0033

∞ 0 0 0
96.38 0.0048 0.0051 0.0024
48.19 0.0096 0.0103 0.0030
32.12 0.0141 0.0145 0.0039
24.09 0.0192 0.0193 0.0042

Table 5.3: Order of magnitude of the terms in formula (3.5). Top of the table:
simulated stereo pair (Fig. 5.1). Bottom of the table: Textures (Fig. 5.2). From left
to right: Signal to noise ratio; RE predicted noise error computed from Ex0

; RE+F

error from Ex0
+Fx0

. RO: variance of the explicit computation of O using the ground
truth ε. The contribution of Fx0 in RE+F is negligible and RO is of the order of 0.003
pixel.

SNR RMSE RMSE Accepted Wrong

(observed) predicted matches matches

∞ 0.04 0 73.8% 0.0%
189 0.07 0.058 59.3% 0.0%
126 0.11 0.077 33.1% 0.00%
63 0.14 0.134 12.9% 0.008%

Table 5.4: Comparative results for the experiment of Section 5.3

close to 9/100 pixel. Indeed, we know that the manual ground truth in Middlebury is
not sub-pixel accurate: As explained in the Middlebury web site, the ground truth is
a quantized estimation of the affine motion of each planar, manually labeled, image
object. A more faithful ground truth can actually be recovered from the image pair
itself. Indeed, assuming that the data set was accurately piecewise planar permits
to compute the error between the sub-pixel matching result and its own plane-fit.
The standard deviation of this error goes down to 9/100 respectively (see
column R2). On the other hand, an independent error estimate of the obtained
disparity map (not relying on the ground truth) can be obtained by cross-validating
the disparity measurements applied to several different stereo pairs of the same 3D
scene. Indeed, the Middlebury data set provides nine ortho-rectified views at uniform
intervals, so that disparity maps taking the central view as reference image are related
to one another by a scaling constant which depends on the baseline ratios. The
RMSE error between the scaled disparity maps (see column R3) turns out to be in full
agreement with the piecewise planar check (column R2). The predicted noise error
was computed by using an estimation of the standard deviation of the noise of the
image given by the accurate noise estimator in [7].

The above Sawtooth test demonstrates the (relatively) poor accuracy of the
ground truth. In consequence, for the current four pairs of images in the Middlebury
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w.r.t. ground truth cross-validation RMSE
R0 R1 R2 R3 (predicted)

Sawtooth 0.213 0.162 0.09 0.090 0.076

Table 5.5: From left to right: RMSE to “official” ground truth. RMSE to the plane-fit
of the official ground truth. RMSE to the plane-fit of the sub-pixel correlation results.
RMSE of cross-validation with 7 additional views. Finally, predicted disparity error
due to noise (using an accurate noise estimate on the pictures themselves).

benchmark, we decided to cross-validate the sub-pixel correlation results by using all
the images of each scene in the dataset (5 images for Tsukuba and 9 images for Venus,
Teddy and Cones). Table 5.6 compares the obtained RMSE by cross-validation with
the predicted theoretical noise error.

w.r.t. ground truth cross-validation Predicted Noise Error
Tsukuba 0.357 0.080 0.069

Venus 0.225 0.101 0.042
Teddy 0.424 0.093 0.072
Cones 0.319 0.082 0.066

Table 5.6: Quantitative results for the Tsukuba, Venus, Teddy and Cones images.
The first column corresponds to the RMSE to the ground truth computed in the
mask of valid points. The second column is the RMSE by cross-validation of the 5
or 9 images in the dataset. Finally, the noise error (3.15) predicted by the theory
appears in the last column.

Comparison of existing algorithms in our mask. For the sake of evidence
of the ground truth imperfection we have also checked that classic stereo algorithms
provide disparity maps that are closer to each other (and to our result) than to the
ground truth. The tested algorithms are actually at the top of the Middlebury eval-
uation table: AdaptingBP [24], CoopRegion [49], SubPixDoubleBP [51], CSemiGlob
[19] and GC+SegmBorder [10].

Table 5.7 gives the quadratic errors when comparing two by two the considered
algorithms. The values in the diagonal of the tables (gray) are the RMSE with respect
to the ground truth. All of these error values have been computed in our same valid
point mask. The distance between any two solutions is for most of the cases smaller
than the distance of these solutions to the ground truth. The only exception of the 6
tested algorithms is GC+SegmBorder.

5.5. Conclusion, and a few objections. The empirical sub-pixel accuracy in
stereo vision can attain its predicted limit, which only depends on the noise at regular
disparity points. The experiments on realistically simulated pairs and real benchmark
images show a 1/20 pixel accuracy to be attained by block-matching, for more than
half the image pixels, under realistic noise conditions. These image pixels were not
found a posteriori, they were specified a priori by an autonomous algorithm, meaning
that the small predicted accuracy can be predicted a priori for these points. The
two ingredients, namely a sub-pixel accuracy and a strict a priori mismatch control,
could make stereo-vision (with high SNR and low baseline) into potential competitor
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0.357 0.281 0.258 0.245 0.216 0.223 Our algorithm
0.297 0.251 0.289 0.253 0.300 AdaptingBP

0.337 0.241 0.214 0.241 CoopRegion
0.264 0.253 0.272 SubPixDoubleBP

0.275 0.272 CSemiGlob
0.207 GC+SegmBorder

V
en

u
s

0.225 0.231 0.130 0.143 0.161 0.239 Our algorithm
0.215 0.146 0.163 0.176 0.223 AdaptingBP

0.131 0.122 0.129 0.142 CoopRegion
0.162 0.148 0.174 SubPixDoubleBP

0.192 0.212 CSemiGlob
0.142 GC+SegmBorder

T
ed

d
y

0.424 0.341 0.336 0.346 0.352 0.511 Our algorithm
0.421 0.330 0.312 0.303 0.531 AdaptingBP

0.354 0.262 0.317 0.509 CoopRegion
0.385 0.291 0.519 SubPixDoubleBP

0.411 0.542 CSemiGlob
0.481 GC+SegmBorder

C
on

es

0.319 0.281 0.267 0.245 0.253 0.421 Our algorithm
0.331 0.262 0.301 0.319 0.483 AdaptingBP

0.272 0.252 0.262 0.446 CoopRegion
0.349 0.234 0.487 SubPixDoubleBP

0.365 0.510 CSemiGlob
0.400 GC+SegmBorder

Table 5.7: Comparison of several stereo algorithms in the top classification. Values
on the diagonals (gray) are the values with respect to the ground truth. In general
the distance between two solutions is smaller than the distance to the ground truth,
with the exception of GC+SegmBorder.

with laser range scanners. Indeed, at a 70cm distance, the best triangulation scanners
achieve a 20µ accuracy, only on Lambertian objects and very controlled environment
and this requires multiple scans. On the other hand a well-calibrated stereo camera
system with 4000 pixels width, situated at the same distance of the object can achieve
a 70/4000cm disparity accuracy at the well matched points if the accuracy is pixelian.
This yields a 1.7510−2cm = 175µ accuracy for pixelian stereo systems. But if the
stereo disparity attains a 0.10 pixels accuracy we get a 17.5µ accuracy, which is
exactly comparable to the best current triangulation scanner accuracy.

The above Middlebury experiments also showed that the ground truth provided as
a benchmark reference is actually less accurate than the attainable level of 1/20 pixel
(see [51] for similar conclusions). This study also suggests that a rigorous methodology
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to create reliable ground truths is needed. Such ground truths should be built up by
several different automatic devices used repeatedly on the same objects, so as to
provide a cross-validated estimate of their own accuracy.

A first objection to the sub-pixel algorithm presented herewith is that it only
delivers a non dense disparity map, while the users usually desire a 3D rendering of
the objects and therefore a dense map. There is no contradiction, however, with this
goal in the present study. Global interpolation methods can be used to complete the
reliable pixels, knowing of course that the accuracy of the new disparities will not be
guaranteed. It is clear that stereo algorithms giving a final dense map must be more
complex than just block-matching. But our conclusion is that a block-matching is
necessary and fruitful if accuracy is at stake.

A second objection is that the study does not take into account the actual trend
of working not with a stereo pair, but rather with a whole set of images of a 3D scene
taken from many viewpoints. The present study can and must be extended to this
general setting with some advantage. For example if we dispose of five successive
snapshots with low baseline, a fusion of the four obtained disparities should decrease
the error variance by a four factor, and therefore go beyond the accuracy estimated
here.

A third objection is that the translation model (2.1) which is the basis of all
computations here, is geometrically too simplistic. It is in essence only true for the
parts of the observed objects facing the cameras, and in the low baseline framework.
However, it so happens that for the low baseline case, the translation dominates the
other perspective deformations, as has been systematically observed in experiments.
In the case of slanted surfaces with respect to the cameras, the present theory can
be used anyway. In fact, local matching is reduced to an (approximate) translation,
after a local affine transform on one of the images. This is doable but goes beyond
the scope of the present study.

Acknowledgments. The authors acknowledge financial support from the French
Space Agency (CNES), ECOS Sud project U06E01, ANR FREEDOM and Callisto
projects, European Research Council (advanced grant Twelve Labours) and Office
of Naval research (grant N00014-97-1-0839). The stereo pairs in Figures 5.1 and 5.3
are copyrighted by CNES, and provided with contributions from Lionel Moisan and
Gabriele Facciolo.

Appendix A: Proof of Lemma 2.4. Integrating by parts in x we have

V := Var

(∫
ϕ(x)n(x)nx(x)dx

)
= Var

(
1

2

∫
ϕx(x)n(x)2dx

)
.

Since n(x)2 and ϕ(x) are 2N -degree trigonometric polynomials, (2.9) can be used
with a = N :

V =
1

4
Var

1

4

∑
m∈Z

1/2
N

ϕx(m)n(m)2

 .

This sum can be split into

V =
1

43
Var(S1 + S2 + S3 + S4) 6

1

42

4∑
i=1

Var(Si) , (5.1)
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where Si =
∑

m∈Ai ϕx(m)n(m)2, Ai = [0, N ]2 ∩ (ai + Z2), a1 = (1/4, 1/4), a2 =
(1/4, 3/4), a3 = (3/4, 1/4), and a4 = (3/4, 3/4). We shall evaluate for example

Var(S1) = Var

( ∑
m∈A1

ϕx(m)n(m)2

)
.

The samples n(m), m ∈ A1 being independent, Var(S1) =
∑

m∈A1
ϕx(m)2 Var(n(m)2)

which by Lemma 2.3 yields Var(S1) = 2σ4
∑

m∈A1
ϕx(m)2. Thus, from (5.1) follows

that V 6 2σ4

42

∑
m∈Z

1/2
N

ϕx(m)2 which, using again (2.9) with a = N , yields

V 6
4× 2σ4

42

∫
ϕ2
x(x)dx =

σ4

2

∫
ϕ2
x(x)dx.

Also,

E
∫
ϕ(x)n(x)nx(x)dx = −1

2
E
∫
ϕx(x)n(x)2dx =

= −1

2

∫
ϕx(x)En(x)2dx = −σ

2

2

∫
ϕx(x)dx = 0.

The second part of the lemma is easier. By the Fourier series isometry (2.4),∫
[0,N ]2

g(x)n(x)dx = N2
∑
k,l∈Z

g̃k,lñk,l =

= N2
∑

−N2 6k,l6N
2 −1

g̃k,lñk,l.

Indeed, n being a degreeN -trigonometric polynomial, ñk,l = 0 for (k, l) /∈ [−N/2, N/2−
1]2. Since the ñk,l are independent with variance σ2

N2 , we obtain the announced result
by taking the variance of the last finite sum:

Var

(∫
[0,N ]2

g(x)n(x)dx

)
= σ2N2

∑
−N2 ≤k,l6

N
2 −1

|g̃k,l|2.

By (2.7), this yields

Var

(∫
[0,N ]2

g(x)n(x)dx

)
= σ2

∫
[0,N ]2

gN (x)2dx,

where

gN (x) :=
∑

−N/26k,l6N/2−1

g̃k,le
2iπ(kx+ly)

a

is the degree N -trigonometric polynomial best approximating g for the quadratic
distance. �
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Appendix B: Proof of Lemma 3.1. Notice that n1(x) and n2(x+ε) are inde-
pendent Gaussian noises with variance σ2. Thus their difference is again a Gaussian
noise with variance 2σ2. It therefore follows from (2.16) in the second part of Lemma
2.4 that

Var(A) = 2σ2

∫
[ϕ(x− x0)u(x + ε)x)]

2
N dx ≤ 2σ2

∫
ϕ(x− x0)2(u(x + ε)x)2dx.

The noises n1 and n2 being independent, by the second part of Lemma 2.4, by the
second relation in Lemma 2.3 and by (2.15) in the first part of Lemma 2.4,

Var(B) ≤ 2

[
Var(

∫
ϕx0

n1(x)(n2)x(x + ε)dx) + Var(

∫
ϕx0

n2(x + ε)(n2)x(x + ε)dx)

]

≤ 2

[
σ2 × π2σ2

3

∫
ϕ2(x− x0)dx +

σ4

2

∫
ϕx(x− x0)2dx

]

=
2π2σ4

3

∫
ϕ(x− x0)2dx + σ4

∫
ϕx(x− x0)2dx.

�
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[12] J. Delon and B. Rougé. Small baseline stereovision. Journal of Mathematical Imaging and
Vision, 28(3):209–223, 2007.

[13] G. Facciolo. Variational adhesion correction with image based regularization for digital elevation
models. Master’s thesis, Universidad de la República (Uruguay), August 2005.

[14] G. Facciolo, A. Lecumberry, F.and Almansa, A. Pardo, V. Caselles, and B. Rougé. Constrained
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